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Abstract

The modeling of random bi-phasic, or porous, media has been, and still is, under active
investigation by mathematicians, physicists, and physicians. In this paper we consider
a thresholded random process X as a source of the two phases. The intervals when X
is in a given phase, named chords, are the subject of interest. We focus on the study
of the tails of the chord length distribution functions. In the literature concerned with
real data, different types of tail behavior have been reported, among them exponential-
like or power-like decay. We look for the link between the dependence structure of the
underlying thresholded process X and the rate of decay of the chord length distribution.
When the process X is a stationary Gaussian process, we relate the latter to the rate at
which the covariance function of X decays at large lags. We show that exponential,
or nearly exponential, decay of the tail of the distribution of the chord lengths is very
common, perhaps surprisingly so.
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1. Introduction

Studying porous media, such as human bones, food, rocks, etc. leads naturally toD-dimen-
sional Boolean models describing the presence or absence of material. Mathematically, a
Boolean model is a function f : R

D → {0, 1}, where the part of the space where the function f
takes value 0 represents the ‘empty’part (lack of material, or ‘pore’), while the part of the space
where the function f takes value 1 represents the ‘full’ part (presence of material, or ‘matrix’).
A Boolean model is often chosen to be stochastic, and a possible stochastic Boolean model is
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obtained by thresholding a random field (Xt )t∈RD at a given level γ :

f (t) = 1(γ,∞)(Xt ) =
{

1 if Xt > γ,

0 otherwise.

This procedure is very commonly considered by physicists (see [3], [13], and [15] for instance).
Here we adopt a one-dimensional point of view: we draw test lines through the random

medium (X(x), x ∈ R
3), and, for any line �, we identify (X(x), x ∈ �) with a process

X = (Xt , t ∈ R).
The successive intervals with f (t) = 0 or f (t) = 1 are called chords. The chords have

been studied in the physics and mathematics literature; see, for instance, [16], [21, p. 82], [22,
p. 44], and the references therein. In particular, the chord lengths have been investigated. In
a previous paper [10] we analytically defined the chord length distribution functions. In this
paper we focus on their rate of decay.

More precisely, let X = (Xt )t∈R be a continuously differentiable, real strictly stationary
process defined on some probability space (�,F ,P). If the process has a finite variance, we
denote its covariance function by ρ. All processes considered in this paper have a finite variance
and most of them will be Gaussian.

Assuming that the derivative of the process does not vanish on intervals of positive lengths,
the chord lengths are well defined by

L0 = inf{s > 0 : Xs = γ }
and

Lk+1 = inf{s > 0 : Xs+L0+···+Lk = γ } for k ≥ 0,

where γ is a given level (threshold).
Empirically, both exponential-like and power-like rates of decay of the distribution of the

chord lengths have been observed on real data; see, for instance, Chapter 2 of [19]. Note
that this refers to the rate of decay of the probability that a chord is very long. In this paper
we investigate the effect of the memory in the thresholded process X on the rate of decay of
this probability. In the case of stationary Gaussian processes the memory is measured by the
covariance function ρ. In Section 2 we investigate the tail of the distribution of the chord
lengths statistically, on simulated data. We attempt to discriminate between light and heavy
tails (of the chord lengths) both using the mean excess plot method as a graphical method and
estimating the shape parameter of the associated generalized Pareto distribution. The numerical
results obtained there motivate a probabilistic analysis developed in the next section. When
dealing with stationary Gaussian processes having vanishing memory (ρ → 0 at ∞), as is the
case in the numerical examples, one of our main results (Theorem 3.1(ii)) shows that, for a
thresholded Gaussian process with an exponentially fast decreasing covariance function, the
tail of the distribution of the chord lengths decays exponentially fast as well. Perhaps, even
more surprisingly, we prove that, for underlying Gaussian processes whose covariance function
is only assumed to decay to 0 at any speed at all, the chord length distribution decays faster
than any negative power function (Theorem 3.1(i)). This is also true for all r-mixing processes
(Theorem 3.2). These theoretical results are proved in Section 3. In order to make them more
intuitive, we first study the chord length distribution decay in the simple case whenever the
thresholded process is m-dependent (Proposition 3.3).
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2. Statistical analysis of simulated data

In this section we aim to investigate statistically the behavior of the tail of the distribution
of the chord lengths induced by thresholding a stationary Gaussian process. The purpose
here is to both illustrate and motivate the bounds of the next section. To generate samples
of chord lengths, we simulate the underlying Gaussian process. We consider the first two
chord lengths, two different thresholds, and three different types of covariance function of the
underlying process. (All MATLAB©R codes, samples, and outputs are available on the webpage
of Y. Demichel.)

2.1. Simulation

We start with outlying the simulation procedure. Given the covariance function ρ of a
zero-mean unit variance Gaussian process X, we simulate the process on a discrete subset
{t1, . . . , tn} of a compact interval I . These discrete observations will be used to determine
approximately the chords completed within the interval I . Note that we need to simulate a
mean 0 and variance 1 Gaussian vector (X(t1), . . . , X(tn)) with a covariance matrix

R = (ρ(|ti − tj |))1≤i,j≤n.

