SOME APPLICATIONS OF A THEOREM OF MARCINKIEWICZ

P. S. BULLEN AND R. VYBORNY

ABSTRACT. A classical theorem of Marcinkiewicz states that a function is Perron integrable iff it has one continuous major and one continuous minor function. Using an elaboration of this remarkable theorem three applications are made; to obtain a new proof of a recent characterization of the Perron integral, to proofs of some theorems on interchange of limits and integration and to extend classical existence theorems for ordinary differential equations.

1. Introduction. If $f: [a, b] \to \mathbf{R}$ then M is called a major function, m a minor function of f on [a, b], if both are real-valued functions on [a, b], M(a) = m(a) = 0, and

(1)
$$\overline{D}m \leq f \leq DM.$$

It is known, Saks [12, p. 201], that the theory of the *P*-integral, (the Perron or Denjoy-Perron integral), can be developed if we assume the existence of at least one *M* and *m*. Then $P \int_a^b f = \inf M(b) = \sup m(b)$, provided the last two real numbers are equal; *f* can then be proved measurable, being almost everywhere the derivative of its continuous primitive, and we write $f \in P(a, b)$. In practice it is convenient to use continuous *M* and *m* since then the inequalities (1) can be relaxed on certain exceptional sets; see Bullen [1] where the basic references are given.

The following theorem published in Saks [12, p. 253] is usually referred to as the Marcinkiewicz theorem, although it was also proved, independently, by Tolstov [16] and Denjoy [4].

THEOREM 1. If $f: [a, b] \rightarrow \mathbf{R}$ is measurable then $f \in P(a, b)$ iff it has at least one continuous major function, and one continuous minor function.

The two hypotheses are critical for the proof: (a) the measurability of f is used to prove f summable on a perfect set where M and m are of bounded variation; (b) the continuity of M is used to deduce $f \in P(\alpha, \beta)$ from $f \in P(\phi, \eta)$ for all $\phi, \eta, \alpha < \phi < \eta < \beta$. Further Saks [12, p. 253] gives an example to show that if the continuity hypothesis is dropped the result is false.

However Sarkhel [13] pointed out that the Saks example was not convincing, and showed that Theorem 1 was still valid if M and m are regulated functions satisfying

(2)
$$\lim_{y \to x^{-}} M(y) \leq M(x) \leq \lim_{y \to x^{+}} M(y),$$
$$\lim_{y \to x^{-}} m(y) \geq m(x) \geq \lim_{y \to x^{+}} m(y).$$

Received by the editors February 7, 1989.

165

The work of the first author was done while visiting the University of Queensland.

⁽c) Canadian Mathematical Society 1991.

(As Sarkel points out (2) is a very mild requirement since in any case (1) implies that

$$\lim_{y \to x^{-}} \sup M(y) \leq M(x) \leq \lim_{y \to x^{+}} \inf M(y),$$
$$\lim_{y \to x^{-}} \inf m(y) \geq m(x) \geq \lim_{y \to x^{+}} \sup m(y).$$

A more convincing counterexample can be obtained by modifying one due to Burkill [2]. Define Φ , f on $[0, 1/\pi]$ as follows:

$$\Phi(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0; \end{cases} \quad f(x) = \begin{cases} \Phi''(x), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Then f is not Cauchy-Riemann integrable and so f is not in $P(0, 1/\pi)$. However, we can easily define a major function, and a minor function, for f as follows:

$$M(x) = \Phi'(x) + 2 \text{ for } x \neq 0,$$

$$m(x) = \Phi'(x) - 2 \text{ for } x \neq 0,$$

$$M(0) = m(0) = 0,$$

in fact M is lower semicontinuous, and m is upper semicontinuous. It follows from Theorem 1 that f cannot have any continuous major or minor functions.

