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SOME RESULTS IN A CORRELATED RANDOM WALK 
BY 

G. C. JAIN 

1. Introduction. In connection with a statistical problem concerning the Galton-
test Csaki and Vincze [1] gave for an equivalent Bernoullian symmetric random 
walk the joint distribution of g and k9 denoting respectively the number of positive 
steps and the number of times the particle crosses the origin, given that it returns 
there on the last step. In the present paper the corresponding results are obtained 
for an unsymmetrically correlated random walk in a compact form in terms of 
the hypergeometric function 2F±. The event of a return to the starting position has 
been investigated in some detail. 

A particle moves along a straight line a unit distance during every interval r. 
During the first interval r, the particle moves to the right with probability px and 
to the left with probability p2 = 1 — p±. Thereafter during each interval T, its move
ments are governed by the transition probability matrix 

right left 

It can be proved by induction that P(xk=l), the probability that the particle 
moves to the right during the kth step is 

tf2[l - 0>2 - QipMiPi -?2)fc " ̂ /(tfi +tf2). 

It follows that, for large k, 

P(xk = 1) = 1-P(xk = - 1 ) = q2Kqi+qù 

indicating asymptotic stable phase of the walk except in the trivial case \pi—q2\ = 1. 
The coefficient of correlation between two consecutive steps when px = p2 is 

P = S / ( S 1 + § 2 - M 2 ) 1 / 2 , 

where 

(1.1) S = Pl-q2, 8± = [(Plp2)
ll2-(qi<l2)1,2]\ S2 = [(p^^Hq^)112]2, 

so that S2 = S ^ . 
The square roots are as usual taken with the +ve sign. As will be seen in the 

sequel, S± and 82 are useful in abbreviating a number of expressions. 
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2. Derivation of telegraph equation. Defining P(x9 t) as the probability that a 
particle, performing a symmetric correlated random walk along a straight line 
reaches x from 0 at a time /, Goldstein [2] obtains under specialized conditions a 
second order differential equation in P(x9 t) known as the telegraph equation. The 
corresponding equation is derived below for an unsymmetric correlated random 
walk on taking Ax as the length of a step and At as the time between two consecu
tive steps. If A(x9 t) and B(x9t) are the respective probabilities that the particle 
arrives at x from the left or from the right, then the following relations hold: 

P(x9 t) = A(x9t)+B(x9t) 

(2.1) A(x9 t+At) = pxA(x-Ax9 t)+q2B(x-Ax9 t) 
= pxP(x-Ax9 t)-$B(x-A9 t), 

(2.2) B(x9 t+At) = p2B(x+Ax9 t)+qxA(x+Ax91) 
= p2P(x+Ax9 t)-8A(x+Ax9t). 

Here the probabilities P(x91)9 A(x91)9 and B(x91) may be regarded as the limit 
of probabilities concerning the discrete process. 

From (2.1) and (2.2) 

A(x+Ax9 t) + B(x-Ax, t) = pxA(x9 t-At)+q2B(x9 t-At) 
+p2B(x9 t-At)+q±A(x9 t-At) 

= A(x9 t-At) + B(x9 t-At) = P{x9 t-At). 

Hence, by addition of (2.1) and (2.2) 

P(x9 t+At) = p^ix-Ax, t)+p2P(x+Ax9 t)-8P(x9 t-At). 

Expanding this by Taylor's theorem, neglecting terms of a higher order than 
(At)2 and using the norming 

Pi +P2 = 2(1 - At/2C)9 px -p2 = 2DAx9 

we obtain 

n ~ a 2 p ^ l a p 2/d
2p o n a p \ 

( 2 3 > ^cTt=v\W^2D^r 
where v=Ax/At is the velocity of the particle and C and D are constants. 

This equation with D = 0 (i.e. px —p2) is the Telegraph equation without leakage. 
Equation (2.3) can easily be solved by standard methods. 

3. First passage to r. Let (ar,n; 6r,n)=conditional probability of a particle 
reaching r for the first time on the «th step (i.e. at time r0 + nr) given that it arrived 
on the origin at time r0 from (left; right). 

Supposing that the first passage through 1 occurs at the fcth step (k= 1, 2 , . . . ) 
and also supposing that it reaches 0 from the right at time r0, the probability of the 
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first passage through 2 at the wth step is 

{ ^2,n = 2*l,fc01,n-fc-
fc 

Similarly 0_2>n = 2*-i .**-i .n-fc-

Defining a r t 0 =0=6 r > 0 for r>0 , the relations (3.1) are true for n>0 and the 
limits for k can be taken as 0 to n. 