As usual, the key is to obtain the square root of the covariance matrix. Since the Cholesky
decomposition method is very expensive, we use the circulant embedding matrix method (see
[7]). Recall that in this approach the covariance matrix R is embedded into a circulant matrix C

whose eigenvectors are computed with a fast Fourier transform. The square root R1/2 is built
from these eigenvectors. This method works if and only if the minimal eigenvalue v− of C is
positive and this property is difficult to ascertain a priori. In practice we choose an interval I
and a finite grid {t1, . . . , tn} ⊂ I , and compute the matrix C and the minimal eigenvalue v−.
These choices are crucial since a bad choice may yield an untractable circulant matrix C. In
order to have a good sample of chords, we have to consider both a large interval I (to ensure
that large chords are not missing) and a fine grid {t1, . . . , tn} (to ensure that small chords are not
missing). In any case, we will miss all the chords that do not fall within the compact interval I .

Gaussian processes with various covariance functions have been simulated using this method
and its extensions; see, for instance, [11], [17], and [18]. We have chosen three types of
covariance function ρ according to their speed of decay, to see if that would imply different
types of chord length tail behavior. For further illustration, we consider the first two chord
lengths. The different covariance functions ρ and certain related properties are described in
Table 1. We have chosen the time interval I = [0, 3] and a grid of 6000 points. In each case
the circulant embedding matrix method works since the minimum eigenvalue is positive, thus
allowing us to obtain samples of the first two chord lengths L0 and L1 for a specified threshold.

Table 1: Covariance functions used for simulation. Here P11(x) = 1 − 22
3 x

2 + 33x4 − 77
2 x

5 + 33
2 x

7 −
11
2 x

9 + 5
6x

11.

Example Speed of decay Expression ρ(x) Eigenvalue v−

1 Compact support P11(5x) 1[0,1](5x) 6.8426 × 10−10

2 Very fast exp(−(5x)2) 1.1827 × 10−11

3 Polynomial (1 + (6x)2)−4 2.7569 × 10−11
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2.2. Statistical analysis

We perform statistical analysis on the samples of the first two chord lengths for each of
the above three covariance functions. We use two different thresholds, γ = 0 and γ = 1.
The approach we use is common in the extreme value theory (see, for instance, [9, p. 294]).
First, we use a graphical method, the mean excess plot (MEP) to try to judge whether the
chord lengths have light (i.e. exponentially fast decreasing) or heavy (i.e. hyperbolically fast
decreasing) tails. Next, we fit a generalized Pareto distribution (GPD) to the upper part of the
chord length distributions. The estimate from the considered sample parameters of the latter
will then indicate either light or heavy tails of the chord length distributions.

Even though we presently apply these two methods to simulated data, the same approach
could be used on real data as well.

2.2.1. A graphical method: the MEP. Recall that the excess cumulative distribution function
(CDF) Fu of a random variable X over a threshold u ∈ R is defined in the peak-over-threshold
(POT) approach as the CDF of X − u conditioned on X > u, namely,

Fu(x) = P(X − u ≤ x | X > u), x ≥ 0.

The corresponding mean excess function e of X is defined by

e(u) = E(X − u | X > u),

whenever it exists.
The plot of the mean excess function e is a useful graphical tool to help distinguish between

heavy and light tails. For example, e(u) = 1/λ for any u if X is exponentially distributed with
parameter λ; heavy-tailed distribution functions have a mean excess function tending to ∞,
typically along an asymptotically straight line; distribution functions with tails decaying faster
than exponentially fast are characterized by a mean excess function tending to 0.

In practice, we use the empirical MEP

{(Xk,n, en(Xk,n)) : k ∈ {1, . . . , n− 1}},
where X1,n ≤ · · · ≤ Xn,n are the order statistics of an n-sample (Xi)1≤i≤n, and en(u) is the
empirical mean excess function defined using the empirical cumulative distribution function by

1

Nu

∑
j∈In(u)

(Xj − u)

with

In(u) = {j : 1 ≤ j ≤ n,Xj > u} and Nu = card(In(u)).

In the case of u equal to one of the order statistics, this is equivalent to

en(Xk,n) = 1

n− k

n∑
j=k+1

(Xj,n −Xk,n).

2.2.2. Fitting a GPD to the excesses over a threshold. Pickands [14] proved that, for a suffi-
ciently high threshold u, the excess CDF Fu of any random variableX in a domain of attraction
of an extreme value distribution can be well approximated by a GPD Gξ,σ(u), with a shape
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parameter ξ and scale parameter σ = σ(u) > 0:

G(y) = Gξ,σ(u)(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 −

(
1 + ξ

y

σ(u)

)−1/ξ

if ξ 	= 0,

1 − exp

(
− y

σ(u)

)
otherwise.

Here y ≥ 0 if ξ ≥ 0 and 0 ≤ y ≤ −σ(u)/ξ if ξ < 0. Most of the ‘textbook’ random
variables are in the domain of attraction of some extreme value distribution, and so the above
approximation of the excess CDF is very general. The shape parameter ξ > 0 arises whenX is
heavy tailed, and ξ ≤ 0 corresponds to light tails. Therefore, the parameters of the fitted GPD
distribution provide information on the tails of X.

An important question is how to select an appropriate high threshold u; we choose it by
plotting the empirical mean excess function and choosing u in the range where the latter appears
to be linear or stable.