In general once a function f has a major function we can define the upper *P*-integral, $P \int_{a}^{\bar{b}} f = \inf M(b)$, and similarly the lower *P*-integral $P \int_{a}^{b} f = \sup m(b)$ is defined once f has a minor function. If both exist then it is easy to see that

$$-\infty < P \int_{\underline{a}}^{b} f \leq P \int_{a}^{b} f < \infty;$$

in the case of the above example the middle inequality is strict.

The concept of major and minor functions finds applications in the theory of differential equations. In section 4 we prove existence theorems concerning the Cauchy problem for the equation (and systems of equations) y' = f(x, y). We employ the existence of functions *m*, *M* satisfying

$$Dm(t) \leq f(t, g(t)) \leq \underline{D}M(t)$$

for all suitable g (for details see Theorem 11). This condition can be viewed as a generalisation of the condition $f(t,x) \leq m(t)$ with a summable m, used in the Caratheodory theory (see [3] p. 43). The theorems on interchange of limit and integration play an important role in Section 4 and we discuss them and their connection with the Marcinkiewicz theorem in Section 3.

166

2. The Marcinkiewicz Theorem in the Henstock-Kurzweil Theory. Suppose $\delta: [a,b] \rightarrow]0, \infty[$ then π is a δ -fine partition of $[a,b], \pi \in \Pi(\delta) = \Pi(\delta; a,b)$ if $\pi = (a_0, \ldots, a_n; y_1, \ldots, y_n) = \{ [a_{i-1}a_i], y_i, 1 \leq i \leq n \}$ for some $n \in \mathbf{N}, a_i, y_i \in [a,b], 1 \leq i \leq n$ satisfying

(3)
(a)
$$a = a_0 < \dots < a_n = b$$
,
(b) $a_{i-1} \leq y_i \leq a_i$, $1 \leq i \leq n$,
(c) $a_i - a_{i-1} < \delta(y_i)$, $1 \leq i \leq n$.

The $[a_{i-1}, a_i]$ are called the intervals, and the y_i the tags of π . It is known that the theory of the *P*-integral can be developed in the usual fashion using Riemann sums for δ -fine partitions of [a, b]; see Kurzweil [6], Henstock [5].

If now $f: [a, b] \rightarrow \mathbf{R}, \pi \in \Pi(\delta; a, b)$ the associated Riemann sum is written

$$\sum_{\pi} f = \sum_{i=1}^{n} f(y_i)(a_i - a_{i-1}).$$

If we have $a \leq c < d \leq b$ we can consider δ to be restricted to [c, d] and write $(c \sum_{\pi} d)f$, for $a \pi \in \Pi(\delta; c, d)$.

LEMMA 2. If $f: [a,b] \to \mathbf{R}$ then f has a major and minor function iff there is a $\delta: [a,b] \to]0, \infty[$ and a K > 0 such that for all $\pi \in \Pi(\delta)$

$$(4) $\left|\sum_{\pi} f\right| < K$$$

PROOF. Given a major function M, a minor function m and $\epsilon > 0$ define $\delta(x) > 0$ for all x by

$$M(v) - M(u) \ge (v - u) \{ f(x) - \epsilon \}$$

$$m(v) - m(u) \le (v - u) \{ f(x) + \epsilon \}$$

when $x - \delta(x)/2 < u \le x \le v < x + \delta(x)/2$; then (4) is immediate.

Conversely suppose (4) holds then we easily prove that for some K > 0, not necessarily the same at each occurence,

(i) for all $\pi_1, \pi_2 \in \Pi(\delta)$,

(5)
$$\left|\sum_{\pi_1} f - \sum_{\pi_2} f\right| < K;$$

(ii) for all $c, d, a \leq c < d \leq b$, and $\pi \in \Pi(\delta; c, d)$

$$\left| \left(c \sum_{\pi} d \right) f \right| \leq K;$$

(further if (i) or (ii) holds so does (4)).