Multiply (3.1) by tn, sum over all n and denote the probability generating func
tions (PGF) by corresponding capital letters; then 

(32\ B2(t) = * i ( /Mi(0 ; 

The PGF for the first passage through + 1 and — 1 are further seen to be con
nected by the relations 

Ai(t)= p1t+q1tB2(t)9 

(3 3) Bx(f) = q2t+p2tB2(f), 
A^1(t)^q1t+p1tA^2(t)9 

From (3.2) and (3.3), we obtain 

p2Ax(t) = PlB^(t) = [1 + 8/» -{(1 - 8X/«X1 - 8aO}1/a]/2r, 
qlB1(f) = M - i ( 0 = p2A1(t)-tS. 

From (3.3) and (3.4) 
(3.5) A1(t)^p1t/[l-q1tB1(t)]; 

(3.6) A1(f)B1(t) = [ ( l - S i r ^ - a - S a / ^ P / ^ r p r f " . 

(i) First return to the origin. Define (/#>; ^X))=probability of a particle return
ing for the first time (on the nth step) to the starting position, given that the first 
step is to the (right; left). 

Transferring the origin to the position reached by the particle in the first step, 
we get 

PaX0 s 2 /#>*" = tA-x(f) = qMt)lq2, 
(3.7)<j 

and Qa\t)= 2 dPP-tBA). 
L n = l 

From (3.4), 

?i£i(l) = ¥.92+qi-\92-9i\}-

It therefore follows that 

l?i/?2 if ?2 > q%> 
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and &K\) = iqiqi lqi><12 

w \ 1 if #2 >qlm 

To interpret these results in physical terms, a large number a of noninteracting 
particles should be supposed to have started from the origin, ap± to the right and 
ap2 to the left. In case q1>q2, all the ap± particles and a fraction q2/qi of the ap2 

particles return sooner or later to the origin, i.e. a fraction p2(l— q2\qi) of the 
particles on an average never returns to the origin. Similarly, in case q2>ql9 a 
fraction p±(l —q1/q2) of the particles on an average will not return to the origin. 

The PGF of a first return to the starting position is then 

F(t) = PlP
a\t) + P2Q

(1\t) 
= (pi^i + P 2 ^ ) [ l - S / 2 - { ( l - 8 1 r 2 ) ( l - S 2 ^ ) p / 2 ] / 2 ^ 1 ^ , 

and the coefficient of t2n in its expansion shows that the probability of a first 
return to the starting position at the (2ri)th step is 

V.*) Jo.2n- 2qiq2 Y{i-ri)T(n+\ytl\*,,2~'~Q 

in generalization of a result obtained by Seth [3], The function 2^
7i(«; b; c;x) is 

the well known Gauss function denned by 

r = 0 \C)r x-

where (a)r = a(a+1).. .(a + r— 1), r= 1, 2, 3 , . . . ; (d)0= 1, the series being absolutely 
convergent whenever \x\ < 1 and when x= 1, provided that Re (c—a—b)>0. 

The probability that the accumulated number of positive and negative steps 
(i.e. to the right and to the left) will ever equalize (i.e. the particle would return to 
the origin) is 

^(1) = (Pi<li + P2q2)[qi+q2-\q2-qi\]/2q1q2 

(p2+qiPi/q2 for q2 > ql9 

[pi+q2p2lqi for#i < #2, 

indicating that the return to the starting position for q^q2 is not a persistent 
event. 

While (3.8) gives the recurrence time distribution for the first return, that for 
subsequent returns is obtained by substituting p!=q2. 

Thus return to the origin becomes an undelayed recurrent event if px =q2 so that 

P2=q2-

The GF of wn, the probability of a return to the starting position, on taking 
Piqi + P2q2=2q1q2 and also u0z=l is 

u(t)^ I unt
n =1/[1 -F(t)] 

n = 0 

= {[(l-S^2)(l-82^)] l '2-8/2} I (S1 + S 2 ) < ^ , 
i = 0 
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so that 

2 ieor(«+i-or(f+/--/0 

(ii) Return without crossing the origin. Let (pniqn) denote the probability with 
which a particle, which has taken the first step to the (right; left), returns to the 
starting position at the «th step without having in the meantime crossed it. 

