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Abstract

An S3-involution graph for a group G is a graph with vertex set a union of conjugacy classes of involutions
of G such that two involutions are adjacent if they generate an S3-subgroup in a particular set of conjugacy
classes. We investigate such graphs in general and also for the case where G = PSL(2, q).
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1. Introduction

In [11] an interesting tower of graphs was discovered and investigated that is associated
with the subgroup chain

A5 < PSL(2, 11) < M11 < M12.

The smallest graph in the tower is the line graph of the Petersen graph, while the
largest graph is the Johnson graph J (12, 4). (The Johnson graph J (n, k) is the graph
with vertices the k-subsets of an n-set such that two k-subsets are adjacent if their
intersection has size k − 1.) The graphs associated with PSL(2, 11) and M11 are
related to the Witt designs on 11 and 12 points. A uniform description of the graphs in
the tower was achieved via involutions and S3-subgroups of the groups in the subgroup
chain. This leads to the following definition.

DEFINITION 1.1. Let G be a group with a nonempty set X of involutions closed under
conjugation and a nonempty set S of S3-subgroups also closed under conjugation.
The S3-involution graph 0(G, X, S) of G with respect to X and S is the graph with
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vertices the elements of X such that two vertices x, y are adjacent if and only if
〈x, y〉 ∈ S . In order to avoid degeneracies, we always require that X is the set of
all involutions contained in elements of S .

The tower of graphs is then given by a series of S3-involution graphs for A5,
PSL(2, 11), M11 and M12, where, for each group, both X and S are single conjugacy
classes. The existence of this tower suggests the following natural problem.

PROBLEM 1.2. Investigate S3-involution graphs for other families of groups.

This paper is intended as an initial investigation of S3-involution graphs in general
and we also investigate the S3-involution graphs arising from the simple groups
PSL(2, q), for q ≥ 4.

In Section 2, after describing some examples of S3-involution graphs, we investigate
automorphisms, connectivity and triangles. Given an S3-involution graph 0(G, X, S),
the three involutions of each S ∈ S give rise to a triangle in the graph. The following
gives a sufficient condition for these to be the only triangles. See Section 2.3 for a
discussion about the converse.

THEOREM 1.3. Let G be a finite group with conjugacy class X of involutions and
union of conjugacy classes S of S3-subgroups. If G has no subgroups of the form
C2

3 o C2 or C2
p o S3 for some prime p, then the only triangles of 0(G, X, S) are

those given by subgroups in S .

In Section 3 we analyse the S3-involution graphs for PSL(2, q). In particular
we determine the full automorphism groups (Theorems 3.9 and 3.11) and show that
there is a duality with the graph induced on S3-triangles if and only if q = 11 and
13 (Theorem 3.8). We also give the following determination of the size of the
largest cliques.

THEOREM 1.4. Let G = PSL(2, q) for q ≥ 4, let X be the unique conjugacy class
of involutions in G and let S be a conjugacy class of S3-subgroups. The size of the
largest clique is 3e if q = 9e, 4 if q = 25e and 3 otherwise.

The definition of an S3-involution graph is reminiscent of Fischer’s 3-transposition
groups, that is, groups generated by a conjugacy class X of involutions such that
any pair of noncommuting elements of X generates an S3. The elements of X are
called 3-transpositions. Fischer’s investigation of such groups [13, 14] led to the
discovery of three new sporadic simple groups. If G is a 3-transposition group with
class X of 3-transpositions and S is the set of all S3-subgroups generated by a pair
of noncommuting 3-transpositions, the S3-involution graph 0(G, X, S) is called the
diagram of X and was used in [10, 13, 16] in the study of 3-transposition groups.
In fact, a 3-transposition group with class X of 3-transpositions is a quotient of
the Coxeter group with Coxeter diagram the diagram of X . We are interested in
S3-involution graphs for arbitrary groups. Indeed, the groups A5, PSL(2, 11), M11
and M12 are not 3-transposition groups.
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Given a 3-transposition group G with a class X of 3-transpositions and S the set
of all S3-subgroups generated by pairs of elements of X , one can construct a partial
linear space known as a Fischer space, whose points are the elements of X and lines
are the sets of three involutions contained in an S3 in S . Moreover, Fischer spaces
are precisely the partial linear spaces such that each plane is either an affine plane
over GF(3) or a dual affine plane over GF(2) (see [9, 10]). The S3-involution graph
0(G, X, S) is the collinearity graph of the Fischer space.

Another graph with vertex set a conjugacy class of 3-transpositions was also used
in the investigation of 3-tranposition groups. Given a group G and conjugacy class
X of involutions, the commuting involution graph C(G, X) is the graph with vertices
the elements of X such that two vertices are adjacent if they commute. If G is a 3-
transposition group such that X is a class of 3-transpositions and S is the set of all
S3-subgroups generated by pairs of elements of X , then C(G, X) is the complement
of 0(G, X, S). Commuting involution graphs for groups other than 3-transposition
groups have recently been studied in [2–4].

2. General theory

We begin this section with a few simple examples.

EXAMPLE 2.1. Let G = Sn , X the conjugacy class of transpositions and S the
conjugacy class of S3-subgroups generated by two transpositions. Note that X is a
class of 3-transpositions. The map from X to the set of 2-subsets of an n-set that
maps each transposition x to the set of two points moved by x yields a one-to-one
correspondence between X and the vertex set of J (n, 2). Moreover, two transpositions
generate an S3 if and only if their 2-cycles have a unique point in common. Thus
0(G, X, S)∼= J (n, 2).