The parameters of a GPD can be estimated via different methods. We will use the method of
moments; see [12]. If the (Yj )1≤j≤Nu denote the excesses over a given threshold u in a given
sample, then the moments estimators of the parameters ξ and σ(u) of the approximating GPD
are respectively given by

ξ̂ = 1

2

(
1 − Ȳ 2

S2
Y

)
and σ̂ = σ̂ (u) = Ȳ

(
1

2
+ Ȳ 2

S2
Y

)
, (2.1)

where Ȳ and S2
Y are the sample mean and variance of the excesses:

Ȳ = 1

Nu

Nu∑
i=1

Yi and S2
Y = 1

Nu − 1

Nu∑
i=1

(Yi − Ȳ )2.

Provided that the shape parameter satisfies ξ < 1
4 , it can be shown by standard methods that

the random vector (σ̂ , ξ̂ ) is asymptotically normal with covariance matrix A satisfying, as the
sample sizes increase,

NuA ∼ � = (1 − ξ)2

(1 − 2ξ)(1 − 3ξ)(1 − 4ξ)
(aij )1≤i,j≤2,

where
a11 = 2σ 2(u)(1 − 6ξ + 12ξ2),

a22 = (1 − 2ξ)2(1 − ξ + 6ξ2),

and

a12 = a21 = σ(u)(1 − 2ξ)(1 − 4ξ − 12ξ2),

from which a confidence interval with asymptotic confidence level α can be deduced:(
σ̂

ξ̂

)
+

(
1

Nu
�

)1/2(
q((1 − α)/2)

q((1 − α)/2)

)
≤

(
σ(u)

ξ

)
≤

(
σ̂

ξ̂

)
+

(
1

Nu
�

)1/2(
q((1 + α)/2)

q((1 + α)/2)

)
. (2.2)

Here q(x) denotes the xth quantile of the standard normal distribution.
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2.3. Application to the chord lengths

We generated samples of the first chord lengths (L0
i )1≤i≤n and the second chord lengths

(L1
i )1≤i≤n of size n = 10 000 each.
In each case we started by plotting the empirical mean excess function, in order to judge

whether it appears to increase linearly for large levels, or to decay to 0. This was done for each
of the three types of covariance and for the two chosen thresholds γ = 0 and γ = 1. Next,
on each such MEP, we selected a level u in the range where en looks approximately linear or
stable. It is well known that selecting a proper threshold u is not an easy task as it implies a
balance between bias and variance: too high a value of u leads to too few exceedances and,
consequently, high variance of the estimators, whereas too small a value of u increases the bias
of the estimators. The standard practice is to adopt as low a threshold as possible, subject to
the limiting GPD model providing a reasonable approximation to the empirical tail. We assess
this graphically as well.

Having selected a level u, we estimate the corresponding GPD parameters as in (2.1), with
the associated asymptotic confidence intervals (CI), given in (2.2), at the confidence level 99%.

The results obtained for the two first chord lengths, L0 and L1, are summarized in Table 2
for the threshold γ = 0, and in Table 3 for the threshold γ = 1. The corresponding empirical

Table 2: Statistical results for L0 and L1 with γ = 0.

α such that
Example u u = qn(α) Nu ξ̂ σ̂ CI(ξ) CI(σ )

Chord length L0

1 0.41 90% 910 −0.0955 0.1816 (−0.2531, 0.0621) (0.1047, 0.2585)
2 0.90 86% 1374 −0.1530 0.4575 (−0.3301, 0.0241) (0.3169, 0.5981)
3 0.49 91% 881 −0.1058 0.2286 (−0.2767, 0.0651) (0.1343, 0.3229)

Chord length L1

1 0.35 83% 1696 −0.0005 0.1721 (−0.0953, 0.0843) (0.1302, 0.2140)
2 1.27 92.5% 746 −0.1911 0.4207 (−0.4526, 0.0704) (0.2238, 0.6176)
3 0.46 86% 1380 −0.0063 0.2056 (−0.1088, 0.0962) (0.1530, 0.2582)

Table 3: Statistical results for L0 and L1 with γ = 1.

α such that
Example u u = qn(α) Nu ξ̂ σ̂ CI(ξ) CI(σ )

Chord length L0

1 0.85 83% 1700 −0.1252 0.5437 (−0.2784, 0.0280) (0.4099, 0.6775)
2 1.95 90% 1030 −0.5614 0.5503 (−1.1079, −0.0149) (0.1420, 0.9586)
3 1.22 88.25% 1175 −0.2812 0.6561 (−0.5701, 0.0077) (0.3898, 0.9224)

Chord length L1

1 0.41 90.5% 934 −0.0576 0.5032 (−0.2263, 0.1111) (0.3614, 0.6450)
2 0.98 91.3% 866 −0.4243 0.9689 (−0.9412, 0.0926) (0.4357, 1.5421)
3 0.52 92.1% 793 −0.1025 0.6391 (−0.3210, 0.1160) (0.4305, 0.8477)
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Figure 1: Length of the chord L0 at threshold γ = 0 for examples 1, 2, and 3 (in order from top to
bottom) of the covariance function ρ. Left: the empirical mean excess plots. Right: log-log plots of
the tails of the sample (solid lines) and approximating GPD (dashed lines) distribution functions. The

parameters are given in the top half of Table 2.