Using (i) we define for $a \leq x \leq b$

$$M_{\delta}(x) = \sup_{\pi \in \Pi(\delta)} \left(a \sum_{\pi} x \right) f;$$
$$m_{\delta}(x) = \inf_{\pi \in \Pi(\delta)} \left(a \sum_{\pi} x \right) f.$$

It follows easily that if $x - \delta(x)/2 \le u \le x \le v < x + \delta(x)/2$ then $M_{\delta}(v) - M_{\delta}(u) \ge f(x)(v-u)$ and M_{δ} is a major function of f on [a, b]. Similarly m_{δ} is a minor function.

In general M_{δ}, m_{δ} given by (6) cannot be continuous since clearly the example in section 1 satisfies (4) of Lemma 2. If M_{δ} and m_{δ} exist then $P \int_{a}^{\bar{b}} = \inf_{\delta} M(b)$, and $P \int_{a}^{b} f = \sup_{\delta} m(b)$; see Pfeffer [11].

In order that M_{δ}, m_{δ} of (6) be continuous some extra condition is needed; a condition that suggests itself is: for all $\epsilon > 0$ there is an $\xi = \xi(\epsilon, x) > 0$ such that if $x \in [c, d], d - c < \xi$, then for all $\pi \in \Pi(\delta)$

(7)
$$\left| \left(c \sum_{\pi} d \right) f \right| < \epsilon.$$

However given both δ of (4) and ξ of (7) both could be replaced by min (ξ , δ); then given (7) a simple application of Cousin's lemma (see Mawhin p. 103) gives (4). In this form (7) implies the existence of M_{δ} and m_{δ} but we have not been able to prove they are continuous; on the other hand we have no example to show they need not be. We avoid this difficulty by generalising Theorem 1 as follows.

THEOREM 3. If (i) f: [a, b] \rightarrow **R** is measurable; (ii) U is a non-empty family of major functions of f, L is a non-empty family of minor functions of f; and for all $\epsilon > 0, x \in [a, b]$ there is a $\delta = \delta(x, \epsilon) > 0, M \in U, m \in L$ such that if $x - \delta < \alpha < \beta < x$ or $x < \alpha < \beta < x + \delta$ then $-\epsilon < m(\beta) - m(\alpha) \leq M(\beta) - M(\alpha) < \epsilon$; then $f \in P(a, b)$.

PROOF. As was remarked in (b) following Theorem 1 the only place where continuity is used is in proving that if $f \in P(\phi, \eta)$ for all ϕ, η such that $\alpha < \phi < \eta < \beta$ then $f \in P(\alpha, \beta)$; and to prove this it suffices to prove that $\lim_{\eta - \beta -} \int_{\phi}^{\eta} f$ and $\lim_{\phi - \alpha +} \int_{\phi}^{\eta} f$ exist. Consider the first limit, by the usual criterion it is sufficient to prove that given $\epsilon > 0$ there is a $\delta > 0$ such that if $\beta - \delta < x < y < \beta$ then $|\int_{x}^{y} f| < \epsilon$. If we pick $\delta = \delta(\beta, \epsilon)$ of the hypothesis (ii) then with the $M \in U, m \in L$ of the same hypothesis we get that $\epsilon > M(y) - M(x) \ge \int_{x}^{y} f \ge m(y) - m(x) > -\epsilon$ and we have the desired conclusion.

Theorem 3 generalises Theorem 1 since if M is a continuous major function, m a continuous minor function then we can take $U = \{M\}$, $L = \{m\}$. In general, of course, M and m in the above proof depend on ϵ and on β . Now if (7) is satisfied it is easily checked that we can take $U = \{M_{\delta}; M_{\delta} \text{ defined by (6)}\}$ $L = \{m_{\delta}; m_{\delta} \text{ defined by (6)}\}$ and so using Theorem 3 we have

168

(6)