Now if in a path of the type pn, the first step is removed and instead of - 1 is 
attached at the nth step, there results a path of the type 0-2,n giving 

P2Pn = «-2,n> 

so that 

(3.9) P(t) ES J pnt
n = A„2(t)/p2 = q1A1{t)B1{t)lq2p1 

= [(1 - S ^ ' M l - ^t2)ll2]2I4t2
Plp2q2. 

Similarly 

n = l 

4. PGF for i crosses of the origin and g steps on the right. Let (p$nl q9%) =prob
ability of a particle returning to the starting position on the nth step after crossing it 
i times and spending g steps on the right of it, given that the first step is to be 
(right; left). 

Clearly for n<g+i 

D«> = o = a{i) 

We write 

Pn,n=Pn and q{
0% = qn9 

pn and qn being defined in (iii) of §2. 
Defining 

(0) — ^(0) _ o 

Po,o — qo,o = v, 

and the PGF 

5=0 n = 0 

and similarly for 

Q£Xs) and e<°feO, 
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we have 

n o > 0 ) = pns
n; QVXs) = <7», 

and 

p*Xs,o=i Pn{sty = P(st), 
(4.i) n;° 

e(0>0, 0 = 2 ^ n = ô(0; 
n = 0 

the actual expressions can be obtained by using (3.9) and (1.1). 
Considering the two contingencies that after the first return to the origin on the 

rth step, say, that the particle goes again to the right or crosses the origin, we have 

P?.n = 2 « - l , r - l f e ^ - r , n - r + ^ 2 ^ - T r V n - r ) , 
r 

and 

qf.n = ZKr-ltiiq^-r+PlP^r)-
r 

Multiplying these by s9tn and summing over 

g = 0, 1, 2 , . . . , n and n = 0, 1 , . . . , oo 

we get 

Pii>(s,t)=P2P(st)Q?-1Xs9t), 

and 

Q{i)(s9t)=PlQ(t)P^Xs9tX 

whence 

P«\s, 0 = p,PsP(st)Q(t)P»-2\s, t), 

and Q«\s, 0 = PiP2P(st)Q(t)Q«-2Ks, t). 

These, on using (4.1) show that for an even number 2k of crosses, the corre
sponding PGF are 

(4.3) P™(s, 0:= [PiP2q2P(st)P(t)/qi]"P(St), 

and 

(4.4) Q™\s, 0 = qAPiP2q2P(st)P{t)lqifP{t)lqi. 

Using (4.1) and (4.2) the corresponding PGF for an odd number (2&-1) of 
crosses are given by 

(4.5) ftP»-^, 0 = PaQ^-^s, 0 = [PiPaq*P(st)P(t)lqir. 

(4.2)« 
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Writing out the actual expressions by using (3.9) and (1.1) and expanding by the 
binomial theorem we obtain the probabilities 

VfaptfMlti&n = Kk+l,g)S(k9n-g); 

V(/?i/?2tfi/#2)tf2
2$n = Kk,g)à(k+hn-g); 

and 

Piffîtf =Pd8&n = S(k,g)8(k,n-g) 

where 

(_8 2 ) f c + , » ( ^ ) ( - ) T ( * + l - i O 
(4.6) 8(fc, g) = ( - E _ A _ _ ^ r ( g + f c + 1 ) r ( w _ i 0 

The substitution s= 1 in (4.3) gives the PGF for a particle which has taken the 
first step to the right, returning to its starting position on the 2«th step after 
crossing it 2k times, without regard to the number of steps on the right; and the 
coefficient of t2n in the expansion of p{2k\l, i) gives p(%£. These operations in 
(4.3), (4.4) and (4.5) then give 

ViPiPzqMpf» = >/{PiP2qiIqù48P = 8(2*+1, a), 
PiP(lk'1)=P2qfnk-1) = K2k,n). 

For a Bernoullian symmetric random walk (i.e. Pi=P2==Pi=i), a use of S1=0 
and S2 = l in (4.3), (4.4) and (4.5) verifies the following results due to Csaki and 
Vincze [1]: 

22n2(2W _ * ± W 2g \_±_(2n-2g\ k(2g\kl±( 2n-2g \ 
1 2s-2n~ g \g-k-l) (n-g)\n-g-k)^g\g-k) (n-g)\n-g-k-l) 

and 

22nz(2fc-i, _ 2 * / 2g \ _ f e _ (2n-2g\ 
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