MEPs, and the comparison of the tail of the empirical CDG and the tail of the approximating
GPD appear in Figures 1–4. The empirical quantile function of order α is denoted by qn(α).

It is obvious that the empirical mean excess functions (the left-hand plots of Figures 1–4)
appear to be decaying to 0, which is consistent with light tails of the chord length distributions.
Furthermore, the estimated values of the shape parameter ξ of the approximating GDP are all
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Figure 2: Length of the chord L1 at threshold γ = 0 for examples 1, 2, and 3 (in order from top to
bottom) of the covariance function ρ. Left: the empirical mean excess plots. Right: log-log plots of
the tails of the sample (solid lines) and approximating GPD (dashed lines) distribution functions. The

parameters are given in the bottom half of Table 2.

negative. Even though most of the 99% confidence intervals for ξ contain the origin, it is clear
that the estimated shape parameter points towards light tails of the chord length distributions as
well. The CDF of the sample and its approximating GPD are given in the right-hand plots of
Figures 1–4. The nonlinear behavior of the log-log plots rules out the hypothesis of a power-law
decay. The results do not seem to differ significantly for the two chord lengths, for the two
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Figure 3: Length of the chord L0 at threshold γ = 1 for examples 1, 2, and 3 (in order from top to
bottom) of the covariance function ρ. Left: the empirical mean excess plots. Right: log-log plots of
the tails of the sample (solid lines) and approximating GPD (dashed lines) distribution functions. The

parameters are given in the top half of Table 3.

chosen thresholds, and for the three covariance functions ρ. We note that a statistical test of an
exponential decay could also be applied to the tails of the chord length distributions; see, e.g. [4].

In conclusion our empirical analysis appears to indicate light tails of the chord length, and
the result does not seem to be sensitive to the choice of a threshold or a covariance function.
To understand this phenomenon, we turn now to a probabilistic analysis.
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Figure 4: Length of the chord L1 at threshold γ = 1 for examples 1, 2, and 3 (in order from top to
bottom) of the covariance function ρ. Left: the empirical mean excess plots. Right: log-log plots of
the tails of the sample (solid lines) and approximating GPD (dashed lines) distribution functions. The

parameters are given in the bottom half of Table 3.

3. Theoretical bounds for the tail of chord length distributions

In this section we derive upper bounds for the tail of the chord length distribution for
certain families of stochastic processes, mostly stationary Gaussian processes, with appropriate
assumptions on the memory of the process (on the covariance function if the process is
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Gaussian). We will see that, under mild assumptions, a faster than polynomially fast rate
of decay of the chord length distribution is obtained while stronger assumptions lead to an
exponentially fast rate of decay. The bounds we obtain provide an explanation of the numerical
results discussed in Section 2.

We start by introducing the terminology related to the speed of decay of the tail of distribu-
tions.

Definition. Let F be a mapping from [0,∞) into [0,∞). We say that F decays exponentially
fast if there exist θ > 0 and T0 > 0 such that

F(t) ≤ e−θt for all t ≥ T0, (3.1)

and decays faster than polynomially fast if

lim
t→∞ t

βF (t) = 0 for all β > 0.

Clearly, the two notions are not mutually exclusive.
Let X = (Xt , t ≥ 0) be a continuously differentiable, strictly stationary process with mean

0 and variance 1.
There is a natural dichotomy between the behavior of chord lengths if the starting point X0

is below or above level γ . To account for this, we will write, for any chord length Lk and any
t ≥ 0,

P(Lk > t) = P(Lk > t,X0 > γ )+ P(Lk > t, X0 ≤ γ ).

Then we estimate each term on the right-hand side, essentially in the same way. Moreover, we
invariably use a discretization of time.

3.1. General inequalities and example

We start with two general inequalities. The first inequality will allow us to derive asymptotic
upper bounds, under the stationary probability measure P, on the tail of the distribution of any
chord length Lk from those obtained for L0. The second inequality will make it possible
to extend the asymptotic upper bounds on the tail of the chord length distribution from the
stationary probability P to the Palm probability measures.

Finally, we exhibit a simple example in which the underlying process X has memory that
does not last longer than m units of time. This example already contains the key idea used in
the sequel.

3.1.1. Rate of decay of the tail of the distribution of the kth chord length.

Proposition 3.1. For any k ≥ 0 and any t ≥ 0, we have

P(Lk > t) ≤ 2k P

(
L0 >

t

(k + 1)!
)
.

In particular, if the tail of the distribution of L0 decays exponentially fast, or faster than
polynomially fast, then the same is respectively true for the tail of the distribution of Lk for any
k ≥ 0.
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Proof. The inequality can be easily proved by induction on k, beginning with k = 0, using
the decomposition

P(Lk > t) = P

(
there exist j ∈ {0, . . . , k − 1}, Lj > t

k + 1
, Lk > t

)
+ P

(
for all j ∈ {0, . . . , k − 1}, Lj ≤ t

k + 1
, Lk > t

)
≤
k−1∑
j=0

P

(
Lj >

t

k + 1

)
+ P

( ⋂
s∈(kt/(k+1),t)

(Xs > γ ) ∪
⋂

s∈(kt/(k+1),t)

(Xs < γ )

)
,

and noting that, by stationarity, the last term on the right-hand side above is less than or equal
to P(L0 > t/(k + 1)).