THEOREM 4. If $f: [a, b] \to \mathbf{R}$ is measurable then $f \in P(a, b)$ iff for all $\epsilon > 0$ there is a $\delta = \delta(\epsilon, x) > 0$ such that if $x \in [c, d]$, and

$$[c, d] \subset]x - \frac{\delta(x)}{2}, x + \frac{\delta(x)}{2}[$$

then for all $\pi \in \Pi(\delta)$ we have that

$$\left| \left(c \sum_{\pi} d \right) f \right| < \epsilon.$$

This theorem is due to Schurle [14] who called the condition in Theorem 4 condition LSRS, for locally small Riemann sums. His proof is a longer and deeper; it can be regarded as a proof of the Marcinkiewicz theorem in the setting of the Kurzweil-Henstock theory. By analogy with the terminology of Schurle let us call the condition of Lemma 2 condition BRS, for bounded Riemann sums.

In the case of non-negative functions we have

THEOREM 5. If $f: [a, b] \rightarrow \mathbf{R}$ is measurable and non-negative then $f \in L(a, b)$ iff the condition BRS is satisfied.

PROOF. In this case we can take m = 0 and M given by (6). Obviously M is monotonic and so satisfies (2). The result then follows from Sarkhel's modification of Theorem 1 and the well known result that $f \ge 0$ and $f \in P(a, b)$ implies $f \in L(a, b)$, Saks [12. p. 203]. Alternatively, since M is monotonic $\underline{D}M$ is summable and the result follows from (1). Yet another proof can be obtained by considering Max (f, n), these functions have uniformly bounded integrals because of BRS. The summability of f follows now from the monotone convergence theorem.

It is known that if (b) is omitted in (3) we get what could be called δ -fine absolute partitions, $\pi \in |\Pi|(\delta; a, b)$ say, and that using these the Riemann theory defines the *L*-integral; McShane [10]. Replacing $\Pi(\delta)$ by $|\Pi|(\delta)$ we can define condition |BRS| and |LSRS|; also the obviously modified 5 (i) and (ii) are equal to |BRS|.

LEMMA 6. If f satisfies |BRS|, then so does |f|.

PROOF. We first prove |BRS| holds iff there exists $\delta : [a, b] \rightarrow]0, \infty[$ such that (5) holds for all $\pi_1, \pi_2 \in |\Pi|(\delta)$ having the same intervals. One way is trivial so let $\pi_1, \pi_2 \in |\Pi|(\delta)$ with $\pi_1 = (c_0, c_1, \ldots, c_m; u_1, u_2, \ldots, u_m), \pi_2 = (d_0, d_1, \ldots, d_n; v_1, v_2, \ldots, v_n)$ and let $\{a_0, \ldots, a_1, a \equiv a_0 < \cdots < a_P = b\}$ be the set of distinct elements of $\{c_0, c_1, \ldots, c_m, d_0, d_1, \ldots, d_n\}$. Now define $\pi_3, \pi_4 \in |\Pi|(\delta)$ as follows $\pi_3 = (a_0, \ldots, a_P; y_1, \ldots, y_P)$, $\pi_4 = (a_0, \ldots, a_P; z_1, \ldots, z_P)$ where if $[a_{i-1}, a_i] = [c_{j-1}, c_j] \cap [d_{k-1}, d_k]$, $y_i = u_j, z_i = v_k$. Since clearly $|\Sigma_{\pi_1} f - \Sigma_{\pi_2} f| = |\Sigma_{\pi_3} f - \Sigma_{\pi_4} f|$, we have (5) for $\pi_1 \in |\Pi|(\delta), \pi_2 \in |\Pi|(\delta)$ and consequently |BRS|.

