Sixth Meeting, May 11th, 1900.
R. F. Muirhead, Esq., M.A., B.Sc., President, in the Chair.

Note on a Theorem in Continued Fractions.

By Prof. Steggall.

Note on the Fundamental Inequality Theorems connected with e^{x} and x^{m}.

By Prof. George A. Gibson.

The subject of this note is that dealt with in Mr Tweedie's paper in the Proceedings, vol. XVII., 33-37, and my only reason for bringing it before the Society is to call attention to a slightly different method of presenting the same order of ideas. The method is that adopted by Peano, Lezioni di Analisi Infnitesimale, vol. I., $\$ 23$, but as the book is not readily accessible to teachers, there may be some interest in having the method reproduced in our Proceedings. I add one or two remarks.

Peano starts, as Mr Tweedie does, from the generalised arithmetico-geometrical mean, namely, that if a, b, m, n be any positive quantities and a not equal to b,

$$
a^{m} b^{n}<\left(\frac{m a+n b}{m+n}\right)^{m+n}
$$

His procedure is as follows:-Let $a=1+1 / m, b=1$ and we get

$$
\begin{equation*}
\left(1+\frac{1}{m}\right)^{m}<\left(1+\frac{1}{m+n}\right)^{m+n} \tag{1}
\end{equation*}
$$