Therefore, from now on, we will derive bounds for only the tail of the distribution of the
initial chord length L = L0.

3.1.2. Chord lengths under the Palm probability measures. In practice it is of special interest to
study the chord length distribution from the moment a level crossing occurs. For that purpose,
we introduce the so-called Palm probability measures. For instance, to study the chord length
distributions occurring after an upcrossing of the level γ , we introduce the Palm probability
measure (see, for instance, [1] and [6, p. 224]) defined by

P0+(A) = 1

µ
lim
τ→0+

1

τ
P(A ∩ (U(−τ, 0) ≥ 1)), A ∈ F ,

where U(s, t) denotes the number of upcrossings in the interval (s, t) of the level γ by the
process X. Furthermore, µ = E[U(0, 1)] is assumed to be finite; recall (see [6, p. 200]) that,
under our assumptions,

P(U(0, t) ≥ 1) = µt + o(t) as t → 0.

The Palm probability measures P0− , describing the behavior of the process after a downcrossing,
and P0, describing the behavior of the process after a crossing, are defined analogously.

The distributions of L under P and under P0+ are linked by

P0+(L > t) = − 1

µ

∂

∂t
P(X0 < γ, L > t); (3.2)

see, e.g. [1], [6, p. 225], and [22, p. 47].
Even though the distributions of the chord lengths under the Palm probability measures are

of main interest, they are difficult to evaluate. Fortunately, we have the following result.

Proposition 3.2. For any t > 0, we have

P0+(L > 2t) ≤ 1

tµ
P(L > t).

In particular, if the tail distribution of L under the stationary probability measure P decays
exponentially fast, or faster than polynomially fast, then the same is respectively true under the
Palm probability measure P0+ .
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Proof. The proof follows by writing

P0+(L > 2t) ≤ 1

t

∫ 2t

t

P0+(L > s) ds

and using (3.2).

A similar argument gives the corresponding bounds for the other Palm probabilities:

P0−(L > 2t) ≤ 1

tµ
P(L > t) and P0(L > 2t) ≤ 1

2tµ
P(L > t).

3.1.3. Example: anm-dependent processX. Recall that a stochastic processX ism-dependent
ifXs andXt are independent whenever |t− s| > m. For second-order stationary processes, the
m-dependence implies that the covariance function of the process vanishes after lag m, while,
for stationary Gaussian processes, the converse statement is true as well. Processes with such
covariance functions are commonly used in simulations (see, e.g. [18]). It is the case for our
example 1 in the simulation part (see Section 2.1).

Proposition 3.3. Assume that X is an m-dependent stationary process such that P(X0 >

γ ) > 0 and P(X0 < γ ) > 0. Then the tail of the distribution of the chord length L decays
exponentially fast.

Proof. Let t > m′ > m and n = [t/m′] ≥ 1. Clearly,

P(L > t, X0 < γ ) ≤ P(L > nm′, X0 < γ )

≤
n∏
k=0

P(Xkm′ < γ )

= P(X0 < γ )n+1

≤ exp

(
t
log P(X0 < γ )

m′

)
.

We deduce that
P(L > t) ≤ 2e−θt for all t > m′,

with

θ = 1

m′ max{| log P(X0 < γ )|, | log P(X0 ≥ γ )|}.
This implies the exponentially fast rate of decay of the tail.

We mention that the above result remains valid when the m-dependence property of the
process X is replaced by certain strong mixing properties such as ψ-mixing (see [2] for a
precise definition).

We now consider the case of stationary Gaussian processes under weaker assumptions than
the m-dependence considered above.

3.2. Gaussian processes with vanishing memory

Assume that the covariance function ρ of a stationary Gaussian process X tends to 0 at ∞;
we will prove that the tail of the distribution of the associated chord length L decays faster than
polynomially fast. When having a fast rate of decay for ρ, the distribution L will decay even
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faster. The proof is based on the application of Slepian’s lemma, introducing a new Gaussian
process whose covariance is compared with ρ. Without loss of generality, we may and will
assume throughout the section that the stationary Gaussian process has zero mean and unit
variance.

Theorem 3.1. Let X be a stationary Gaussian process with covariance function ρ such that
ρ(t) → 0 as t → ∞.

(i) The tail of the distribution of the chord length L decays faster than polynomially fast.

(ii) Moreover, if ρ decays exponentially fast then the distribution of L decays exponentially
fast as well.

Proof. (i) Choose 0 < a < 1, and let T be so large that ρ(s) ≤ a for all s ≥ T . We use the
discretization

P(L > t, X0 > γ ) ≤ P

(
XjT > γ, j = 0, 1, . . . ,

[
t

T

])
.

By Lemma 3.1 below,

lim sup
t→∞

P(L > t, X0 > γ )

log t
≤ lim sup

t→∞
P(XjT > γ, j = 0, 1, . . . , [t/T ])

log[t/T ]
log[t/T ]

log t

≤ −1 − a

a
.

