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Abstract. The problem of supernova photometric identification is still an open issue faced
by large photometric surveys. In a previous investigation, we showed how combining Kernel
Principal Component Analysis and Nearest Neighbour algorithms enable us to photometrically
classify supernovae with a high rate of success. In the present work, we demonstrate that the
introduction of Gaussian Process Regression (GPR) in determining each light curve highly
improves the efficiency and purity rates. We present detailed comparison with results from
the literature, based on the same simulated data set. The method proved to be satisfactorily
efficient, providing high purity (� 96%) rates when compared with standard algorithms, without
demanding any information on astrophysical properties of the local environment, host galaxy or
redshift.
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1. Introduction
In the late 20th century, type Ia supernovae (SNe Ia) played a central role in the devel-

opment of the standard cosmological model. Since then, a great effort has been employed
towards the construction of a large, reliable SNe Ia sample, which might be able to provide
further insights on the nature of the energy component driving the Universe accelerated
expansion (dark energy). A major fraction of such efforts is directed to ongoing and
planned photometric surveys, which will collect light curve information for thousands of
SNe. However, the usefulness of these data to cosmology is limited by our ability to clas-
sify them without using spectroscopic information. As an example, the second SN data
release from the Sloan Digital Sky Survey (Sako et al., 2014) consists of 10258 variable
and transient sources from which only 889 were spectroscopically confirmed.

In a previous work (Ishida & de Souza, 2013 - hereafter IdS2013), we demonstrated how
the combination of Kernel Principal Component Analysis (kPCA) and Nearest Neighbour
(NN) algorithms can be applied to the SN photometric classification problem, leading to
competitive results specially when purity is the main feature to be maximise in the final
photometric sample. In this work, we show how the introduction of Gaussian Process
Regression (GPR) in the light curve fitting process can improve our previous results,
allowing for better purity and efficiency rates.
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Figure 1. Results from the application of GPR to the pre-processing pipeline of supernovae
data. Left: Normalized flux measurements as a function of days since maximum brightness. The
blue dots denote observed values, the red line corresponds to the mean fitted light curve and
the grey region encloses 2 standard deviations at each epoch. Right: Projection of supernovae
light curves in PC space. The red path denotes the projection of 100 light curves defined within
2σ (grey region in the left panel).

2. Method
The framework presented in IdS2013 consists of applying kPCA to a light curve data

set whose types are previously known (called training set) and subsequently use the
geometrical distribution of SNe in this space to classify a new untyped SN by means of
the NN algorithm. kPCA is a generalisation of PCA (see Jolliffe, 2012 for a complete
review) built to handle the nonlinear case. It projects the data into a higher dimensional
parameter space, where the relations can be linearly described, before determining the
directions of each PC (for a deeper discussion see IdS2013 and references therein). After
applying kPCA to the training set, the unclassified (or test) SN is projected into the
PC space and it is assigned the same class as its first NN. As reported in IdS2013, this
method achieves extremely high purity rates when applied to simulated data.

Nevertheless, it is important to emphasise that we need flux measurements equally
sampled in time for all SNe in order to construct the initial data matrix. In IdS2013, we
used a cubic spline interpolation in order to convert the observed flux measurements into a
light curve function. Although this procedure proved to be enough to achieve competitive
results, it does not enable us to propagate the uncertainty in flux measurements into the
classification process. Here, we updated the method by introducing GPR as a light curve
fitting technique.

GPR is a Bayesian approach to the linear regression problem, where we consider a
prior distribution over the functions likely to describe the behaviour of our data. Be-
fore any measurements are taken, we consider a flat prior (e.g. for normalised light
curves, 0�Flux�1, ∀ epochs). Thus, any smooth function whose image is contained in
this flux interval is as likely to describe our light curve. Once we have one measure-
ment y = F (day1), it acts like a constraint over the previous prior and now we have
a posterior probability distribution, enclosing all smooth functions within [0,1] interval,
which pass through the observed point. Applying the same line of thought to successive
measurements, we construct a region in the y×day parameter space, where all functions
satisfying the posterior are concentrate (see Rasmussen & Williams, 2006). We used the
GPR to determine a light curve function from the observed data points. This allowed
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Figure 2. Comparison with literature results from different techniques, applied to the same
data set, as a function of redshift. The black (dotted) line correspond to results from Richards
et al., 2012 (figure 10, Sm ,25 ), the green (dashed) line denotes those presented in Karpenka,
Feroz & Hobson, 2013 (figure 3, D4 without z) and the blue (bold-dashed) line shows our results
when using a spline fit, reported in Ishida & de Souza, 2013 (table F2, D7+SNR5). The red
(bold-full) line represents results obtained with GPR, with data from -3 to +24 days, SNR�5
and 4-dimensional PC space. The thin line shows the outcomes when all SNe passing selection
cuts are classified as Ia.

us to transfer the confidence region coming from the GPR directly into the classification
process.

