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Abstract

Particle-in-Cell (PIC) simulation is an interpolation-based method on the Newton–Maxwell
(N–M) system. Its well-known drawback is its shape/interpolation functions often causing
the violation of continuity equations (CEs) at mesh nodes and that of Maxwell equations
(MEs) at particles’ positions. Whether this drawback can be overcome by choosing/
solving suitable shape/interpolation functions is of fundamental importance for the
PIC simulation. Until now, these shape/interpolation functions are usually subjectively chosen
and, hence, always invoke the drawback. Here, we first investigate whether these shape/
interpolation functions can be self-consistently solved by considering under what condition
the CEs and the MEs can be satisfied anywhere. Strict mathematical analysis reveals that
strict self-consistent shape/interpolation functions are unavailable. Only few approximately
self-consistent shape/interpolation functions are luckily found by some authors. This
fact drives us to present another universal interpolation-free strict method on the N–M
system.

Introduction

Plasma particle simulation is to mimic the evolution of probability density function f in
Vlasov–Maxwell (V–M) system through that of super-particles’ positions and velocities in
the Newton–Maxwell (N–M) system. At present, the most popular method on the N–M
system is Particle-in-Cell (PIC) simulation, which is based on the interpolation technique.
In the PIC simulation (Langdon, 1973; Dawson, 1983; Esirkepov, 2001; Birdsall and
Langdon, 2004; Chen et al., 2011; Markidis and Lapenta, 2011; Chen and Chacon, 2014,
2015), the N–M system containing Np relativistic Newton equations (RNEs) of particles and
four Maxwell equations (MEs) is numerically solved on a space mesh in a special manner:
the space mesh is divided into Nc cells and Np particles are assigned/allocated into Nc cells,
initially Np particles are at within-cell, or fractional, positions whose space coordinates are
fractional-fold of the step of the space mesh. Particles information, which are at fractional
positions, are “mapped” into, through dimensionless binary shape/interpolation functions,
fields-related information at mesh nodes whose space coordinates are integer-fold of the
step of the space mesh. For example, for charge density n and electric field E, there are
“mapping”

n(rm, t) =
∑
i

[Snf (rm, ri(t)) × n(ri(t), t)],

E(ri(t), t) =
∑
m

[SEb(rm, ri(t)) × E(rm, t)],

where rm represents positions of mesh nodes. The MEs are numerically solved on these mesh
nodes, and fields felt by a particle are also “mapped” from, through shape/interpolation func-
tions, fields at mesh nodes.

In principle, {ri(t), dtri(t); 1≤ i≤ Np}|t=Δt is completely determined by initial values {ri(t),
dtri(t); 1≤ i≤ Np}|t=0 and four pairs of shape/interpolation functions such as Snf,Snb; Sjf,Sjb;
SEf,SEb; and SBf,SBb, where the symbol “f” refers to mapping from particles positions to mesh
nodes and “b” refers to opposite mapping. Namely, Np pairs of particles’ initial values and
eight shape/interpolation functions determine a PIC solution of the N–M system or the
Np + 4 equations.

Its scientific validity is directly related with the shape/interpolation functions it adopted.
Because the MEs demand mandatorily self-consistent electric and magnetic fields (E,B) to
be produced by a pair of charge density and current density (n,j) satisfying continuity equation
(CE), the PIC simulation should be mass-conserved. Moreover, because universal validity of
the MEs, this demands that at particles’ positions, those mapped back from E,B at mesh
nodes, such as E(ri(t), t) =

∑
m [SEb(rm, ri(t))× E(rm, t)], should obey the MEs and, hence,

will imply equations that SEb and SBb must satisfy. For example, at particle positions, there
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should be

∑
m

[∇ri SEb(rm, ri(t)) × E(rm, t)] = ∇ri × E(ri(t), t)

= −∂tB(ri(t), t) = −
∑
m

[SBb(rm, ri(t)) × ∂tB(rm, t)];

0 = ∇ri · B(ri(t), t) =
∑
m

[∇ri SBb(rm, ri(t)) · B(rm, t)].

Namely, these shape/interpolation functions should be able to
keep the CE and the MEs valid under interpolation. However,
because these shape/interpolation functions are often subjectively
chosen, or prescribed, by researchers, rarely they can ensure the
CE and the MEs valid under interpolation (Shiroto et al., 2019).