EXAMPLE 2.2. Let V be a (2n)-dimensional vector space over GF(2) equipped with
an alternating form (., .). Let G = Sp(2n, 2) be the group of all linear transformations
of V that preserve (., .) and let X be the set of all transvections contained in G, that is
all maps

tv : V → V
x 7→ x + (x, v)v,

where v is a nonzero vector of V . Calculations show that if (v, u)= 0 then tvtu
has order two, otherwise tu tv has order three and t tv

u = tu+v . Thus X is a class of
3-transpositions for G. Letting S be the set of all S3-subgroups of G generated by
pairs of noncommuting elements of X , it follows that 0(G, X, S) is isomorphic to the
graph with vertices the nonzero vectors of V such that two vertices u, v are adjacent
if and only if (v, u)= 1, that is if and only if they lie in a hyperbolic line. Moreover,
the third vector of that line corresponds to the third involution of 〈tu, tv〉. Hence the
Fischer space of G is the partial linear space whose points are the nonzero vectors of
V and whose lines are the hyperbolic lines of V . This space is called a symplectic
copolar space over GF(2) and is denoted by W (2n − 1, 2) or Sp(2n, 2) .
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Similar graphs can be constructed from the other classical groups which are also
3-transposition groups.

EXAMPLE 2.3. Let G = M11. Then G has a unique conjugacy class X of involutions
and two classes of S3-subgroups. Now |X | = 165 and there exists a bijection from X
to the set of 3-subsets of an 11-set where each involution is mapped to its set of fixed
points. Also G has two conjugacy classes S1, S2 of S3-subgroups with |S1| = 220 and
|S2| = 660.

The graph 0(G, X, S1) is the graph associated with M11 in the tower investigated
in [11]. By [11, Theorem 1.1] it has valency 8 and M11 as its full automorphism group.
Moreover, 0(G, X, S1) is isomorphic to the graph with vertex set the set of 3-subsets
of an 11-set such that two vertices are adjacent if they are disjoint and the complement
of their union is a pentad in the Witt design on 11 points associated with M11.

Each S3-subgroup in the class S2 fixes two points of an 11-set. Thus if two
involutions are adjacent in 0(G, X, S2) then they have two fixed points in common,
that is, their sets of fixed points are adjacent in J (11, 3). Each involution of G
is contained in twelve S3-subgroups of S2 and so is adjacent to 24 involutions in
0(G, X, S2). This is the valency of J (11, 3) and so 0(G, X, S2)∼= J (11, 3).

EXAMPLE 2.4. Let G = AGL(1, 3n) for some positive integer n. Then G is the group
of all maps

ta,b : GF(3n) → GF(3n)

x 7→ ax + b

for any a, b ∈ GF(3n) with a 6= 0. Let X = {t−1,b | b ∈ GF(3n)}, the unique conjugacy
class of involutions of G. Let x be the involution t−1,0. Note that any involution
t−1,b = t1,−bt−1,0 is of the form hx , where h is an element of order 3. Now G
contains (3n

− 1)/(3− 1) subgroups of order three and each element of order 3 is
inverted by any involution in X . Thus G has 3n(3n

− 1)/6 subgroups isomorphic to
S3. Moreover, G acts transitively by conjugation on the set of subgroups of order
three, while, given h, h1, h2 ∈ G of order 3, the S3-subgroups 〈h, h1x〉 and 〈h, h2x〉
are conjugate under the element h−1

1 h2. Thus G has a unique conjugacy class S of
S3-subgroups. Moreover, given two distinct involutions x1, x2 ∈ X , we have that x1x2
has order three. Hence 0(G, X, S) is the complete graph K3n on 3n vertices.

In fact the following theorem shows that the only complete graphs that occur as
S3-involution graphs are those on 3n vertices.

THEOREM 2.5. Let G be a finite group with X a conjugacy class of involutions and
S a union of conjugacy classes of S3-subgroups. If 0(G, X, S) is the complete graph
on X, then |X | = 3n for some positive integer n. Moreover, for each positive integer n
there exists a group G with an S3-involution graph isomorphic to K3n .

PROOF. Suppose 0(G, X, S) is a complete graph. Then for all x, y ∈ X , xy has order
three. Thus 〈X〉 is a 3-transposition group and by [1, (8.6)], 〈X〉 = N o 〈x〉 for x ∈ X
and N a 3-subgroup. Thus |x 〈X〉| is a power of 3. Moreover, by Sylow’s theorem,
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X = x 〈X〉 and so the first part follows. Example 2.4 provides the required examples
for the second part. 2

Our next two examples arise from subgroups of AGL(1, 3n).

EXAMPLE 2.6. Let n be an even positive integer and G be the index-two subgroup of
AGL(1, 3n) given by all maps

ta,b : GF(3n) → GF(3n)

x 7→ ax + b

for any a, b ∈ GF(3n) with a a nonzero square. This group is isomorphic to
Cn

3 o C(3n−1)/2 and is a point stabilizer in PSL(2, 3n). Then G still has a unique
conjugacy class X = {t−1,b | b ∈ GF(3n)} of involutions. However, G has two
conjugacy classes of S3-subgroups: those for which the elements of order three are
of the form t1,a with a a nonzero square; and those for which the elements of order
three are of the form t1,a with a a nonsquare. Let S1 be the first class. Then
〈t−1,b1, t−1,b2〉 ∈ S1 if and only if b2 − b1 is a nonzero square. Since X is in one-
to-one correspondence with the elements of GF(3n), it follows that 0(G, X, S1) is
isomorphic to the graph with vertices the elements of GF(3n) such that two elements
are adjacent if and only if their difference is a square. (Note that 3n

≡ 1 mod 4 and so
this relation is symmetric.) Thus 0(G, X, S1) is the Paley graph of GF(3n).

EXAMPLE 2.7. Let G = C2
3 o C2, where elements of order two in G invert each

element of order three. Then G has a unique conjugacy class X of involutions and four
conjugacy classes Si (i = 1, 2, 3, 4) of S3-subgroups, where each element from the
same conjugacy class shares a common C3-subgroup. For each i , 0(G, X, Si )∼= 3K3,
while if S =

⋃
i Si then 0(G, X, S)∼= K9.

2.1. Automorphisms Given an S3-involution graph 0(G, X, S), the group G acts
on the set of vertices by conjugation and preserves adjacency. The following lemma
collects some information about the action of G.

LEMMA 2.8. Let G be a group with a set X of involutions closed under conjugation
and a set S of S3-subgroups closed under conjugation. Let 0 = 0(G, X, S).
(1) The orbits of G on the set of vertices are the conjugacy classes in X.
(2) The kernel of the action of G on the set of vertices is CG(〈X〉).
(3) The orbits of G on the set of arcs are {(x, y) | 〈x, y〉 ∈ Si } for each conjugacy

class Si ⊆ S .