3. Application
We applied the procedure described above to the post-SNPCC data set†, which consists

of a simulation corresponding to 5 years of observations from the Dark Energy Survey‡.
From this initial set, we selected all objects with at least 3 observation epochs with signal
to noise ratio, SNR�5 in each filter. Moreover, we demanded at least one observation
before -3 and one observation after +24 days since maximum brightness. This reduced
our sample to 465 and 3495 SNe in the training and test samples, respectively.

The left-hand panel of Figure 1 shows the results of applying GPR to a SN in the
test sample, here we used a squared exponential covariance function and marginalized
over the hyper-parameters. The right-hand panel illustrates the geometrical distribution
of the training set in a 2-dimensional PC space¶ and the corresponding projections of
100 light curves fulfilling the constraints imposed by the posterior. We then applied the
NN algorithm to all the 100 points individually, which enabled us to assign a probability
of being a SN Ia to this SN. At a first glance, we notice the power of our method in
separating Ia and non-Ia SNe. Although there is some degree of contamination, with the
most drastic cases corresponding to type Ib/Ic SNe populating the area occupied by SN
Ia.

Traditionally, results from such a classification analysis are reported in terms of ef-
ficiency (eff), purity (pur) and figure of merit (fom). Mathematically these are defined

† http://sdssdp62.fnal.gov/sdsssn/SIMGEN PUBLIC/
‡ http://www.darkenergysurvey.org/

¶ Although the figure shows only 2 PC for didactic reasons, our final results were built in a
4-dimension parameter space. The choice of dimensionality and which PC to use was based on
a cross-validation procedure as described in IdS2013, section 3.2.
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(3.1)
where N Ia

cc , N Ia
tot , NnonIa

wr are the number of correctly classified SNe Ia, the total number
of SNe Ia in the test sample and the number of nonIa’s which were wrongly classified as
Ia, respectively. We assume a weight factor W = 3, which penalises wrong nonIa classifi-
cations contaminating the final sample (Kessler et al., 2010). Following the nomenclature
of IdS2013, the index “B” used after eff and fom indicates that N Ia

tot corresponds to the
test sample before selection cuts. Thus, the effect of applied selection cuts are also taken
into account.

Diagnostic results obtained from a GPR will always depend on the probability thresh-
old (the minimum probability required so a SN is considered Ia). Given the statistical
level of accuracy of current cosmological analysis, our goal is to maximise purity in our
final sample, while keeping fom competitive. In this context, with a probability threshold
of 0.95 and SNR�5, our method achieved 98% purity against 91% obtained with the cu-
bic spline fit. The difference is still larger if we consider lower quality data. For SNR�3,
GPR obtained purity of 97% while the cubic spline achieved no more than 67%. This
proves that GPR is able to provide the same level of purity results even in the presence
of lower quality data.

Figure 2 shows how our results compare to those of other methods available in the
literature, when applied to the same data set. Here we show the best-case scenario pointed
by the authors themselves. Richards et al., 2012 used a combination of diffusion map and
random forest algorithms and Karpenka, Feroz & Hobson, 2013 applied a neural network
to the post-SNPCC data. Notice that GPR can improve efficiency and purity results
over the spline fit even with a smaller light curve coverage (results shown from IdS2013
required data between [-3,+45] days since maximum brightness). Moreover, our method
is the only able to achieve purity higher than 96% for the entire redshift range.

4. Conclusions
Our ability to extract cosmological information from future surveys is limit by how well

we are able to photometrically classify the available SN samples. Given the current stage
of cosmological analysis, where there is no consensus on how the purely photometric data
should be used, we believe that our approach is ideal to select a small, high purity SN
sample which might help improve the cosmological results.
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