SOME RESULTS IN A CORRELATED RANDOM WALK

BY
G. C. JAIN

1. Introduction. In connection with a statistical problem concerning the Galtontest Cśaki and Vincze [1] gave for an equivalent Bernoullian symmetric random walk the joint distribution of g and k, denoting respectively the number of positive steps and the number of times the particle crosses the origin, given that it returns there on the last step. In the present paper the corresponding results are obtained for an unsymmetrically correlated random walk in a compact form in terms of the hypergeometric function ${ }_{2} F_{1}$. The event of a return to the starting position has been investigated in some detail.

A particle moves along a straight line a unit distance during every interval τ. During the first interval τ, the particle moves to the right with probability ρ_{1} and to the left with probability $\rho_{2}=1-\rho_{1}$. Thereafter during each interval τ, its movements are governed by the transition probability matrix

$$
\left. \begin{array}{cc}
p_{1} & q_{1} \\
q_{2} & p_{2}
\end{array}\right] ; \quad p_{1}+q_{1}=1=p_{2}+q_{2} .
$$

It can be proved by induction that $P\left(x_{k}=1\right)$, the probability that the particle moves to the right during the k th step is

$$
q_{2}\left[1-\left(\rho_{2}-q_{1} \rho_{1} / q_{2}\right)\left(p_{1}-q_{2}\right)^{k-1}\right] /\left(q_{1}+q_{2}\right)
$$

It follows that, for large k,

$$
P\left(x_{k}=1\right)=1-P\left(x_{k}=-1\right)=q_{2} /\left(q_{1}+q_{2}\right),
$$

indicating asymptotic stable phase of the walk except in the trivial case $\left|p_{1}-q_{2}\right|=1$.
The coefficient of correlation between two consecutive steps when $\rho_{1}=\rho_{2}$ is

$$
\rho=\delta /\left(\delta_{1}+\delta_{2}-\delta_{1} \delta_{2}\right)^{1 / 2}
$$

where
(1.1) $\delta=p_{1}-q_{2}, \delta_{1}=\left[\left(p_{1} p_{2}\right)^{1 / 2}-\left(q_{1} q_{2}\right)^{1 / 2}\right]^{2}, \delta_{2}=\left[\left(p_{1} p_{2}\right)^{1 / 2}+\left(q_{1} q_{2}\right)^{1 / 2}\right]^{2}$,
so that $\delta^{2}=\delta_{1} \delta_{2}$.
The square roots are as usual taken with the + ve sign. As will be seen in the sequel, δ_{1} and δ_{2} are useful in abbreviating a number of expressions.

Received by the editors August 26, 1970 and, in revised form, December 8, 1970.
2. Derivation of telegraph equation. Defining $P(x, t)$ as the probability that a particle, performing a symmetric correlated random walk along a straight line reaches x from 0 at a time t, Goldstein [2] obtains under specialized conditions a second order differential equation in $P(x, t)$ known as the telegraph equation. The corresponding equation is derived below for an unsymmetric correlated random walk on taking Δx as the length of a step and Δt as the time between two consecutive steps. If $A(x, t)$ and $B(x, t)$ are the respective probabilities that the particle arrives at x from the left or from the right, then the following relations hold:

$$
\begin{gather*}
P(x, t)=A(x, t)+B(x, t) \\
A(x, t+\Delta t)=p_{1} A(x-\Delta x, t)+q_{2} B(x-\Delta x, t) \tag{2.1}\\
=p_{1} P(x-\Delta x, t)-\delta B(x-\Delta, t), \\
B(x, t+\Delta t)= \tag{2.2}\\
=p_{2} B(x+\Delta x, t)+q_{1} A(x+\Delta x, t) \\
=p_{2} P(x+\Delta x, t)-\delta A(x+\Delta x, t) .
\end{gather*}
$$

Here the probabilities $P(x, t), A(x, t)$, and $B(x, t)$ may be regarded as the limit of probabilities concerning the discrete process.