Now that keeping fluid equations valid under interpolation
implies equations that eight shape/interpolation functions should
satisfy. Whether they have solutions is of fundamental importance
to the PIC simulation, or interpolation-based method on the N–
M system. Once they do not exist, this will imply that the
interpolation-based method cannot yield a solution satisfying
each in Np + 4 equations, and hence what it yields is not an
exact solution of the N–M system, that is, there are always some
MEs violated. Some authors have tried to self-consistently solve
these shape/interpolation functions, rather than to prescribe
them (Esirkepov, 2001; Chen et al., 2011; Markidis and
Lapenta, 2011; Chen and Chacon, 2014, 2015). But their efforts
are mostly focused merely on whether the CE can keep valid (at
mesh nodes) under interpolation, while whether the MEs (at par-
ticles’ positions) can receives no attention. This will impede an
overall and exact conclusion on whether shape/interpolation
functions are solvable and hence on whether the interpolation-
based method is suitable to the N–M system. Namely, a reliable
PIC solution of the N–M system should ensure not only the CE
at mesh nodes satisfied but also the MEs at particles’ positions sat-
isfied. Detailed discussions are presented in Appendix.

Keeping the CE and the MEs valid under interpolation will
lead to at least eight equations, (i.e., four MEs at mesh nodes
and those at particle positions), that eight shape/interpolation
functions should satisfy. In addition, there are at least two nor-
malization conditions:

∑
m

Snf (rm, ri(t)) = 1 ∀ri, t;
∑
m

Sjf (rm, ri(t)) = 1 ∀ri, t,

which represents the total number of electrons and charge current
being unchanged when being allocated/assigned into mesh nodes.
Mathematically, once the number of equations is larger than the
unknown to be solved, it has been acknowledged that no solution
exists. To some extent, the interpolation-based method is to
re-express the N–M system into equations of eight shape/interpo-
lation functions, or into an unsolvable form.

This fundamentally denies feasibility and necessity of solving
the N–M system through the interpolation-based method.
Namely, the interpolation-based method cannot warrant all Np

+ 4 equations satisfied, and hence, its yielded solutions are inexact.
This fact forces us to explore the interpolation-free method on the
N–M system.

Interpolation-free particle simulation

In the PIC simulation, the RNE-side of the N–M system is to pro-
duce “raw materials/data”, even though they can satisfy the CE,
for the interpolation which yields “processed materials/data” vio-
lating the CE if shape/interpolation functions are not suitable.
Such a design is unwise. Here, now that the RNE-side produces
“raw materials/data” satisfying the CE, it is instructive to analyze
what the RNE-side implies.

No matter how many RNEs wait to be solved, all RNEs, for-
mally secnd-order ordinary differential equations (ODEs) of the
set {ri}, are Lagrangian expression of a first-order partial differen-
tial equations of the summation of two fields u(r, t) + RV(r, t),
whose Lagrangian expression of definition read (Lin and Liu,
2018, 2019a, 2019b) (if

∑
i d(r − ri(t)) = 0):

u(r j, t) ;
∑

i[dtri × d(r j − ri(t))]∑
i d(r − ri(t)) (1)

RV(rj, t) ;
∑

i[(dtrj − dtri) × d(rj(t) − ri(t))]∑
i d(rj(t) − ri(t)) , (2)

and both u and RV are = 0 if
∑

i d(r − ri(t)) = 0. This makes each
particle’s velocity to be expressed as the summation of Lagrangian
expressions of two fields at a fluid element

dtri ; u(ri, t)+ RV(ri, t), (3)

and hence, a velocity set {dtri, 1≤ i≤Np} will correspond to
Lagrangian expression of the RV-field at a set of fluid elements
{RV(ri, t), 1≤ i≤Np}. Here, the physical origin of the RV-value
is simple. When several particles “cross” at a space-time point
(r, t), each particle’s velocity might differ from the average veloc-
ity of these “crossing” particles and hence needs its RV-value to
reflect such a derivation. More generally, for Np mono-variable
functions { fi, 1≤ i≤Np} : t→ r-space, if they have own initial
conditions { fi|t=0, dtfi|t=0, 1≤ i≤Np}, it is natural to take similar
definitions to deal with possible “crossing”, which refers to r = fm-