PROOF. Part (1) is trivial. Part (2) follows as an element lies in the kernel if and only
if it centralizes each element of X and hence of 〈X〉. Part (3) follows from the fact
that two arcs lie in the same G-orbit if and only if the S3-subgroups generated by their
vertices are conjugate. 2

The next lemma gives a natural way to find extra automorphisms of S3-involution
graphs.
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LEMMA 2.9. Let G be a group with conjugacy classes X1, X2 of involutions and
S1, S2 of S3-subgroups. If there exists g ∈ Aut(G) such that X g

1 = X2 and S g
1 = S2,

then 0(G, X1, S1)∼= 0(G, X2, S2).

PROOF. The element g provides the isomorphism. 2

COROLLARY 2.10. If g ∈ Aut(G) fixes X1 and S1 setwise, then g induces an
automorphism of 0(G, X1, S1).

By [8, Theorem 9.1.2], if n ≥ 5 then Aut(J (n, 2))= Sn and so the graphs in
Example 2.1 give examples where the full automorphism group of 0(G, X, S) is
G. The line graph of the Petersen graph is the S3-involution graph of A5 and has
full automorphism group S5. This provides examples of automorphism provided
by Corollary 2.10. We saw in Example 2.3 that M11 has an S3-involution graph
isomorphic to J (11, 3). Thus its full automorphism group is S11, which is much bigger
than G. Similarly, M12 has an S3-involution graph isomorphic to J (12, 4) whose full
automorphism group is S12.

2.2. Connectivity We begin with the following lemma.

LEMMA 2.11. Let 0 = (G, X, S) be an S3-involution graph. If X =
.⋃

X i with each
X i a G-conjugacy class, then 0 is the vertex disjoint union of the graphs 0(G, X i , S).

PROOF. Suppose that x, y ∈ X lie in the same connected component of 0. Then
there exists a path x = x0, x1, . . . , xd = y in 0. For each i = 0, . . . , d − 1, we have
〈xi , xi+1〉 ∼= S3 and so xi is conjugate to xi+1. Hence x is conjugate to y and the result
follows. 2

Note that if X is a single conjugacy class then 0(G, X, S) is not necessarily
connected. For example, let G = S3 wr S2 and let

X = {(x, 1), (1, y) | x, y ∈ S3, o(x)= o(y)= 2},

a conjugacy class of involutions. If S = {S3 × 1, 1× S3} then 0(G, X, S) consists
of two disjoint triangles. (Note that in this example 〈X〉 6= G and X is not an
〈X〉-conjugacy class.)

We have the following lemma.

LEMMA 2.12. Let N C G and let X ⊂ N. Then 0(G, X, S)= 0(N , X, S). In
particular, 0(G, X, S)= 0(〈X〉, X, S).

PROOF. Since the involutions of elements of S lie in X and hence N , it follows that
for S ∈ S we have S 6 N . 2

Lemma 2.12 leads to the following necessary condition for connectedness.

LEMMA 2.13. If 0(G, X, S) is connected, then X is both a G-conjugacy class and
an 〈X〉-conjugacy class.
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PROOF. By Lemma 2.12, 0(G, X, S)= 0(〈X〉, X, S). By Lemma 2.11, if
0(G, X, S) is connected, then X is a G-conjugacy class; while if 0(〈X〉, X, S) is
connected, then X is an 〈X〉-conjugacy class. 2

Example 2.7 is an example where X is both a G-conjugacy class and an
〈X〉-conjugacy class but 0(G, X, Si ) is still disconnected.

To obtain a necessary and sufficient condition for an S3-involution graph
0(G, X, S) to be connected with X a single conjugacy class, we need to introduce
a general method for constructing vertex-transitive graphs (see for example [20]).

Let G be a group with subgroup H and D a union of double cosets of H in G
which is closed under inverses. We can define a graph G(G, H, D) with vertices the
right cosets of H in G such that Hg1 is adjacent to Hg2 if and only if g1g−1

2 ∈ D.
Then G acts vertex-transitively on G(G, H, D) by right multiplication preserving
adjacency. Moreover, G(G, H, D) is connected if and only if D generates G (see [20,
Theorem 7]). Conversely, given a G-vertex-transitive graph 0 with arbitrary vertex v,
0 ∼= G(G, H, D), where H = Gv and D is the set of all elements of G that map v to a
vertex adjacent to v (see [20, Theorem 1]).

LEMMA 2.14. Let X be a conjugacy class of involutions in G and let S = S1 ∪ · · · ∪

St be a union of t conjugacy classes of S3-subgroups of G such that involutions in
elements of S are contained in X. Let x ∈ X and, for each i , let yi ∈ X such that
〈x, yi 〉 ∈ Si . Then 0(G, X, S) is connected if and only if 〈CG(x), y1, . . . , yt 〉 = G.

PROOF. Let 0 = 0(G, X, S) and let H = CG(x). For each i , {x, yi , yi xyi } forms
a triangle in 0 and yi maps x to the adjacent vertex yi xyi . Moreover, the double
coset H yi H is the set of all elements of G mapping x to a neighbour u of x such
that 〈x, u〉 ∈ Si . Thus letting D = H y1 H ∪ · · · ∪ H yt H , [20, Theorem 1] implies
that 0 ∼= G(G, H, D). Hence by [20, Theorem 7], 0 is connected if and only if D
generates G. Since 〈D〉 = 〈CG(x), y1, . . . , yt 〉 the result follows. 2

2.3. Triangles Let S ∈ S and T (S)= {x, y, z} be the set of three involutions in S.
Then T (S) is a triangle in 0(G, X, S). In particular, note that all S3-involution graphs
have girth three.

Given a graph 0 and partition P of the edge-set of 0, we say that (0, P) is a
G-arc-symmetrical decomposition if G preserves P , G P is transitive, G acts
transitively on the set of arcs of 0 and, for P ∈ P , G P is transitive on the set of arcs
of P . Arc-symmetrical decompositions were introduced in [15].