Suppose now f satisfies |BRS| and $\pi_3, \pi_4 \in |\Pi|(\delta)$ and have the same intervals, then

$$\begin{aligned} \left| \sum_{\pi_3} |f| - \sum_{\pi_4} |f| \right| &\leq \sum_{i=1}^p \left| |f(y_i)| - |f(z_i)| \right| (a_i - a_{i-1}) \\ &\leq \sum_{i=1}^p |f(y_i) - f(z_i)| (a_i - a_{i-1}) \\ &= \sum_{\pi_3^1} f - \sum_{\pi_4^1} f < K, \end{aligned}$$

where $\pi_3^1, \pi_4^1 \in |\Pi|(\delta)$ are defined as $\pi_3^1 = (a_0, \ldots, a_p; y_1^1, \ldots, y_p^1), \pi_4^1 = (a_0, \ldots, a_p; z_1^1, \ldots, z_p^1)$ where $y_i^1 = y_i, z^1 = z_i$ if $f(y_i) - f(z_i) \ge 0$, and $y_i^1 = z_i, z_i^1 = y_i$ if $f(y_i) - f(z_i) < 0$. Hence, by the above result, |f| satisfies |BRS|.

THEOREM 7. If $f: [a, b] \rightarrow \mathbf{R}$ is measurable then $f \in L(a, b)$ iff |BRS| holds.

PROOF. If f satisfies |BRS| then by Lemma 5 the function |f| also satisfies |BRS| and so also then f^+ and f^- satisfy |BRS|, and in particular BRS. Hence f^+ and f^- are *L*-integrable by Theorem 4 and the theorem is proved.

The above result with |BRS| replaced by |LSRS| was proved by Schurle [15] in a completely different way.

3. The Marcinkiewicz Theorem and Some Convergence Theorems.

THEOREM 8. If (i) $f_n \in P(a, b)$, $F_n(x) = P \int_a^x f_n$, $a \le x \le b$, $n \in \mathbb{N}$; (ii) $\lim_{n\to\infty} f_n = f$ a.e.; (iii) $\lim_{n\to\infty} F_n = F$ uniformly; (iv) f_n satisfies condition BRS uniformly in $n, n \in \mathbb{N}$; then $f \in P(a, b)$ and $F(x) = P \int_a^x f$ for $a \le x \le b$.

PROOF. Since f_n , $n \in \mathbb{N}$, satisfies BRS uniformly in n, it follows that sup f_n and $\inf f_n$ both satisfy BRS and so by Lemma 2 sup f_n has a major function M, $\inf f_n$ has a minor function m. Clearly M is a major function of f_n , for all n, and m is a minor function of f_n , for all n. The result now follows from a convergence theorem of Lee [7, p. 20].

In fact Theorem 8 is equivalent to the theorem of Lee since obviously if $f_n, n \in \mathbb{N}$, have a common major and a common minor function, the argument of Lemma 2 shows that BRS holds for $f_n, n \in \mathbb{N}$, uniformly in n.

THEOREM 9. If (i) $f_n \in P(a, b)$ for all $n \in \mathbb{N}$; (ii) $\lim_{n\to\infty} f_n = f$ a.e.; (iii) LSRS condition holds for $f_n, n \in \mathbb{N}$, uniformly in n: then $f \in P(a, b)$ and $P \int_a^b f = \lim_{n\to\infty} P \int_a^b f_n$.

PROOF. As in the previous proof, it follows that $\sup f_n$ and $\inf f_n$ satisfy LSRS and so, by Theorem 3 are P-integrable. The result now follows from the dominated convergence theorem.

THEOREM 10. If (i) $f_n \in P(a, b)$ for every $n \in \mathbb{N}$; (ii) $\lim_{n\to\infty} f_n = f$ a.e.; (iii) for every $\epsilon > 0$ there exists $a\delta \colon [a, b] \to]0, \infty[$ such that for all $\pi \in \Pi(\delta)$ and for all $n \in \mathbb{N}$

(8)
$$\left|\sum_{\pi} f_n - P \int_a^b f_n\right| < \epsilon$$

then $f \in P(a, b)$ and

$$P\int_a^b f = \lim_{n\to\infty} P\int_a^b f_n.$$

PROOF. It is immediate that (8) implies 5(i) and so BRS for $f_n, n \in \mathbb{N}$, uniformly in n.