Letting a ↓ 0 we obtain

lim sup
t→∞

P(L > t, X0 > γ )

log t
= −∞.

Applying the above to the process −X we also obtain

lim sup
t→∞

P(L > t, X0 < γ )

log t
= −∞,

and the two statements together give us the first claim of the theorem.

Lemma 3.1. Let 0 < a < 1, and let Y1, Y2, . . . be a centered unit variance Gaussian process
such that cov(Yi, Yj ) ≤ a for all i 	= j . Then, for any γ ∈ R,

lim sup
n→∞

log P(Y1 > γ, . . . , Yn > γ )

log n
≤ −1 − a

a
. (3.3)

Proof. Let W0,W1,W2, . . . be independent and identically distributed standard normal
random variables, and let Zj = a1/2W0 + (1 − a)1/2Wj, j = 1, 2, . . .. Then Z1, Z2, . . . is
a discrete-time centered unit variance Gaussian process such that cov(Zi, Zj ) = a for all
i 	= j . By the Slepian inequality (see [20]) we know that, for any n ≥ 1 and γ ∈ R,
P(Y1 > γ, . . . , Yn > γ ) ≤ P(Z1 > γ, . . . , Zn > γ ). Therefore, it is enough to prove (3.3)
with (Yj ) replaced by (Zj ).

Choose any

0 < θ <
1 − a

a
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and write

P(Z1 > γ, . . . , Zn > γ ) =
∫ ∞

−∞
φ(x)

[
�

(
γ − a1/2x

(1 − a)1/2

)]n
dx

=
(∫

x>(2θ log n)1/2
+

∫
x≤(2θ log n)1/2

)
φ(x)

[
�

(
γ − a1/2x

(1 − a)1/2

)]n
dx

=: I1(n)+ I2(n),

where φ and � are the density and the tail of a standard normal random variable, respectively.
We use the bounds

�(x) ≤ 1
2 e−x2/2 for x ≥ 0

and
�(x) > e−(1+ε)x2/2 for large enough x and any ε > 0.

First of all,
I1(n) ≤ �((2θ log n)1/2) ≤ 1

2 e−θ log n = 1
2n

−θ . (3.4)

On the other hand, selecting 0 < ε < 1 so small that

θa(1 + ε)

1 − a
< 1, (3.5)

we have, for large enough n,

I2(n) ≤
[
�

(
γ − a1/2(2θ log n)1/2

(1 − a)1/2

)]n
=

[
1 −�

(
a1/2(2θ log n)1/2 − γ

(1 − a)1/2

)]n
≤

[
1 − exp

(
− (1 + ε)aθ log n

1 − a

)]n
= (1 − n−(1+ε)aθ/(1−a))n,

and, using (3.5), we see that, for large enough n,

I2(n) ≤ exp
(− 1

2n
1−(1+ε)aθ/(1−a)) = o(n−θ ).

Combining this bound with (3.4), we conclude that

lim sup
n→∞

log P(Z1 > γ, . . . , Zn > γ )

log n
≤ −θ.

Since θ can be taken arbitrarily close to (1 − a)/a, we obtain (3.3) for (Zj ) replacing (Yj ), as
required, completing the proof of Lemma 3.1.

(ii) We continue with the proof of the second claim of Theorem 3.1. Let T > 0 be the
positive number from (3.1), the definition of the exponentially fast decay of ρ, and let θ > 0 be
the corresponding exponent. We discretize the time parameter of the process X, defining, for
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n ≥ 0, Yn = X(nT ). Then Y = (Yn)n≥0 is a centered unit variance discrete-time stationary
Gaussian process, whose covariance function ρY satisfies

ρY (k) = ρ(kT ) ≤ e−θkT , k = 0, 1, 2, . . . . (3.6)

For t ≥ T , let n = [t/T ] ≥ 1, and note that

P(L > t) ≤ P(Yj > γ, j = 0, . . . , n)+ P(Yj < γ, j = 0, . . . , n).

We will only spell out the procedure for obtaining an upper bound for the first term on the
right-hand side above. We will prove that there exist α0 > 0 and N0 ≥ 0 such that

P(Yj > γ, j = 0, . . . , n) ≤ e−α0n for all n ≥ N0. (3.7)

This will, clearly, imply that the probability P(L > t) decays exponentially fast.
As previously, we will use the Slepian lemma and introduce another centered unit variance

discrete-time stationary Gaussian process Z = (Zn)n≥0, with covariance function ρZ equal to
the upper bound on the covariance function ρY in (3.6), i.e.

ρZ(k) = rk0 , k = 0, 1, 2, . . . , with r0 = e−θT .

Such a process Z does exist; in fact, it can be represented as a causal AR(1) process defined by

Zn+1 = r0Zn + ξn+1, n ≥ 0,

where (ξn)n≥0 is a Gaussian white noise N (�,� −r�
� ). In particular, Z is a Markov process.

This property is important since it allows us to proceed in a similar way as in the m-dependent
case. From the Slepian normal comparison lemma, we know that it is enough to prove (3.7)
for Z instead of Y .

The threshold γ in (3.7) can be of any sign. Obviously, once we prove the statement for
γ < 0, its validity for any other γ will follow. Nonetheless, since there is a particularly simple
argument in the case γ > 0 that helps to understand the trick when tackling the case γ ≤ 0,
we present it first.