LEMMA 2.15. Let G be a group with conjugacy class X of involutions and conjugacy
class S of S3-subgroups containing elements of X. Let 0 = 0(G, X, S) and
P = {T (S) | S ∈ S}. Then (0, P) is a G-arc-symmetrical decomposition.

PROOF. Each edge of 0 lies in a unique triangle T (S), S ∈ S , and so P is a partition
of E0 preserved by G. Since S is a G-conjugacy class, G P is transitive. Moreover,
given P ∈ P , G P

P
∼= S3, which is transitive on the six arcs of P . Hence (0, P) is a

G-arc-symmetrical decomposition. 2
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An S3-involution graph may or may not contain triangles other than those of the
form T (S) for S ∈ S . The following theorem determines what subgroups arise in G if
0(G, X, S) has extra triangles.

THEOREM 2.16. Let G be a finite group with conjugacy class X of involutions and
union of conjugacy classes S of S3-subgroups. If {x, y, z} is a triangle in 0(G, X, S),
then 〈x, y, z〉 ∼= C2

n o S3 or (C3n × Cn)o S3 for some n ≥ 1.

PROOF. Let x, y ∈ S be involutions and hence {x, y} is an edge of 0 = 0(G, X, S).
Suppose that z ∈ X such that {x, y, z} is a triangle of 0 not obtained by a subgroup
in S and let R = 〈x, y, z〉. Note that 〈x, y〉< R and R satisfies the relations x2

= y2

= z2
= (xy)3 = (xz)3 = (yz)3 = 1, and hence is a finite quotient of the affine Coxeter

group Ã2, which is isomorphic to Z2 o S3. We model this Coxeter group by the group
H = L o W where L = {(x1, x2, x3) ∈ Z3

| x1 + x2 + x3 = 0} and W ∼= S3 acts on
L by naturally permuting the coordinates. Note that L is generated by (1,−1, 0)
and (0,−1, 1). The normal subgroups of H are determined in [21, Theorem 0.2]
and are either subgroups of L or kernels of homomorphisms from H to a Coxeter
group induced by a homomorphism from the Coxeter graph of H . As the Coxeter
graph for H is a triangle, the only possible images of such homomorphisms have
Coxeter graph a single edge or a single vertex and so the quotients obtained are C2
or S3. Since R contains the proper subgroup 〈x, y〉 ∼= S3, it follows that R is the
quotient of H by a proper subgroup of L . By [21, Proposition 7.2], the normal
subgroups contained in L are integral multiples of one of the lattices 31 = L + Zω
and 33 = 3L + Zω, where ω = (1, 1,−2) ∈ L . Since ω ∈ L we have 31 = L and so
nontrivial integral multiples of 31 give the quotients C2

n o S3 for some integer n ≥ 2.
Now L/33 = 〈(1,−1, 0)+33〉 ∼= C3. Let W = 〈σ, τ 〉 with σ 3

= τ 2
= 1 such that

(1,−1, 0)σ = (0, 1,−1) and (1,−1, 0)τ = (−1, 1, 0). Then

((1,−1, 0)+33)
σ
= (1,−1, 0)+33 and

((1,−1, 0)+33)
τ
= (2,−2, 0)+33.

Hence H/33 ∼= C2
3 o C2. For n ≥ 2, we have

L/(n33)= 〈(1,−1, 0)+ n33, (1, 1,−2)+ n33〉 ∼= C3n × Cn

and hence H/(n33)∼= (C3n × Cn)o S3. 2

We can now prove Theorem 1.3.

PROOF OF THEOREM 1.3. By Theorem 2.16, if G does not contain any subgroups
of the form C2

n o S3 for n ≥ 2, or (C3n × Cn)o S3 for some n ≥ 1, then the only
triangles in 0(G, X, S) are those arising from subgroups in S . Note that if p is a prime
dividing n then C2

n o S3 contains C2
p o S3. Also R = (C3n × Cn)o S3 contains a

subgroup C2
3 o C2 seen as follows. Using the notation from the proof of Theorem 1.3,

if R = H/(n33) then R contains the subgroup 〈(n,−n, 0)+ n33〉 ∼= C3, which is
normalized by W and centralized by σ . Hence H/(n33) contains a subgroup
isomorphic to C2

3 o C2. 2
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TABLE 1. PSL(2, q) information.

q mod 12 |X | CG(x), x ∈ X # of classes of S3 |S|
4, 8 q2

− 1 Cr
2 1 |G|/6

1 q(q + 1)/2 Dq−1 2 |G|/12
3 q(q − 1)/2 Dq+1 0
5 q(q + 1)/2 Dq−1 1 |G|/6
7 q(q − 1)/2 Dq+1 1 |G|/6
11 q(q − 1)/2 Dq+1 2 |G|/12
9 q(q + 1)/2 Dq−1 2 |G|/6

The converse of Theorem 1.3 is not true. For example, we saw in Example 2.7
that if G = C2

3 o C2 then G has four conjugacy classes of S3-subgroups and, for each
of the classes Si , 0(G, X, Si )∼= 3K3 with the three triangles arising from the three
subgroups in Si . The problem is that if, in the proof of Theorem 1.3, R = C2

3 o C2
then not all S3-subgroups of R are R-conjugate and so are not necessarily contained
in S . The situation is similar, if R = C2

n o S3 with 3 dividing n. On the other hand,
if (3, n)= 1 then all S3-subgroups of R = C2

n o S3 are conjugate in R and hence
contained in S , so in this case we definitely obtain extra triangles.

3. PSL(2, q) graphs

In this section we investigate the S3-involution graphs for PSL(2, q). Note that
PSL(2, 2)∼= S3 while PSL(2, 3)∼= A4, which does not contain any S3-subgroups.

Table 1 collates information about the involutions and S3-subgroups of PSL(2, q).
This mostly follows from a theorem of Dickson [12, pp. 285–286] (and see
[17, Theorem 2.1]). When there are two conjugacy classes of S3-subgroups, the two
classes are fused in PGL(2, q). Lemma 3.1 determines the conjugacy classes of S3-
subgroups when q is a power of 3.