(t) = fn(t) being satisfied at some (r, t) values.
From definitions, we can find that the Lagrangian expression

of the u-field is single-valued, while that of the RV-field is not
strictly single-valued and sometimes multiple-valued. Usually
RV(rj, t) = 0 corresponds to two cases: (1) no i≠ j particle
meets rj(t)− ri(t) = 0, that is, no collision occurs and (2) there
are i≠ j particles meeting rj(t)− ri(t) = 0 and having a same
velocity dtrj(t)− dtri(t) = 0. In contrast, RV(rj, t)≠ 0 means that
there are i≠ j particles meeting rj(t)− ri(t) = 0 and having a dif-
ferent velocity dtrj(t)− dtri(t)≠ 0. Therefore, the Lagrangian
expression of RV-field represents the summation of velocity
differences between a particle and colliding particles. The
collision means multiple particles meeting at a position.
Because different colliding particles act as rj in the summation∑

i [(dtrj − dtri)× d(rj(t)− ri(t))], RV(rj, t) is therefore multiple-
valued. Of course, no collision occurring means that the summa-
tion only contains dtrj subtracting itself or dtrj− dtrj = 0 and hence
RV(rj, t) = 0. Note that when RV(rj, t) is single-valued, the single
value is 0, and when multiple-valued, the summation of multiple
values is 0.

Other notable universal properties of such a multiple-valued
field (denoted as F(r, t) here) are summarized as follows: If
there are multiple allowed F-values at a time-space point (r, t),
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the maximum and the minimum among these allowed F-values
are denoted as max{F(r, t)} and min{F(r, t)}. Many multiple-
valued fields, such as the RV-field, share a common property: at
any time-space point, there is

min {F(r, t)}×max {F(r, t)} ≤ 0. (4)
This common property will lead to the time partial derivative of

F, ∂tF or corresponding difference expression (F(r, t + Δt)− F(r, t))/
Δt, to be also multiple-valued. At each time-space point (r, t), the
maximum and the minimum of allowed values of F(r, t +Δt)− F(r, t)
are

max{F(r, t + Dt) − F(r, t)}
= max{F(r, t + Dt)} −min{F(r, t)}; (5)

min{F(r, t + Dt) − F(r, t)}
= min{F(r, t + Dt)} −max{F(r, t)}, (6)

and their product is also ≤0

max {F(r, t + Dt)− F(r, t)}

min {F(r, t + Dt)− F(r, t)} ≤ 0.
(7)

To some extent, the mono-valued field is a special multiple-
valued field whose the maximum and minimum, at any given
time-space point, of allowed values are equal or satisfy a different
constraint max ×min≥ 0.

According to their definitions Eqs (1) and (2), two fields, u
and RV, have a same Euler expression but different Lagrangian
expressions, and their convective terms are opposite (Lin and
Liu, 2018, 2019a, 2019b):

u · ∇p(u) = −u · ∇p(RV). (8)

This relationship is easy to be derived as follows: Because of
the relation among operators dt = ∂t + dtri · ∇ri , from above-
mentioned definitions in Lagrangian expression, one can find that

∇rj u(rj, t) ;
∑

i ∇rjdtri × d[rj − ri]∑
i d[rj − ri] +

∑
i dtri × d′[rj − ri]∑

i d[rj − ri]

−
∑

m dtrm × d[rj − rm] ×
∑

i d
′[rj − ri]

[∑i d[rj − ri]]2

=
∑

i dtri × d′[rj − ri]∑
i d[rj − ri]

−
∑

m dtrm × d[rj − rm] ×
∑

i d
′[rj − ri]

[∑i d[rj − ri]]2

, (9)

where we have utilized that ∇rj dtri = 0 for j≠ i and
∇rjdtrj = dt∇rj rj = dt1 = 0 for j=i. Likewise, there is

∇rjRV(rj, t) =
∑

i[dtrj − dtri] × d′[rj − ri]∑
i d[rj − ri]

−
∑

m[dtrj − dtrm] × d[rj − rm] ×
∑

i d
′[rj − ri]

[∑i d[rj − ri]]2
.