From (2.1) and (2.2)

$$
\begin{aligned}
A(x+\Delta x, t)+B(x-\Delta x, t)= & p_{1} A(x, t-\Delta t)+q_{2} B(x, t-\Delta t) \\
& +p_{2} B(x, t-\Delta t)+q_{1} A(x, t-\Delta t) \\
= & A(x, t-\Delta t)+B(x, t-\Delta t)=P(x, t-\Delta t)
\end{aligned}
$$

Hence, by addition of (2.1) and (2.2)

$$
P(x, t+\Delta t)=p_{1} P(x-\Delta x, t)+p_{2} P(x+\Delta x, t)-\delta P(x, t-\Delta t)
$$

Expanding this by Taylor's theorem, neglecting terms of a higher order than $(\Delta t)^{2}$ and using the norming

$$
p_{1}+p_{2}=2(1-\Delta t / 2 C), \quad p_{1}-p_{2}=2 D \Delta x
$$

we obtain

$$
\begin{equation*}
\frac{\partial^{2} P}{\partial t^{2}}+\frac{1}{C} \frac{\partial P}{\partial t}=v^{2}\left(\frac{\partial^{2} P}{\partial x^{2}}-2 D \frac{\partial P}{\partial x}\right) \tag{2.3}
\end{equation*}
$$

where $v=\Delta x / \Delta t$ is the velocity of the particle and C and D are constants.
This equation with $D=0$ (i.e. $p_{1}=p_{2}$) is the Telegraph equation without leakage. Equation (2.3) can easily be solved by standard methods.
3. First passage to r. Let $\left(a_{r, n} ; b_{r, n}\right) \equiv$ conditional probability of a particle reaching r for the first time on the nth step (i.e. at time $\tau_{0}+n \tau$) given that it arrived on the origin at time τ_{0} from (left; right).

Supposing that the first passage through 1 occurs at the k th step $(k=1,2, \ldots)$ and also supposing that it reaches 0 from the right at time τ_{0}, the probability of the
first passage through 2 at the nth step is
(3.1) $\{$ Similarly

$$
\begin{aligned}
b_{2, n} & =\sum_{k} b_{1, k} a_{1, n-k} . \\
a_{-2, n} & =\sum_{k} a_{-1, k} b_{-1, n-k}
\end{aligned}
$$

Defining $a_{r, 0} \equiv 0 \equiv b_{r, 0}$ for $r>0$, the relations (3.1) are true for $n \geq 0$ and the limits for k can be taken as 0 to n.

Multiply (3.1) by t^{n}, sum over all n and denote the probability generating functions (PGF) by corresponding capital letters; then

$$
\begin{align*}
B_{2}(t) & =B_{1}(t) A_{1}(t) \tag{3.2}\\
A_{-2}(t) & =B_{-1}(t) A_{-1}(t) .
\end{align*}
$$

The PGF for the first passage through +1 and -1 are further seen to be connected by the relations

$$
\begin{align*}
A_{1}(t) & =p_{1} t+q_{1} t B_{2}(t), \\
B_{1}(t) & =q_{2} t+p_{2} t B_{2}(t), \tag{3.3}\\
A_{-1}(t) & =q_{1} t+p_{1} t A_{-2}(t), \\
B_{-1}(t) & =p_{2} t+q_{2} t A_{-2}(t) .
\end{align*}
$$

From (3.2) and (3.3), we obtain

$$
\begin{align*}
& p_{2} A_{1}(t)=p_{1} B_{-1}(t)=\left[1+\delta t^{2}-\left\{\left(1-\delta_{1} t^{2}\right)\left(1-\delta_{2} t^{2}\right)\right\}^{1 / 2}\right] / 2 t, \tag{3.4}\\
& q_{1} B_{1}(t)=q_{2} A_{-1}(t)=p_{2} A_{1}(t)-t \delta .
\end{align*}
$$

From (3.3) and (3.4)

$$
\begin{equation*}
A_{1}(t) B_{1}(t)=\left[\left(1-\delta_{1} t^{2}\right)^{1 / 2}-\left(1-\delta_{2} t^{2}\right)^{1 / 2}\right]^{2} / 4 q_{1} p_{2} t^{2} \tag{3.5}
\end{equation*}
$$

(i) First return to the origin. Define $\left(p_{n}^{(1)} ; q_{n}^{(1)}\right) \equiv$ probability of a particle returning for the first time (on the nth step) to the starting position, given that the first step is to the (right; left).