LEMMA 3.1. Let G = PSL(2, 3r ). Then the number and sizes of conjugacy classes of
S3-subgroups is given by the last two columns of Table 1. In particular, G contains
S3-subgroups if and only if r is even.

PROOF. Let q = 3r and consider an S3-subgroup S, which contains a C3-subgroup C .
Since the projective line contains q + 1 points and a C3 cannot fix four points, it
follows that C must be contained in a unique point stabilizer P ∼= Cr

3 o C(q−1)/2,
where P is the index-two subgroup of AGL(1, 3r ) given in Example 2.6. Since S
normalizes C , it fixes the unique fixed point of C and hence S 6 P . Thus (q − 1)/2
is even and so r is even. We saw in Example 2.6 that P has two conjugacy classes of
S3-subgroups and hence so does G. 2

First we show that the S3-involution graphs for PSL(2, q) are always connected.
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TABLE 2. Valencies of 0(PSL(2, q), X, S).

q mod 12 Valency

4, 8 q
1 (q − 1)/2
5 q − 1
7 q + 1
11 (q + 1)/2
9 q − 1

LEMMA 3.2. Let G = PSL(2, q), X the set of involutions in G and S a conjugacy
class of S3-subgroups. Then 0(G, X, S) is connected.

PROOF. By Lemma 2.14, we need to prove that in each case 〈CG(x), y〉 = G for some
x, y ∈ X such that 〈x, y〉 ∈ S .

Suppose first that q ≡ 1 mod 4. Then CG(x)∼= Dq−1, which is maximal in G
for q ≥ 13. Since y /∈ CG(x), we are finished if q ≥ 13. If G = PSL(2, 5), then
CG(x)∼= C2

2 is contained only in maximal subgroups isomorphic to A4. However, C2
2

contains all involutions of the A4-subgroup, and so y /∈ A4. Hence 〈CG(x), y〉 = G. If
G = PSL(2, 9), then CG(x)∼= D8 is contained only in maximal subgroups isomorphic
to S4. Looking at the permutation representation on four points, we see that a central
involution in a D8 cannot be in an S3-subgroup of S4. Therefore y /∈ S4 and so
〈CG(x), y〉 = G.

Next suppose that q ≡ 3 mod 4. Then CG(x)∼= Dq+1, which is maximal in G for
q ≥ 11, and so y /∈ CG(x) and we are finished. If G = PSL(2, 7), then CG(x)∼= D8 is
contained only in maximal subgroups isomorphic to S4 and we can conclude as above.

Finally, suppose q = 2r . Then CG(x)∼= Cr
2 , which lies in a unique maximal

subgroup H ∼= Cr
2 o Cq−1. If y ∈ H , then y lies in the unique Sylow 2-subgroup

of H , and so commutes with x . Therefore y /∈ H and hence 〈CG(x), y〉 = G. 2

THEOREM 3.3. Let G = PSL(2, q), X the set of involutions in G and S a conjugacy
class of S3-subgroups. Then the valency of 0(G, X, S) is given by Table 2 according
to the value of q mod 12. Moreover if there are two conjugacy classes of S3-subgroups
in G, the corresponding graphs are isomorphic.

PROOF. Knowing the number |X | of involutions, and hence of vertices, and the
number of S3-subgroups in a conjugacy class S , that is, a third of the number of edges,
it is immediate to deduce the valency of 0(G, X, S). If there are two conjugacy classes
of S3-subgroups, the two classes are fused in PGL(2, q) and hence by Lemma 2.9 the
corresponding graphs are isomorphic. 2
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3.1. Cliques First we analyse triangles.

LEMMA 3.4. Let G = PSL(2, q) with q even or q ≡±3 mod 8. Then the only
triangles in 0(G, X, S) are those arising from the elements of S .

PROOF. If q is a power of 3 and q ≡±3 mod 8 then q is an odd power of 3 and so
G contains no S3-subgroups. For the values of q given in the statement, we can see
from [12, pp. 285–286] that G does not contain any subgroups of the form C2

3 o C2

or C2
p o S3. Hence by Theorem 1.3, the only triangles in 0(G, X, S) are those arising

from the elements of S . 2

COROLLARY 3.5. Let G = PSL(2, q) with q even or q ≡±3 mod 8. Then each edge
of 0(G, X, S) lies in a unique triangle and the size of the largest clique is three.

For the values of q where 0 contains triangles other than the natural ones, it is
obvious to ask what is the size of the largest clique.

THEOREM 3.6. Let G = PSL(2, 9e), X the unique conjugacy class of involutions in
G and S a conjugacy class of S3-subgroups of G. Then the size of the largest clique
in 0(G, X, S) is 3e.

PROOF. Let {x, y} be an edge of 0 = 0(G, X, S). Let {x, y, z} be a triangle such that
〈x, y, z〉 ∼= S3 and suppose that {x, y, u} is another triangle. By Theorem 2.16 and the
subgroup structure of G, 〈x, y, u〉 ∼= C2

2 o S3 ∼= S4 or 〈x, y, u〉 ∼= C2
3 o C2. Indeed,

either 〈x, y, u〉 is isomorphic to C2
n o S3, and the only such possibility in G is for

n = 2, or it contains an abelian subgroup C3n × Cn , and the only such possibility in G
is for n = 1.

Since G has two conjugacy classes of S4-subgroups [17] and two conjugacy classes
of S3-subgroups, it follows that all S4-subgroups of G containing 〈x, y〉 are conjugate.
There are |G|/6 conjugates of 〈x, y〉 and |G|/24 conjugates in each class of S4-
subgroups. Thus 〈x, y〉 lies in a unique S4-subgroup. The edge {x, y} lies in the two
triangles {x, y, z} and {x, y, u1} where 〈x, y, u1〉 ∼= S4. Under this isomorphism we
can make the identifications x = (1, 2), y = (1, 3), z = (2, 3) and u1 = (1, 4). Hence
z is not adjacent to u1 and so we do not obtain a clique of size four in this way.