(10)

Thus, adding them will yield

∇rju(rj, t) +∇rjRV(rj, t) =
∑

i dtrj × d′[rj − ri]∑
i d[rj − ri]

−
∑

m dtrj × d[rj − rm] ×
∑

i d
′[rj − ri]

[∑i d[rj − ri]]2

= dtrj ×
∑

i d
′[rj − ri]∑

i d[rj − ri]

− dtrj ×
∑

m d[rj − rm] ×
∑

i d
′[rj − ri]

[∑i d[rj − ri]]2

= 0,

(11)

where we have utilized the fact
∑

m d[rj − rm]=
∑

i d[rj − ri].
Actually, if noting two definitions in Lagrangian expression can
yield dtrj = u(rj, t) + RV(rj, t) one can directly apply the operator
∇rj to it and obtain

0= ∇rj[u(rj, t)+ RV(rj, t)], (12)

which will lead to Eq. (9) immediately. Moreover, the Lagrangian
expression of the u-field is single-valued, while that of the
RV-field is not strictly single-valued and sometimes multiple-
valued. This can be easily found from its definition.

Among four fields appearing in the RNE, E, B, and u are
single-valued and RV is multiple-valued. When a mathematical
operator, such as ∂t, is applied to a single-valued field, the result
is still a single-valued field. A single-valued field can have its dis-
crete grid/mesh description and be calculated in a standard differ-
ence method. In contrast, for a multiple-valued field, it is nearly
impossible to set up the discrete grid/mesh description and to
apply the standard difference method to it.

The set of Np particles’ RNEs is now the set of equations relat-
ing a multiple-valued field RV(rj, t) at a set of fluid elements with
a single-valued field at a set of fluid elements.

∂t[p(u+ RV)− p(u)]+ RV(r, t)× B

= single−valued terms; (13)

or

B · ∂t[p(u+ RV)− p(u)] = B · [single−valued terms]. (14)

Note that B · [single-valued terms] is still single-valued, while
the left-hand side of above equation is multiple-valued. These
mathematical properties of the multiple-valued RV-field, espe-
cially the requirement that the allowed values of RV-field at any
(r, t) must be from the positive to the negative, indeed demand
the single-valued terms in each RNE to meet a general relation

[single−valued terms]
= −|b| × [single−valued terms], (15)

where |β| is the absolute value of the figure β. Clearly, the only
solution to this general relation is

0 = [single−valued terms] = [∂tp(u)+ eE + eu× B]. (16)
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Namely, Np particles’ RNEs reflect that the multiple-valued
field RV is governed by single-valued fields.

Here, the fact that the governed is multiple-valued and the
governing are single-valued is due to the requirement of basic
mathematic principle. If the governed is single-valued and the
governing is multiple-valued, the number of equations is more
than that of unknowns and hence there is no solution. The oppo-
site situation, where the governing is single-valued and the gov-
erned are multiple-valued, means the number of equations
being less than that of unknowns and hence allows the governed
to be multiple-valued.

In the above strict mathematical theory, we treat these RNEs as
a set of same equations parameterized by the RV-field. Because
the definition of the u-field demands the ternary relation
among u,E,B mandatory to allow at each space-time point (r, t),
multiple values of the RV-field being within a range from the pos-
itive to the negative, the ternary relation among u,E,B derived
from these RNEs is therefore described by Eq. (23). This is a nat-
ural property of such a set of equations whose detailed forms are
same but not limited to be analogous to an RNE. Similar relation
among governing single-valued fields can be derived likewise.
Namely, Eq. (23) is completely due to mathematical property of
the set and the definition of u.

Thus, two ternary relations among (u, E, B),
u = −(1/m0)((∂tE −∇ × B)/(10∇ · E − ZeNi)) (derived from
the Gauss law and the Ampere law) and Eq. (23), will lead to a
binary relation between E and B. This binary relation combines
with the Faraday law and ∇ · B = 0 will determine exact expres-
sions of E and B in terms of (r, t). As shown in Figure 1, a self-
consistent updating {ri} is thus obtained from RNEs under this
exact expressions of E and B.