In addition (8) implies the same result for any interval [a, x], from which $F_n(x) = P \int_a^x f_n$ converges uniformly and so the theorem follows from Theorem 7.

This last theorem is due to Kurzweil [6, p. 41] who gives a different proof.

4. The Marcinkiewicz Theorem and Differential Equations. We first give a generalization of a classical result due to Caratheodory, see Coddington [3], for which we introduce the following notation.

If $x, y \in \mathbf{R}^n, x = (x_1, ..., x_n), y = (y_1, ..., y_n)$ then we write $x \leq y$ iff $x_i \leq y_i$ for i = 1, 2, ..., n. For $\xi \in \mathbf{R}^n, b \in \mathbf{R}^n$ let $[\xi - b, \xi + b]$ be the Cartesian product of the intervals $[\xi_i - b_i, \xi_i + b_i]$ for i = 1, 2, ..., n and for $g: [a, b] \to \mathbf{R}^n$ let $\overline{D}g(x) :$ $= [\overline{D}g_1(x), ..., \overline{D}g_n(x)]$; similarly $\underline{D}g(x) := [\underline{D}g_1(x), ..., \underline{D}g_n(x)]$. Further let $I = [\tau - a, \tau + a] \subset \mathbf{R}$, and $J =]\xi - b, \xi + b[\subset \mathbf{R}^n$.

Given $f: I \times J \to \mathbf{R}$, K a compact interval, $K \subset I$ and $g: K \to J$ we define f_g by $f_g(t) = f(t, g(t)), t \in K$. Finally, we shall say that $g: K \to \mathbf{R}^n$ in ACG_{*} (on K) if each component of g is ACG_{*} (on K).

THEOREM 11. If $f: I \times J \to \mathbf{R}$ is such that (i) f(t, .) is continuous on J for almost all $t \in J$; (ii) there exists $\beta > 0$ and two continuous functions $m, M: [\tau - \beta, \tau + \beta] \to J$ with $m(\tau) = M(\tau) = 0$ such that if g is a continuous ACG_{*} function, g: $[\tau - \beta, \tau + \beta] \to J$, with $g(\tau) = \xi$ then f_g is measurable and $\overline{D}m \leq f_g \leq \underline{D}M$; then there is a continuous ACG_{*} function ϕ satisfying $\phi(t) = \xi + \int_{\tau}^{t} f(s, \phi(s)) ds$ on $[\tau - \beta, \tau + \beta]$.

REMARK. ϕ obviously satisfies

$$(9) y' = f(x, y)$$

almost everywhere on $[\tau - \beta, \tau + \beta]$ and $\phi(\tau) = \xi$.

PROOF. As usual we assume $t \ge \tau$, as the case $t \le \tau$ can be treated in a similar manner. On the interval $[\tau, \tau + \beta]$ we defined the approximations $\phi_j (j = 1, 2, ...)$ as follows:

(10)

$$\phi_{j}(t) = \xi \text{ if } \tau \leq t \leq \tau + \frac{\beta}{j}$$

$$\phi_{j}(t) = \xi + \int_{\tau}^{t-\beta/j} f_{j}, \text{ if } \tau + \frac{\beta}{j} < t \leq \tau + \beta,$$

where we write f_j for f_{ϕ_j} . The integral in (10) is a Perron integral whose existence follows from Hypothesis (ii) and Theorem 1. We prove this. First we define ϕ_j^1 by $\phi_j^1(t) = \xi$ on $[\tau, \tau + \beta]$. Then ϕ_j^1 is continuous ACG_{*} and it follows from hypothesis (ii) that

$$P\int_{\tau}^{t-\beta/j}f_{\phi_j}$$

exists. Now we define ϕ_j^2 by $\phi_j^2(t) = \phi_j^1(t)$ on $[\tau, \tau + \beta/j]$,

$$\phi_j^2(t) = \xi + \int_{\tau}^{t-\beta/j} f_{\phi_j^1} \text{ for } t \in \left] \tau + \frac{\beta}{j}, \ \tau + \frac{2\beta}{j} \right] \text{ and}$$
$$\phi_j^2(t) = \phi_j^2 \left(\tau + \frac{2\beta}{j} \right) \text{ for } t \in \left] \tau + \frac{2\beta}{j}, \ \tau + \beta \right].$$