Now 〈x, y〉 is contained in a unique parabolic subgroup P ∼= C2e
3 o C(9e−1)/2 and

if 〈x, y, u〉 ∼= C2
3 o C2 then 〈x, y, u〉6 P . Now P is isomorphic to the index-two

subgroup of AGL(1, 32e) as in Example 2.6. Moreover, the two conjugacy classes
of S3-subgroups of P remain separate conjugacy classes in G. Thus the restriction
of 0 to the involutions of P is the Paley graph of GF(9e). By [7] the largest clique
in the Paley graph of GF(9e) has size 3e. Moreover, [5] proved that such cliques are
affine images of subfields GF(3e). Thus a clique in P of size 3e containing x = t−1,a
and y = t−1,b corresponds to (b − a)GF(3e)+ a containing a, b and −b − a (with
notation for elements as in Example 2.6). Therefore z = x y

= t−1,−a−b also lies in this
clique. Since z is not adjacent to u1 we cannot make the clique larger by adding u1.
Thus the largest clique size of 0 is 3e. 2
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THEOREM 3.7. Let G = PSL(2, q) with q ≡±1 mod 8 not a power of 3. Then the
size of the largest clique in 0(G, X, S) is four if q = 25e and three otherwise.

PROOF. Assume that 0(G, X, S) contains a clique {x, y, z, t} of size four. Let
S = 〈x, y〉 ∼= S3. Then S contains only one more involution, so we may assume
without loss of generality that {x, y, t} is a triangle not generating an S3. By
Theorem 2.16 and the subgroup structure of G it follows that 〈x, y, t〉 ∼= S4. Note
that G has two classes of S4-subgroups each of length |G|/24 (see [12]) and has |G|/6
S3-subgroups (in one or two conjugacy classes). An easy counting argument shows
that S is contained in two S4-subgroups B1 and B2. Obviously, all S3-subgroups in a
given S4 are conjugate. Without loss of generality, we may assume that 〈x, y, t〉 = B1
and that the only other involution of B1 adjacent to x and y is x y . Moreover, t is not
adjacent to x y and so we must have that 〈x, y, z〉 = B2. Since z, t and x y are the only
elements of X adjacent to both x and y, we conclude that {x, y, z, t} is a maximal
clique. By symmetry, any three involutions in this clique generate an S4-subgroup.

Let us look at the relations in 〈x, y, z, t〉. Because of the clique structure,

1= x2
= y2

= z2
= t2
= (xy)3 = (xz)3 = (yz)3 = (xt)3 = (yt)3 = (zt)3.

Since x, y, z are three involutions generating an S4 with pairs generating various S3,
we also have 1= (xyxz)2 and the relations obtained from this one by permuting the
three letters. Of course we have similar relations for any 3-subset of {x, y, z, t}.
Now let x ′ = x , y′ = x y , z′ = yz and t ′ = zt . It is easily seen that 〈x, y, z, t〉
= 〈x ′, y′, z′, t ′〉. It is also easily proved from the relations described above that

1= x ′2 = y′2 = z′2 = t ′2 = (x ′y′)3 = (y′z′)3 = (z′t ′)3 = (z′x ′)2 = (t ′x ′)2 = (y′t ′)2.

These relations yield a Coxeter group of type A4, and so we have 〈x, y, z, t〉
= 〈x ′, y′, z′, t ′〉 ∼= S5. Now PSL(2, q) contains a subgroup isomorphic to S5 if and
only if q = 25e (note that PGL(2, 5)∼= S5) and if G contains an S5 then it does indeed
have a clique of size four. Thus the size of the largest clique in 0(G, X, S) is four if
q = 25e and three otherwise. 2

Theorem 1.4 follows from Corollary 3.5 and Theorems 3.6 and 3.7.

3.2. Duality The dual graph of an S3-involution graph 0(G, X, S) is the graph
whose vertices are the S3-triangles of 0(G, X, S) (that is, which correspond to
elements of S ), with two triangles being adjacent if they share a vertex. It was seen
in [11] that the graph 0(PSL(2, 11), X, S), with X a conjugacy class of involutions
and S a conjugacy class of S3-subgroups, is isomorphic to its dual graph, with the
duality between X and S induced by elements of PGL(2, 11) \ PSL(2, 11). We now
show that the only other value of q for which this happens is q = 13. Note that by
Corollary 3.5 in both cases the only triangles in 0(G, X, S) are S3-triangles.

THEOREM 3.8. Let G = PSL(2, q), X the unique conjugacy class of involutions and
S a conjugacy class of S3-subgroups. Then 0(G, X, S) is isomorphic to its dual graph
if and only if q = 11 or 13.
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PROOF. For 0(G, X, S) to have a duality between X and S , the number of vertices
must equal the number of S3-subgroups in S . It follows from Table 1 that q = 11 or
13. It remains to prove that in these two cases we do indeed have a duality.

When q = 11 or 13, the group G has two conjugacy classes S and S ′ of
S3-subgroups and 0(G, X, S)∼= 0(G, X, S ′). By Theorem 3.3, 0(G, X, S) has
valency six, which means that each involution is contained in three subgroups of S
and in three subgroups of S ′. The centralizer in G of an involution x is isomorphic
to D12 and each D12-subgroup contains a unique S3-subgroup in each conjugacy
class. We will denote the unique subgroup of S (respectively S ′) in CG(x) by s(x)
(respectively s′(x)). Moreover, each subgroup S ∈ S ∪ S ′ is contained in a unique
subgroup isomorphic to D12, whose central involution will be denoted by i(S). Notice
that s and i are inverse bijections between involutions and elements of S and s′ and i
are inverse bijections between involutions and elements of S ′.

We claim that for x ∈ X , T ∈ S , we have x ∈ T if and only if x and i(T ) commute
and T ∩ s′(x)= 1.

First suppose that x ∈ T . Then i(T ) commutes with all elements in the D12
containing T and hence with x . We have CT (x)= 〈x〉 and x /∈ s′(x)⊂ CG(x), and
therefore T ∩ s′(x)= 1.