If γ > 0, we can use the simple bound

P(Zj > γ, j = 0, . . . , n) ≤ P

( n∑
j=0

Zj > (n+ 1)γ

)
. (3.8)

The random variable
∑n
j=0 Zj has the normal distribution N (�, σ�

n )with σ 2
n ≤ n(1+r0)/(1−

r0), so we obtain

P(Zj > γ, j = 0, . . . , n) ≤ �

((
nγ

1 − r0

1 + r0

)1/2)
≤ e−α0n for large enough n,

using once again the standard upper bound for�. Note that any α0 < γ (1 − r0)/2(1 + r0) can
be used above. When γ ≤ 0, estimate (3.8) is no longer sufficient for our purposes.

Let γ ′ = 3 − 2γ > 0, and consider the event

An = {
at least

⌈ 1
3n

⌉
out of Z0, Z2, . . . , Z2n−2 are larger than γ ′},

where �·� denotes the ceiling function.
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First, note that

P((Zj > γ, j = 0, . . . , 2n− 1) ∩ An) ≤ P

(n−1∑
j=0

Z2j >

(
n−

⌈
n

3

⌉)
γ +

⌈
n

3

⌉
γ ′

)

≤ P

(n−1∑
j=0

Z2j > n

)
.

This puts us in a situation analogous to the case γ > 0 above, and using the same argument,
we find that, for any α1 < (1 − r2

0 )/2(1 + r2
0 ), there exists an N1 such that, for all n ≥ N1,

P((Zj > γ, j = 0, . . . , 2n− 1) ∩ An) ≤ e−α1n. (3.9)

In order to estimate P((Zj > γ, j = 0, . . . , 2n−1)∩An), let us introduce the setsBn, n ≥ 1,
defined by

Bn = {
(b1, . . . , bn) ∈ R

n : bj > γ, j = 1, . . . , n, and at most
⌈ 1

3n
⌉ − 1 of the bj s

are larger than γ ′}.
For every n ≥ 1, we define a function on R

n by

Qn(z0, . . . , z2n−2) = P(Z2j+1 > γ, j = 0, . . . , n− 1 | Z2j = z2j , j = 0, . . . , n− 1)

for (z0, . . . , z2k, . . . , z2n−2) ∈ R
n, in the sense of the usual continuous conditional probabilities,

and write

P({Zj > γ, j = 0, . . . , 2n− 1} ∩ An)
=

∫
Bn

Qn(z0, . . . , z2n−2)φn(z0, . . . , z2n−2) dz0 · · · dz2n−2, (3.10)

where φn is the joint probability density function of (Z0, Z2, . . . , Z2n−2).
Given (z0, z1, . . . , z2n−2, z2n−1) such that the vector of the even-numbered coordinates

(z0, z2, . . . , z2n−2) is in Bn, the latter vector has at least n− �n/3� + 1 coordinates which are
strictly smaller than γ ′. Elementary counting shows that there are at least �n/3� odd numbers
j1 < j2 < · · · < j�n/3� in the set {1, 3, . . . , 2n− 3} such that, for every k ∈ {1, . . . , �n/3�},

zjk−1 < γ ′ and zjk+1 < γ ′.

It follows from the Markov property of the process Z that

Qn(z0, . . . , z2n−2) ≤ P(Zj1 > γ, Zj2 > γ, . . . , Zj�n/3� > γ | Z2j = z2j , j = 0, . . . , n− 1)

=
�n/3�∏
k=1

P(Zjk > γ | Zjk−1 = zjk−1, Zjk+1 = zjk+1).

Recall that all z-values in the conditions are smaller than γ ′.
Given (Zjk−1 = zjk−1, Zjk+1 = zjk+1), the random variableZjk has the normal distribution

N (µk, σ
�) with

µk = r0

1 + r2
0

(zjk−1 + zjk+1) <
2γ ′r0
1 + r2

0

and σ 2 = 1 + r4
0

(1 + r2
0 )

2
> 0.
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Therefore,

Qn(z0, . . . , z2n−2) ≤
(
�

(
γ (1 + r2

0 )− 2γ ′r0√
1 + r4

0

))�n/3�
,

and it follows from (3.10) that, for all n ≥ 1,

P({Z0 > γ, . . . , Z2n−1 > γ } ∩ An) ≤ e−α2n,

with α2 = �((γ (1 + r2
0 )− 2γ ′r0)/

√
1 + r4

0 ). Combining this bound with (3.9), shows that
there exists N2 such that, for all n ≥ N2,

P(Z0 > γ, . . . , Z2n−1 > γ ) ≤ e−α3n,

where we can use any α3 < min(α1, α2). This proves (3.7) with any α0 < α3/2 and some large
enough N0. This completes the proof of Theorem 3.1.

Since a stationary Gaussian process is mixing if and only if its covariance function converges
to 0 (see [5]), Theorem 3.1(i) states that any mixing stationary Gaussian process has the property
that the distribution of L decays faster than polynomially fast. We do not know at the moment
if this property holds also for non-Gaussian mixing stationary processes. Nevertheless, the
conclusion holds under a stronger dependence condition when assuming that a non-Gaussian
process is r-mixing (see [8]).