Transferring the origin to the position reached by the particle in the first step, we get
(3.7) $\left\{\begin{aligned} & P^{(1)}(t) \\ \text { and } & \equiv \sum_{n=1}^{\infty} p_{n}^{(1)} t^{n}=t A_{-1}(t)=q_{1} t B_{1}(t) / q_{2}, \\ Q^{(1)}(t) & \equiv \sum_{n=1}^{\infty} q_{n}^{(1)} t^{n}=t B_{1}(t) .\end{aligned}\right.$

From (3.4),

$$
q_{1} B_{1}(1)=\frac{1}{2}\left\{q_{2}+q_{1}-\left|q_{2}-q_{1}\right|\right\}
$$

It therefore follows that

$$
P^{(1)}(1)=\left\{\begin{array}{cl}
1 & \text { if } q_{1}>q_{2} \\
q_{1} / q_{2} & \text { if } q_{2}>q_{1}
\end{array}\right.
$$

and

$$
Q^{(1)}(1)=\left\{\begin{array}{cl}
q_{2} / q_{1} & \text { if } q_{1}>q_{2} \\
1 & \text { if } q_{2}>q_{1}
\end{array}\right.
$$

To interpret these results in physical terms, a large number α of noninteracting particles should be supposed to have started from the origin, $\alpha \rho_{1}$ to the right and $\alpha \rho_{2}$ to the left. In case $q_{1}>q_{2}$, all the $\alpha \rho_{1}$ particles and a fraction q_{2} / q_{1} of the $\alpha \rho_{2}$ particles return sooner or later to the origin, i.e. a fraction $\rho_{2}\left(1-q_{2} / q_{1}\right)$ of the particles on an average never returns to the origin. Similarly, in case $q_{2}>q_{1}$, a fraction $\rho_{1}\left(1-q_{1} / q_{2}\right)$ of the particles on an average will not return to the origin.

The PGF of a first return to the starting position is then

$$
\begin{aligned}
F(t) & =\rho_{1} P^{(1)}(t)+\rho_{2} Q^{(1)}(t) \\
& =\left(\rho_{1} q_{1}+\rho_{2} q_{2}\right)\left[1-\delta t^{2}-\left\{\left(1-\delta_{1} t^{2}\right)\left(1-\delta_{2} t^{2}\right)\right\}^{1 / 2}\right] / 2 q_{1} q_{2},
\end{aligned}
$$

and the coefficient of $t^{2 n}$ in its expansion shows that the probability of a first return to the starting position at the $(2 n)$ th step is

$$
\begin{equation*}
f_{0,2 n}=\frac{\left(\rho_{1} q_{1}+\rho_{2} q_{2}\right)}{2 q_{1} q_{2}} \frac{(-)^{n+1} \delta_{2}^{n} \Gamma\left(\frac{3}{2}\right)}{\Gamma\left(\frac{3}{2}-n\right) \Gamma(n+1)}{ }_{2} F_{1}\left(-\frac{1}{2} ;-n ; \frac{3}{2}-n ; \frac{\delta_{1}}{\delta_{2}}\right) \tag{3.8}
\end{equation*}
$$

in generalization of a result obtained by Seth [3]. The function ${ }_{2} F_{1}(a ; b ; c ; x)$ is the well known Gauss function defined by

$$
{ }_{2} F_{1}(a ; b ; c ; x)=\sum_{r=0}^{\infty} \frac{(a)_{r}(b)_{r}}{(c)_{r}} \frac{x^{r}}{x!},
$$

where $(a)_{r}=a(a+1) \ldots(a+r-1), r=1,2,3, \ldots ;(a)_{0}=1$, the series being absolutely convergent whenever $|x|<1$ and when $x=1$, provided that $\operatorname{Re}(c-a-b)>0$.