Conversely, suppose that x and i(T ) commute, T ∩ s′(x)= 1, and that x /∈ T . If
x = i(T ), then T = s(x), and s(x) ∩ s′(x)∼= C3, a contradiction. Hence x 6= i(T )
and x is one of the six noncentral involutions in CG(i(T )). Since x /∈ T = s(i(T )),
we have x ∈ s′(i(T )) and there exists a unique involution t ∈ T commuting with x .
Since T ∩ s′(x)= 1 it follows that t ∈ s(x). Now s(x) and T are both in S and the
normalizer of an element in S acts transitively on its three involutions. Thus there
exists g ∈ G mapping s(x) to T and fixing t . Hence g ∈ CG(t) and g must map x
onto i(T ). Moreover, x and i(T ) are two commuting involutions of CG(t) other than
t , which implies that one is in s(t) and the other in s′(t). In other words, they are not
conjugate in CG(t), and we get a contradiction. Hence the claim is proved.

Of course, by symmetry, we also have that a vertex x ∈ T ′ ∈ S ′ if and only if x and
i(T ′) commute and T ′ ∩ s(x)= 1.

Consider the map s′ : X→ S ′. By the claim, the vertices x and y are adjacent in
0(G, X, S) if and only if there exists T ∈ S such that i(T ) commutes with both x and
y, and T ∩ s′(x)= T ∩ s′(y)= 1. Since x = i(s′(x)), y = i(s′(y)) and s(i(T ))= T ,
using the claim again implies that x and y are adjacent if and only if the involution
i(T ) is contained in both s′(x) and s′(y). Therefore s′ yields an isomorphism from
0(G, X, S) onto the dual graph of 0(G, X, S ′). Since 0(G, X, S)∼= 0(G, X, S ′), it
follows that 0(G, X, S) is isomorphic to its dual graph. 2

We note that the proof given in [11] for the duality in the case where q = 11 is
different from the one here. It relies on a geometrical description of the graph.
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3.3. Automorphism groups We now need more details on the different projective
groups. The group PGL(2, q) is the group of all fractional linear transformations

ta,b,c,d : z 7→
az + b

cz + d
, ad − bc 6= 0,

of the projective line L = {∞} ∪ GF(q) with the conventions that 1/0=∞ and
(a∞+ b)/(c∞+ d)= a/c. Note that ta,b,c,d = ta′,b′,c′,d ′ if and only if

(a, b, c, d)= λ(a′, b′, c′, d ′) for some λ 6= 0.

The group PSL(2, q) is then the set of all ta,b,c,d such that ad − bc is a square in
GF(q). The Frobenius map φ : z 7→ z p also acts on L and φ−1ta,b,c,dφ = ta p,bp,cp,d p .
Then P0L(2, q)= 〈PGL(2, q), φ〉 and P6L(2, q)= 〈PSL(2, q), φ〉.

We split the determination of the full automorphism group into the cases where q
is even and odd.

THEOREM 3.9. Let G = PSL(2, q) with q odd, X the set of involutions in G, S a
conjugacy class of S3-subgroups, and let 0 = 0(G, X, S). If q ≡ 1, 9, 11 mod 12,
then Aut(0)= P6L(2, q). If q ≡ 5, 7 mod 12, then Aut(0)= P0L(2, q).

PROOF. Let A = Aut(0) and note that G 6 A 6 Sym(V0). Using MAGMA [6] the
result can be verified for q = 5, 7, 9 and 11. Thus we may assume that q ≥ 13. For q ≡
±1 mod 4, we have that the stabilizer in G of a vertex is Dq∓1 and |V0| = q(q ± 1)/2.
Moreover, by Theorem 3.3, 0 has valency q ∓ 1 or (q ∓ 1)/2 and so Alt(V0) is
not contained in A. Since q ≥ 13, the subgroups Dq−1 and Dq+1 are maximal in
G (see [12]) and hence both G and A act primitively on V0. Moreover, G and A
share a common nontrivial orbital given by the edges of 0. Using [19, Theorem 1],
we conclude that either soc(A)= PSL(2, q) or q ≡ 1 mod 4 and soc(A)= Aq+1. In
this last case, A acts on V0 as on 2-sets of a (q + 1)-set. Therefore, the stabilizer in
A of a vertex has orbit sizes 1, 2(q − 1) and

(q−1
2

)
on vertices. Since 0 has valency

q − 1 or (q − 1)/2, we conclude that soc(A) 6= Aq+1. Hence soc(A)= PSL(2, q) and
so G 6 A 6 P0L(2, q).

When q ≡ 5, 7 mod 12, Table 1 states that G has a unique conjugacy class of S3-
subgroups. Thus P0L(2, q) fixes X and S and so, by Corollary 2.10, A = P0L(2, q).

For q ≡ 1, 9, 11 mod 12, Table 1 states that G has two conjugacy classes S and
S ′ of S3-subgroups. These two classes are fused by any g ∈ PGL(2, q) \ PSL(2, q)
and so such elements do not induce automorphisms of 0. Thus if q = p then we
have A = G = P6L(2, q). When q = p f with f ≥ 2 and p 6= 3, by Table 1, the
PSL(2, p)-subgroup centralized by φ contains an S3 and so φ fixes S and S ′. Thus
again A = P6L(2, q). Finally when p = 3, by Lemma 3.1, f is even and so φ
centralizes a PGL(2, 3)-subgroup that contains an S3. Hence φ fixes S and S ′ and
so A = P6L(2, q). 2

To deal with the q even case, we need the following lemma about the structure of
the graph.
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LEMMA 3.10. Let G = PSL(2, q) for q = 2e
≥ 4, X be the unique conjugacy class of

involutions of G and S the unique class of S3-subgroups. Let0 = 0(G, X, S). Then X
can be partitioned into q + 1 blocks Xα = X ∩ Gα of size q − 1 (α ∈ GF(q) ∪ {∞}),
such that the subgraph induced by 0 on any two blocks is a matching between
those blocks.