The importance of such an RNE-derived ternary relation is
self-evident. In particular, it can also be derived from complete
mathematical description (Lin and Liu, 2019b). In the complete

description, the ME-side can yield a ternary relation
u = −(1/m0)((∂tE −∇ × B)/(10∇ · E − ZeNi)), and the VE and
the inequality

0 = L̂f

= [∂t + y · ∇ − [e[E(r, t) + y× B(r, t)]] · ∂p]f
= [∂t + u · ∇ − e[E + u× B] · ∂p]f
+ [y− u] · [∇ − eB× ∂p]f ;

(17)

0 ≤ f (y, r, t) ∀y, r, t (18)

can combine to yield another ternary relation among u,E,B
(Fig. 2). Clearly, because of the linearity of the operator L̂, if
g2≥ 0 can meet the VE, there will be L̂g = 0. One can express g
as power series of υ− u and u ;

�
yg2 d3y/

�
g2 d3y:

g ; g0d(y− u)+
∑
i≥1

giD
i; (19)

where Δ is defined as

D ; [p(y)− p(u)]× exp (− [p(y)− p(u)]2), (20)

and thus similar power series expression of g2 reads

g2 ; h0d(y− u)+
∑
i≥2

hiD
i (21)

because of the unique property of the Dirac function (υ− u) × δ
(υ− u) = 0. Thus, h1≡ 0 is a universal property of solutions of
the complete mathematical description (Lin and Liu, 2019a). It

Fig. 1. Sketch of loyal and safe plasma simulation based on the N–M equations, where another ternary relation refers to “∂tp(u) + eE + eu × B = 0” and a ternary
relation refers to u = −(1/m0)((∂tE − ∇× B)/(10∇ · E − ZeNi )) which is derived from the Gauss law and the Ampere law.
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will strictly, as shown elsewhere (Lin and Liu, 2019a, 2019b), lead
to a ternary relation [Eq. (23)].

These relations for hi≥2 can be directly verified by substituting
the series into the VE and comparing terms proportional to [ p(υ)
− p(u)]i order-by-order. Namely, the VE plays a role of a recur-
rence formula relating expansion coefficient functions in different
orders, and those hi≥2 can be expressed by h0 and u one-by-one.
This well illustrates that the dependence of f on υ, or microscopic
details of f, is governed by few macroscopic fields h0 and u.

Comparison with interpolation-based particle simulation

Particle simulation is a series of stages in which the set {ri, dtri;
1≤ i≤Np}t=(n+1)Δt is calculated from {ri, dtri; 1≤ i≤Np}t=nΔt.
The whole process is to allocate particles over different groups
or cells. The set {ri, RVi; 1≤ i≤Np} is more appropriate to
describe particles than the set {ri, dtri; 1≤ i≤Np}, where the def-
inition of the RVi(t) is as same as that of RV(ri(t), t), and hence,
there exists a symmetry condition:

∑
i

[RVi(t)× d(r − ri(t))] = 0 ∀r, t. (22)

In the PIC simulation, even though electrons are classified
according to their contributions to E,B, E,B are produced by ñ, j̃
violating the CE and hence inexact. Now that sources of E,B sat-
isfying the CE is mandatory for exactly solving the N–M system,
the usage of the interpolation obviously disagrees with this
purpose.

As far as electrons are concerned, the velocity of every electron,
dtrj, consists of two parts: public part and private one. The public
part, denoted as u(rj(t), t), has contribution to transverse-fields
Etr, B, while the private part, denoted as RV(rj(t), t), has no con-
tribution because the definition of two parts determine these pri-
vate parts offsetting mutually. Thus, when Np particles are
allocated into Nc groups/cells (note that there is usually Np >
Nc), all particles within a group/cell have a same contribution,
that is, the u-value of this cell, to n,j and hence E,B (because
their RV-values offset mutually).

This fact enables the N–M system to display clearly a two-layer
structure in which those RNEs/ODEs, beside yielding a ternary
relationship among the public part and E,B, play a role of the def-
inition of these private parts in terms of the public part and E,B.
Thus, such a two-layer structure makes the N–M system to be
solved without resorting to interpolation approximation and
other unnecessary ones. This thoroughly ensures (E, B) being pro-
duced by (n, j) satisfying the CE and fundamentally warrant the
reliability of particle simulation.