Continuing this process finally gives ϕ_j^j : $[\tau, \tau + \beta] \to J$ and $\phi_j = \phi_j^j$ satisfies (10). It follows that ϕ_j is a continuous ACG_{*} function on $[\tau, \tau + \beta]$.

Since *M* is a major function of f_j on $[\tau, \tau + \beta]$ and *m* a minor function we have for all $u, v, \tau \leq u \leq v \leq \tau + \beta$

(11)
$$m(v) - m(u) \leq \phi_j(v) - \phi_j(u) \leq M(v) - M(u)$$

In particular, taking $u = \tau$, we see from that $(\phi_j : j = 1, 2, ...)$ is uniformly bounded and equicontinuous. It follows from Ascoli's theorem that we can assume $\lim_{j\to\infty} \phi_j = \phi$, uniformly on $[\tau, \tau + \beta]$: and ϕ is continuous.

Further, by hypothesis (i), $\lim_{j\to\infty} f_j = f_{\phi}$ a.e. Clearly from this, and (ii), $(f_j, j = 1, 2, ...)$ satisfies the conditions of the convergence theorem of Lee ([7] p. 20) quoted in the proof of Theorem 8. Hence

$$\lim_{j \to \infty} \int_{\tau}^{t} f_j = \int_{\tau}^{t} f_{\phi}$$

from which the result is immediate.

It has been shown, Vyborny [17], that this method of Tonelli can be modified to obtain the maximum solution of (9) in case n = 1. We now state and prove a generalization of that result. A function ϕ is said to be a maximum solution of equation (9) on $[\tau - \beta, \tau + \beta]$ satisfying $\phi(\tau) = \xi$ if (i) ϕ is a solution of equation (9) on $[\tau - \beta, \tau - \beta]$, (ii) $\phi(\tau) = \xi$, (iii) any solution ψ of (9) defined on some interval $[\tau - \gamma, \tau + \gamma]$ and satisfying $\psi(\tau) = \xi$ has the property that $\psi(t) \leq \phi(t)$ for all t with $|t - \tau| < Min(\beta, \gamma)$.

THEOREM 12. If $f: I \times J \to \mathbf{R}$ is such that (i) $\{f(t, .); t \in I\}$ is equicontinuous; (ii) for all continuous $ACG_*g: I \to \mathbf{R}$ the function f_g is a derivative; (iii) as (ii) in Theorem 11; Then there is a maximum solution ψ of (9) on $[\tau - \beta, \tau + \beta]$ satisfying $\phi(\tau) = \xi$.

PROOF. As in the proof of Theorem 11 we restrict our discussion to $[\tau, \tau + \beta]$. Following the idea of [17] we define approximations as follows:

$$\phi_n(t) = \xi, \ t \le \tau$$

$$\phi_n(t) = \xi + \int_{\tau}^{t} f(t, \ \phi_n(t - h_n))dt + (2/4^n)(t - \tau)$$

where we choose h_n later, but in any case $h_n > 0$, and the above definition easily is seen to define ϕ_n on $[\tau, \tau + \beta]$. As in Theorem 11, the integrals are Perron integrals and ϕ_j is continuous and ACG_{*}. Also we have, with the notation of (11)

$$m(v) - m(u) + (2/4^{n}(v-u) \le \phi_{n}(v) - \phi_{n}(u) \le M(v) - M(u) + (2/4^{n})(v-u)$$

Hence

(12)
$$|\phi_n(v) - \phi_n(u)| \le (2/4^n)|v - u| + \max\{|M(v) - M(u)|, |m(v) - m(u)|\}$$