The probability that the accumulated number of positive and negative steps (i.e. to the right and to the left) will ever equalize (i.e. the particle would return to the origin) is

$$
\begin{aligned}
F(1) & =\left(\rho_{1} q_{1}+\rho_{2} q_{2}\right)\left[q_{1}+q_{2}-\left|q_{2}-q_{1}\right|\right] / 2 q_{1} q_{2} \\
& = \begin{cases}\rho_{2}+q_{1} \rho_{1} / q_{2} & \text { for } q_{2}>q_{1}, \\
\rho_{1}+q_{2} \rho_{2} / q_{1} & \text { for } q_{1}<q_{2},\end{cases}
\end{aligned}
$$

indicating that the return to the starting position for $q_{1} \neq q_{2}$ is not a persistent event.

While (3.8) gives the recurrence time distribution for the first return, that for subsequent returns is obtained by substituting $\rho_{1}=q_{2}$.

Thus return to the origin becomes an undelayed recurrent event if $\rho_{1}=q_{2}$ so that $\rho_{2}=q_{2}$.
The GF of u_{n}, the probability of a return to the starting position, on taking $\rho_{1} q_{1}+\rho_{2} q_{2}=2 q_{1} q_{2}$ and also $u_{0} \equiv 1$ is

$$
\begin{aligned}
u(t) & \equiv \sum_{n=0}^{\infty} u_{n} t^{n}=1 /[1-F(t)] \\
& =\left\{\left[\left(1-\delta_{1} t^{2}\right)\left(1-\delta_{2} t^{2}\right)\right]^{1 / 2}-\delta t^{2}\right\} \sum_{i=0}^{\infty}\left(\delta_{1}+\delta_{2}\right)^{i} t^{2 i}
\end{aligned}
$$

so that

$$
\begin{aligned}
u_{n}= & \frac{(-)^{n} \sqrt{\pi}}{2} \sum_{i=0}^{n} \frac{(-)^{i}\left(\delta_{1}+\delta_{2}\right)^{i} \delta_{2}^{n-i}}{\Gamma(n+1-i) \Gamma\left(\frac{3}{2}+i-n\right)} \\
& \quad \times{ }_{2} F_{1}\left(-\frac{1}{2} ; i-n ; \frac{3}{2}+i-n ; \frac{\delta_{1}}{\delta_{2}}\right)-\delta\left(\delta_{1}+\delta_{2}\right)^{n-1} .
\end{aligned}
$$

(ii) Return without crossing the origin. Let ($p_{n} ; q_{n}$) denote the probability with which a particle, which has taken the first step to the (right; left), returns to the starting position at the nth step without having in the meantime crossed it.
Now if in a path of the type p_{n}, the first step is removed and instead of -1 is attached at the nth step, there results a path of the type $a_{-2, n}$ giving

$$
p_{2} p_{n}=\alpha_{-2, n}
$$

so that

$$
\begin{align*}
P(t) & \equiv \sum_{n=1}^{\infty} p_{n} t^{n}=A_{-2}(t) / p_{2}=q_{1} A_{1}(t) B_{1}(t) / q_{2} p_{1} \tag{3.9}\\
& =\left[\left(1-\delta_{1} t^{2}\right)^{1 / 2}-\left(1-\delta_{2} t^{2}\right)^{1 / 2}\right]^{2} / 4 t^{2} p_{1} p_{2} q_{2}
\end{align*}
$$