Summary

Keeping fluid equations valid under interpolation is a severe
requirement on shape/interpolation functions adopted in the
PIC simulation. Strict mathematics theory has denied existence
of such shape/interpolation functions. Thus, it is no need to
seek for the PIC solution of a N–M system because a better
method is available.
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Appendix

In both the N–M description and the V–M description, two MEs, the Gauss
law and the Ampere law:

10∇ · E = −en+ ZeNi; (A1)

∂tE = m0enu+∇× B; (A2)

imply the CE

1
10m0

∂tn+ ∇ · [nu] = 0, (A3)

and an expression of u, or a ternary relation among u,E,B:

u = − 1
m0

∂tE −∇× B
10∇ · E − ZeNi

, (A4)

where ε0 and μ0 are permittivity and permeability of vacuum, respectively, Ni

and n are ionic and electronic densities, respectively, Ze is charge per ion, u is
fluid velocity, ions are viewed as fixed, and hence, ionic current is taken as
0. Here, Klimontovich–Dupree (K–D) definitions of n, j and u read (Krall
and Trivelpiece, 1977)

n(r, t) ;
∑
i

d(r − ri(t)); (A5)

j(r, t) ;
∑
i

dtrid(r − ri(t)); (A6)

u(r, t) ; j(r, t)
n(r, t) , (A7)

where if n = 0, u = limn→0j/n is finite-valued because j→ 0 exists when n→ 0.
Note that these K–D definitions can automatically warrant the CE and
n ≥ 0 ∀r, t to be valid. Therefore, at particle positions where n,j,u are calcu-
lated according to the K–D definitions, the CE is valid. However, because n,j at
mesh nodes are calculated, through the interpolation, from n,j at particle posi-
tions, whether the interpolation can warrant the CE to be valid at integer posi-
tions is very vital to the scientific validity of the whole PIC simulation.

In earlier PIC schemes, these shape/interpolation functions are often sub-
jectively chosen to be a unary function of r− ri(t). For example, at page 411–
412 in Dawson (1983), Snf and Sjf are assumed/prescribed to be equal to a
dimensionless unitary function S:

j(rm, t) =
∑
i

[S(ri(t) − rm) × j(ri(t), t)],

n(rm, t) =
∑
i

[S(ri(t) − rm) × n(ri(t), t)],

and detailed form of S is often subjectively chosen or prescribed to be area-
weighted in 2D situation (see page 412 in Dawson, 1983), that is, S(ri(t)−
rm) = (xi(t)− xm)/Δx × ( yi(t)− ym)/Δy, where two constants Δx and Δy are
the x-direction and y-direction steps of the 2D mesh. However, people have
noticed that such a prescribed shape/interpolation function S can lead to the
CE violated. For example, according to Eqs (A5)–(A7), the CE can be strictly
satisfied at particle’s position ri

∂tni + ∇ri · ji = ∂tn(ri, t) + ∇ri · j(ri, t) = 0.

Due to strict formulas

∂tnm =
∑
i

[S(ri − rm) × ∂tni] +
∑
i

[∂tS(ri − rm) × ni] (A8)

=
∑
i

[S(ri − rm) × ∂tni] +
∑
i

[dtri × S(1)(ri − rm) × ni] (A9)

∇rm · jm =
∑
i

[∇rmS(ri − rm) × ji] (A10)

= −
∑
i

[S(1)(ri − rm) × ji] (A11)

there will be

∂tnm +∇rm · jm =
∑
i

[S(ri − rm) × ∂tni] +
∑
i

[dtri × S(1)(ri − rm) × ni]

−
∑
i

[S(1)(ri − rm) × ji]

(A12)

which implies that ∂tnm +∇rm · jm = 0 will demand these S(ri− rm) to satisfy
self-consistently a differential equation, rather than to be prescribed. It is
straightforward to verify that above-mentioned subjectively chosen S = (xi(t)
− xm)/Δx × ( yi(t)− ym)/Δy cannot satisfy the above equation.

Moreover, strictly speaking, whether eight shape/interpolation functions can
warrant four MEs satisfied should also be checked. For example, Faraday law
should be valid not only at mesh nodes ∇rm × E(rm, t)+ ∂tB(rm, t) = 0 but
also at particle positions ∇ri(t) × E(ri(t), t)+ ∂tB(ri(t), t) = 0. This needs to
check whether shape/interpolation functions SEb and SBb can warrant MEs
satisfied at particle’s position. Likewise, ∇ri · Bi = 0 = ∇rm · Bm demands
∇rm · SBf = 0 and ∇ri · SBb = 0 satisfied.

It is easy to understand possible violations of these fluid equations. After
being weighted summation through these shape/interpolation functions,
these binary functions, such as n(r, t) and j(r, t), are “distorted”. Such distor-
tions cannot always warrant previous space-time relations among these binary
functions, which are defined by fluid equations, held after being interpolated.
This fact excludes reasonability of subjectively choosing shape/interpolation
functions.