Now given $\epsilon > 0$ there is a $\delta(\epsilon) > 0$ such that for all $t \in I |f(t,x) - f(t,x')| < \epsilon$ if $|x - x'| < \delta(\epsilon)$. Using (12) choose h_n so that

$$\left|\phi_n(t-h_n)-\phi_n(t)\right|<\delta\left(1/4^n\right)$$

for then

$$|f(t, \phi_n(t-h_n)) - f(t, \phi_n(t))| < (1/4^n).$$

Hence we easily see that

$$\phi_n'(t) > f(t, \phi_n(t)) + (1/4^n),$$

$$\phi_{n+1}'(t) < f(t, \phi_{n+1}(t)) + (1/4^n),$$

The derivatives existing everywhere by Hypothesis (ii). Hence by a well-known lemma, Vyborny [17], $\phi_n > \phi_{n+1}$. Since $\{\phi_n, n = 1, 2, ...\}$ is, as in Theorem 11, uniformly bounded, and so in particular bounded below, $\lim_{n\to\infty} \phi_n = \phi$, uniformly. The proof that ϕ satisfies (9) now proceeds as in Theorem 11. If ψ is another solution of (9) then by the just quoted lemma $\phi_n \ge \psi$ and consequently $\phi \ge \psi \cdot \phi$ is the maximum solution.

One can of course define a minimum solution and prove and analogue of Theorem 12.

REFERENCES

- 1. Bullen, P. S. Non-absolute integrals: a survey, Real Analysis Exchange, 5 (1980), 195–259.
- 2. Burkill, J. C. The Cesaro-Perron integral, Proc. London Math Soc. (2) 34 (1932), 314-322.
- 3. Coddington, E. A., Levinson, N. *Theory of Ordinary Differential Equations*. McGraw-Hill, New York. Toronto, London 1955.
- 4. Denjoy, A. Leçons sur le Calcul de Coefficients d'une Serie Trigonometrique, Vol. IV, Paris, 1949.
- 5. Henstock, R. Theory of Integration, London, 1963.
- 6. Kurzweil, J. Nichtabsolut konvergente Integrale, Leipzig, 1980.
- 7. Lee, P. Y. and Chew, T. S. On convergence theorems for non-absolute integrals, Bull. Austral. Math. Soc., 34 (1986), 133–140.
- 8. Lee, P. Y. and Lu, S. Notes on Classical Integration Theory (viii), Res. Rep. No 327, Dept. Math. Univ. Singapore 1988.
- 9. Mawhin, J. Introduction a l'analyse, Louvain in-la-Neuve, Cobay, 1984.
- 10. McShane, E. J. Unified Integration, New York, 1983.
- 11. Pfeffer, W. F. *The Riemann-Stieltjes approach to integration*, Tech. Rep. Nat. Res. Inst. Math. Sci., Pretoria, 1980.
- 12. Saks, S. The Theory of the Integral, 2nd Ed. revised, New York, 1937.
- 13. Sarkhel, D. N. A criterion for Perron integrability, Proc. Amer. Math. Soc., 70 (1978), 109-112.

P. S. BULLEN AND R. VYBORNY

- 14. Schurle, A. W. A function is Perron integrable if it has locally small Riemann sums, J. Austral. Math. Soc. (Ser. A), 41 (1986), 224–232.
- **15.** Schurle, A. W. A new property equivalent to Lebesgue integrability, Proc. Amer. Math. Soc., **96** (1986), 103–106.
- 16. Tolstov, G. P. Sur l'intégrale de Perron, Mat. Sb., 5 (1939) 647–649.
- 17. Vyborny, R. A remark on Perron's method in the proof of the Peano's Theorem. Acta. Math. Sci. 5 (1985), 349–352.

Department of Mathematics University of British Columbia Vancouver Canada

Department of Mathematics University of Queensland St. Lucia, Queensland Australia

174