Similarly

$$
Q(t) \equiv \sum_{n=1}^{\infty} q_{n} t^{n}=q_{2} P(t) / q_{1}
$$

4. PGF for i crosses of the origin and g steps on the right. Let $\left(p_{g, n}^{(i)} ; q_{g, n}^{(i)}\right) \equiv$ probability of a particle returning to the starting position on the nth step after crossing it i times and spending g steps on the right of it, given that the first step is to be (right; left).
Clearly for $n<g+i$

$$
p_{g, n}^{(i)}=0=q_{g, n}^{(i)}
$$

We write

$$
p_{n, n}^{(0)}=p_{n} \quad \text { and } \quad q_{0, n}^{(0)}=q_{n}
$$

p_{n} and q_{n} being defined in (iii) of $\S 2$.
Defining

$$
p_{0,0}^{(0)} \equiv q_{0,0}^{(0)} \equiv 0
$$

and the PGF

$$
P_{n}^{(i)}(s) \equiv \sum_{g=0}^{n} p_{g, n}^{(i)} s^{g} ; \quad P^{(i)}(s, t) \equiv \sum_{n=0}^{\infty} P_{n}^{(i)}(s) t^{n}
$$

and similarly for

$$
Q_{n}^{(i)}(s) \text { and } Q^{(i)}(s, t)
$$

we have

$$
P_{n}^{(0)}(s)=p_{n} s^{n} ; \quad Q_{n}^{(0)}(s)=q_{n},
$$

and

$$
\begin{align*}
& P^{(0)}(s, t) \equiv \sum_{n=0}^{\infty} p_{n}(s t)^{n}=P(s t), \tag{4.1}\\
& Q^{(0)}(s, t) \equiv \sum_{n=0}^{\infty} q_{n} t^{n}=Q(t)
\end{align*}
$$

the actual expressions can be obtained by using (3.9) and (1.1).
Considering the two contingencies that after the first return to the origin on the r th step, say, that the particle goes again to the right or crosses the origin, we have

$$
p_{g, n}^{(i)}=\sum_{r} a_{-1, r-1}\left(q_{2} p_{g-r, n-r}^{(i)}+p_{2} q_{g-r, n-r}^{(i-1)}\right),
$$

and

$$
q_{g, n}^{(i)}=\sum_{r} b_{1, r-1}\left(q_{1} q_{g, n-r}^{(i)}+p_{1} p_{g, n-r}^{(i-1)}\right) .
$$

Multiplying these by $s^{g} t^{n}$ and summing over

$$
g=0,1,2, \ldots, n \text { and } n=0,1, \ldots, \infty
$$

we get

$$
P^{(i)}(s, t)=p_{2} P(s t) Q^{(i-1)}(s, t),
$$

and

$$
Q^{(i)}(s, t)=p_{1} Q(t) P^{(i-1)}(s, t),
$$

whence
(4.2) $\left\{\begin{array}{l}\text { and }\end{array}\right.$

$$
\begin{aligned}
& P^{(i)}(s, t)=p_{1} p_{2} P(s t) Q(t) P^{(i-2)}(s, t) \\
& Q^{(i)}(s, t)=p_{1} p_{2} P(s t) Q(t) Q^{(i-2)}(s, t)
\end{aligned}
$$

These, on using (4.1) show that for an even number $2 k$ of crosses, the corresponding PGF are

$$
\begin{equation*}
P^{(2 k)}(s, t)=\left[p_{1} p_{2} q_{2} P(s t) P(t) / q_{1}\right]^{k} P(s t) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
Q^{(2 k)}(s, t)=q_{2}\left[p_{1} p_{2} q_{2} P(s t) P(t) / q_{1}\right]^{k} P(t) / q_{1} . \tag{4.4}
\end{equation*}
$$

Using (4.1) and (4.2) the corresponding PGF for an odd number ($2 k-1$) of crosses are given by

$$
\begin{equation*}
p_{1} P^{(2 k-1)}(s, t)=p_{2} Q^{(2 k-1)}(s, t)=\left[p_{1} p_{2} q_{2} P(s t) P(t) / q_{1}\right]^{k} . \tag{4.5}
\end{equation*}
$$