After being aware of such a subjectively choice causing the violation of CE,
people began to make some improvements (Esirkepov, 2001; Chen et al., 2011;
Markidis and Lapenta, 2011; Chen and Chacon, 2014, 2015), such as only a
pair of shape/interpolation function, usually Snf and Snb, being subjectively
chosen and other pairs being solved from the CE and hence functionals of
Snf and Snb, for example, page 146–147 in Esirkepov (2001). But because a
pair of shape/interpolation function still can be subjectively chosen, all pairs
of shape/interpolation functions is indeed still subjectively chosen or pre-
scribed, rather than being self-consistently solved from the CE and MEs.
Therefore, some authors turn their attention to other routes such as direct
finite-difference calculation of the V–M system (Idomura et al., 2008;
Shiroto et al., 2019) because this route, despite too data-consuming, can war-
rant mass-conservation satisfied strictly.
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Strictly speaking, what the PIC method do is merely to re-express the Np +
4 equations in terms of Np pairs of initial conditions (ri(t), dtri(t))|t=0 and eight
shape/interpolation functions, and hence, Np ODEs become difference equa-
tions of Nd ×Nc ×Np values of the Snf(r, ri(t)), where the value of Nd is 4
for 2D situation and 12 for 3D situation (12 referring to a particle within
the cell to be assigned to 12 mid-points in 12 laterals of the cubic cell). But
such a set of difference equations is not solved, and instead, the solution of
Nd ×Nc ×Np values of the Snf(r, ri(t)) is indeed assumed/prescribed. This
fact, which refers to re-expressing what to be solved and prescribing its solu-
tions, makes the PIC solution difficult to be trusted as a self-consistent solution
of the Np + 4 equations.

Chen and Chacon noticed that these shape/interpolation functions should
be self-consistently solved and made some progresses in 2D situation (Chen
et al., 2011; Chen and Chacon, 2014, 2015). They found that in 2D situation,
when Sn is a B-spline function of order 2 and Sj is a B-spline function of order
1, the CE can be satisfied strictly (because of a special property of the B-spline
function of order 2 pointed out in appendix in Chen et al. (2011)), if no par-
ticle exchange between cells occurs (or each particle’s trajectory lies within a
cell) (Chen and Chacon, 2015). These severe requirements on particles’ posi-
tions and velocities, that is, no particle exchange between cells occurs (or each
particle’s trajectory lies within a cell), imply that these shape/interpolation
functions found by Chen and Chacon are not universally applicable.
Namely, a PIC simulation based on them needs non-self-consistently artificial
interference for avoiding particle exchange between cells. This is fundamen-
tally against the purpose of a first-principle calculation. Moreover, in more

realistic 3D situation, this encouraging result, despite severe requirement on
the absence of particle exchange between cells, does not hold because the
B-spline function of order 3 does not have the above-mentioned special prop-
erty held by the B-spline function of order 2).

Above contents have clearly answered why these shape/interpolation func-
tions should be self-consistently solved, rather than prescribed. Now the prob-
lems are (1) how to solve and (2) whether a solution exists. If there is no clue
for hinting how to solve them, one have to guess/assume trial analytic forms of
eight shape/interpolation functions and check whether they can ensure four
MEs, Np RNEs, and the CE satisfied. Clearly, such an exhaustive manner is
less practical because it will drop into a cycle of repeatedly proposing an
assumption and checking whether the assumption to be self-consistent (i.e.,
whether the assumed trial analytic forms can ensure the Np + 4 equations sat-
isfied). Unfortunately, such a cycle is often non-controllable, that is, finding a
self-consistent solution during finite rounds. In realistic 3D situation, people
still frequently resort to subjectively cease such a non-controllable cycle.

If finding analytic forms of eight shape/interpolation functions is replaced
by finding discrete values of 8 shape/interpolation functions, whether these
discrete values can be solved depends on the number of equations they
obey. In realistic 3D situation, if 12 ×Nc <Np, these is no solution of these dis-
crete values. If 12 ×Nc >Np, these are multiple solutions of these discrete
values.

If such self-consistent shape/interpolation functions, no matter in analytic
form or in discrete expression, is unavailable, it will deny fundamentally neces-
sity of seeking for the PIC solution of the Np + 4 equations.
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