3.3. r-mixing processes

Recall that the r-mixing coefficients of a process X are defined by

rT = r(A,BT ) = sup
W1∈L2

X(A),W2∈L2
X(BT )

| corr(W1,W2)|, T > 0,

where A = (−∞, 0] and BT = [T ,∞), and, forD ⊂ R, L2
X(D) denotes the closure in L2(�)

of span{Xt, t ∈ D}.
In particular, for any T > 0 and events C1 and C2 such that W1 = 1C1 ∈ L2

X(A) and
W2 = 1C2 ∈ L2

X(BT ), we have

rT ≥ |P(C1 ∩ C2)− P(C1)P(C2)|
(P(C1)P(C1)P(C2)P(C2))1/2

. (3.11)

We will say that X is an r-mixing process if it satisfies

lim
T→+∞ rT = 0.

Theorem 3.2. Assume that X is a stationary r-mixing process such that P(X0 > γ ) > 0 and
P(X0 < γ ) > 0. Then the tail of the distribution of the chord length L decays faster than
polynomially fast.

Proof. Fix T > 0 large enough so that rT < min(P(X0 < γ ),P(X0 > γ )). Define, for
n ≥ 0, Yn = X(nT ), and consider the discrete-time process Y = (Yn)n≥0.

For n ≥ 0, we apply (3.11) with C1 = {X(−(2n − 1)T ) > γ, . . . , X(0) > γ } and
C2 = {X(T ) > γ, . . . , X(2nT ) > γ }. By stationarity,

P(Y0 > γ, . . . , Y2n+1−1 > γ )

= P({Y0 > γ, . . . , Y2n−1 > γ } ∩ {Y2n > γ, . . . , Y2n+1−1 > γ })
≤ (P(Y0 > γ, . . . , Y2n−1 > γ ))2 + rT P(Y0 > γ, . . . , Y2n−1 > γ ).
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Defining pn = P(Y0 > γ, . . . , Y2n−1 > γ ) for n ≥ 0, we see that

pn+1 ≤ p2
n + rT pn, n = 0, 1, . . . ,

which implies that pn → 0 as n → ∞ (if l = limn→∞ pn 	= 0 then l > p0, which would
contradict (pn) decreasing). Therefore, there exists N0 ≥ 0 such that, for all n ≥ N0, we have
pn ≤ rT . Thus,

pn+1 ≤ 2rT pn for all n ≥ N0,

and, hence,

pn ≤ c0(2rT )
n with c0 = pN0(2rT )

−N0 > 0 for all n ≥ N0.

Now let t > 2N0T be so large that n = [log2(t/T )] ≥ N0 and remark that rT < 1
2 . We

have, with log2 denoting the logarithm in base 2,

P(L > t, X0 > γ ) ≤ P(Y0 > γ, . . . , Y2n−1 > γ ) ≤ c0(2rT )
n ≤ c′0t−| log2(2rT )|

for a certain constant c′0 > 0 depending only on N0 and T . We deduce that

lim
t→∞

log P(L > t, X0 > γ )

log t
≤ −| log2(2rT )|.

Since rT → 0 as T → ∞, we conclude that

lim
t→∞

log P(L > t, X0 > γ )

log t
= −∞.

Hence, tβ P(L > t, X0 > γ ) → 0 as t → ∞, for any β > 0.
An analogous result holds for P(L > t,X0 ≤ γ ). Therefore, the distribution of L decays

faster than polynomially fast.

Recall that a stationary Gaussian process with a covariance function which decays in a
polynomial way is r-mixing (see [5]). So an immediate corollary of Theorem 3.2 is the fact
that, for Gaussian processes with polynomially decaying covariance function, the distribution
of the chord length L decays faster than polynomially fast, a result obtained in Theorem 3.1(i)
under a weaker assumption.

4. Conclusion

We have established theoretical results on the rate of decay of the tail of the distribution of the
chord lengths, depending on the memory in the thresholded process. In the case of stationary
Gaussian processes, the memory is expressed via the covariance function. The results agree
with the empirical results obtained by statistical analysis of simulated processes. It shows that,
as soon as one deals with a thresholded stationary process whose covariance decays to 0, a
rapidly decreasing decay of the chord length distribution has to be expected. Consequently, it
seems hopeless to use such a thresholded process as a model for real data when, for instance,
a power-like decay of the chord length distribution is observed.

We focused on the asymptotic behavior of the tails of the distributions and did not try to
derive the best constants in the upper bounds for such tails. It may be possible to refine these
bounds and relate them to the threshold. It may further be possible to explore how the bounds
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change from one chord length to the next. This will be the subject of a future work. We also
plan to investigate what memory properties of the thresholded process imply lower bounds on
the tails of the chord length distributions.

We hope that our work will also contribute to the study of theD-dimensional Boolean models
for D > 1. For instance, if L∗ is the spherical contact distance of the phase containing the
origin, upper bounds for P(L∗ > t) can be obtained from our results since

L∗ = sup{R > 0 : B(0, R) ⊂ 0-phase} = inf
α∈[0,2π) L(α),

where the 0-phase is the phase containing the origin and L(α) denotes the initial chord length
in the direction α.
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