Writing out the actual expressions by using (3.9) and (1.1) and expanding by the binomial theorem we obtain the probabilities

$$
\begin{aligned}
& \sqrt{\left(p_{1} p_{2} q_{2} / q_{1}\right)} p_{2 q, 2 n}^{(2 k)}=\delta(k+1, g) \delta(k, n-g) ; \\
& \sqrt{\left(p_{1} p_{2} q_{1} / q_{2}\right)} q_{2 g, 2 n}^{(2 k)}=\delta(k, g) \delta(k+1, n-g) ;
\end{aligned}
$$

and

$$
p_{1} p_{2 g, 2 n}^{(2 k-1)}=p_{2} q_{2 g, 2 n}^{(2 k-1)}=\delta(k, g) \delta(k, n-g)
$$

where

$$
\begin{align*}
\delta(k, g)= & \frac{\left(-\delta_{2}\right)^{k+g}}{\left(16 p_{1} p_{2} q_{1} q_{2}\right)^{k / 2}} \sum_{i=0}^{2 k} \frac{\binom{2 k}{i}(-)^{i} \Gamma\left(k+1-\frac{1}{2} i\right)}{\Gamma(g+k+1) \Gamma\left(1-g-\frac{1}{2} i\right)} \tag{4.6}\\
& \times{ }_{2} F_{1}\left(-\frac{1}{2} i ;-g-k ; 1-g-\frac{1}{2} i ; \frac{\delta_{1}}{\delta_{2}}\right)
\end{align*}
$$

The substitution $s=1$ in (4.3) gives the PGF for a particle which has taken the first step to the right, returning to its starting position on the $2 n$th step after crossing it $2 k$ times, without regard to the number of steps on the right; and the coefficient of $t^{2 n}$ in the expansion of $p^{(2 k)}(1, t)$ gives $p_{2 n}^{(2 k)}$. These operations in (4.3), (4.4) and (4.5) then give

$$
\begin{gathered}
\sqrt{\left(p_{1} p_{2} q_{2} / q_{1}\right)} p_{2 n}^{(2 k)}=\sqrt{\left(p_{1} p_{2} q_{1} / q_{2}\right)} q_{2 n}^{(2 k)}=\delta(2 k+1, n) \\
p_{1} p_{2 n}^{(2 k-1)}=p_{2} q_{2 n}^{(2 k-1)}=\delta(2 k, n)
\end{gathered}
$$

For a Bernoullian symmetric random walk (i.e. $p_{1}=p_{2}=\rho_{1}=\frac{1}{2}$), a use of $\delta_{1}=0$ and $\delta_{2}=1$ in (4.3), (4.4) and (4.5) verifies the following results due to Cśaki and Vincze [1]:

$$
2^{2 n} z_{2 g, 2 n}^{(2 k)}=\frac{k+1}{g}\binom{2 g}{g-k-1} \frac{k}{(n-g)}\binom{2 n-2 g}{n-g-k}+\frac{k}{g}\binom{2 g}{g-k} \frac{k+1}{(n-g)}\binom{2 n-2 g}{n-g-k-1}
$$

and

$$
2^{2 n} z_{2 g, 2 n}^{(2 k-1)}=2 \frac{k}{g}\binom{2 g}{g-k} \frac{k}{(n-g)}\binom{2 n-2 g}{n-g-k} .
$$

Acknowledgement. Thanks are due to Professor H. C. Gupta, University of Delhi, India, for valuable suggestions.

References

1. E. Cśaki and I. Vincze, On some problems connected with the Galton-test, Publ. Math. Inst., Hungarian Acad. Sc., 6 (1961), 97-109.
2. S. Goldstein, On diffusion by discontinuous movements and on the telegraph equation, Quart. J. Mech. Appl. Math., 4 (1951), 129-156.
3. A. Seth, The correlated unrestricted random walk, J. Roy. Statist. Soc. Ser. B, (2) 25 (1963), 394-400.

University of Calgary,

Calgary, Alberta