PROOF. Let α, β ∈ GF(q) ∪ {∞} with α 6= β. Then Gα
∼= AGL(1, q)∼= Ce

2 o Cq−1
and Gα,β

∼= Cq−1. Thus each element of X lies in a unique point stabilizer of G.
Moreover, since each Gα has a unique Sylow 2-subgroup and this subgroup is abelian,
all involutions in Xα commute. Thus 0 is a multipartite graph with block set
P = {Xα | α ∈ GF(q) ∪ {∞}}. Now G Xα = Gα and Gα,β = G Xα,Xβ

∼= Cq−1 acts
regularly on both Xα and Xβ . Since G acts arc-transitively on 0 (Lemma 2.8), it
follows that each vertex in Xα is adjacent to at most one vertex in any other block.
Using the fact from Theorem 3.3 that 0 has valency q , we can conclude that the
subgraph induced on Xα ∪ Xβ is a matching. 2

THEOREM 3.11. Let G = PSL(2, q) for q ≥ 4 even, X the unique conjugacy class of
involutions of G and S the unique class of S3-subgroups. Let 0 = 0(G, X, S). Then
Aut(0)= P0L(2, q).

PROOF. Let A = Aut(0). Since G has a unique conjugacy class of involutions and of
S3-subgroups it follows from Corollary 2.10 that P0L(2, q)6 A. By Lemma 3.10,
0 is a multipartite graph with block set P = {Xα | α ∈ GF(q) ∪ {∞}}, where
Xα = X ∩ Gα . Let x ∈ X∞. By Lemma 3.10, for each α 6= ∞, |0(x) ∩ Xα| = 1. By
Corollary 3.5, each edge of 0 lies in a unique triangle. Hence, Ax preserves a partition
of P into blocks of size two given by the triangles containing x .

Let y ∈ X0 be the unique element of X0 adjacent to x and let {x, y, z} be a triangle.
Then z ∈ Xα for some α ∈ GF(q)\{0}. Note that G X∞,X0,Xα = 1. Now let x ′ ∈ X∞
with x ′ 6= x and let y′ 6= y be the unique element of X0 adjacent to x ′. Since G is
arc-transitive, there exists g ∈ G such that (x, y)g = (x ′, y′). Moreover, {x ′, y′, zg

} is
the unique triangle of 0 containing {x ′, y′}. Since G X∞,X0,Xα = 1 and g fixes X∞ and
X0, it follows that zg /∈ X∞ ∪ X0 ∪ Xα . Hence if h ∈ AX∞,X0,Xα then h ∈ Ax . Since
x was arbitrary, if K is the kernel of the action of A on P , it follows that K fixes X∞
pointwise. Since K C A and A acts transitively on P we conclude that K = 1, that
is, A acts faithfully on P . Thus P0L(2, q)6 A 6 Sq+1. By [18] it follows that either
soc(A)= PSL(2, q) or Aq+1 6 A. If q = 4 then PSL(2, 4)= A5 and P0L(2, 4)= S5.
Hence Aut(0)= P0L(2, 4) in this case. Suppose now that q ≥ 8 and Aq+1 6 A. Then
there exists h ∈ A that induces a 3-cycle on P and fixes X∞, X0 and Xα . As we have
seen, this implies that h ∈ Ax and so preserves a partition of P into blocks of size two,
contradicting h inducing a 3-cycle on P . Hence Aq+1 is not contained in A and so
soc(A)= PSL(2, q). As P0L(2, q)6 A it follows that A = P0L(2, q). 2

Lemma 3.10 also enables us to determine the diameter of the S3-involution graph
of PSL(2, q) for q even.
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THEOREM 3.12. Let G = PSL(2, q) for q ≥ 4 even, X the unique conjugacy class of
involutions of G and S the unique class of S3-subgroups. Let 0 = 0(G, X, S). Then
0 has diameter three.

PROOF. For each α ∈ GF(q) ∪ {∞} let Xα = X ∩ Gα . By Lemma 3.10, 0 is
multipartite with blocks {Xα | α ∈ GF(q) ∪ {∞}} such that the graph induced between
any two blocks is a complete matching. Let x ∈ X . Without loss of generality we may
assume x ∈ X∞. By Theorem 3.3, x has q neighbours and these are each in a different
Xα , α ∈ GF(q). By Corollary 3.5, each of these q vertices is adjacent to exactly one
other neighbour of x . Hence each is adjacent to q − 2 vertices at distance 2 from x ,
and, by Lemma 3.10, none of these are in X∞. Moreover, we claim that 0 contains no
4-cycle, and so there are exactly q(q − 2) vertices at distance 2 from x . Therefore, the
vertices at distance at most 2 from x cover exactly the involutions not in X∞. Since
the subgraph induced on two blocks of the partition is a matching, all vertices distinct
from x in X∞ are at distance 3 from x . Therefore any vertex is at distance at most 3
from x .

It remains to prove that there is no 4-cycle in 0. Suppose that (x, y, z, t) is a
4-cycle. By Lemma 3.10, the four vertices are in four distinct blocks of the partition.
Since G has one orbit on V0 (Lemma 2.8), we may assume that x = t1,1,0,1 ∈ X∞.
A calculation shows that the unique involution in X i (i ∈ GF(q)) adjacent to x is
ti+1,i2,1,i+1. Moreover, for j ∈ GF(q) \ {i}, the image of the edge {t1,1,0,1, t0,1,1,0}
under

ti2+i j,i2+i j+ j,i+ j,i+ j+1 ∈ G

is
{ti+1,i2,1,i+1, ti2+ j2+ j, j2,1,i2+ j2+ j }.

Thus the unique involution in X j ( j ∈ GF(q) \ {i}) adjacent to ti+1,i2,1,i+1 is
ti2+ j2+ j, j2,1,i2+ j2+ j . Hence

y = ti+1,i2,1,i+1 and t = ti ′+1,i ′2,1,i ′+1

for distinct i, i ′ ∈ GF(q). We know that z ∈ G j for some j ∈ GF(q) \ {i, i ′}. Since z
is adjacent to both y and t , we have

z = ti2+ j2+ j, j2,1,i2+ j2+ j = ti ′2+ j2+ j, j2,1,i ′2+ j2+ j .

Hence i2
+ j2
+ j = i ′2 + j2

+ j , and so i = i ′, which contradicts the fact that y and
t are distinct. 2
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