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A GENERAL INTEGRAL INEQUALITY FOR THE 
DERIVATIVE OF AN EQUIMEASURABLE 

REARRANGEMENT 

G. F. D. DUFF 

1. I n t r o d u c t i o n . The theory of non-increasing (decreasing) equimeasurable 
rearrangements of functions was introduced by Hardy and Littlewood [6] in 
connection with their studies of fractional integrals and integral operators. 
Elementary properties of equimeasurable decreasing rearrangements are given 
in the monograph [7] of Hardy , Littlewood, and Polya on inequalities, while 
a more recent t rea tment is Okikiolu [9, § 5.4]. 

The rearrangement operation has the proper ty of being variation-reducing. 
A s tudy of this property for infinite sequences and functions defined on infinite 
domains was made in [3], a typical result being the reduction by rearrangement 
of the pth power in t eg ra l / \f (x)\pdx. Strengthened versions of these inequalities 
were also derived in [4] using the index or multiplicity functions n{x) in one 
dimension and S(f) in several dimensions. The results for several variables 
are related to symmetrization and the minima of Dirichlet integrals as studied 
by Polya and Szegô [12]. 

The pr imary object of this paper is to extend such rearrangement inequali­
ties to integrals containing an arbi t rary function of the rearrangement , the 
function being restricted only by a convexity condition. The method is based 
on tha t of [4] in both the single and multiple variable cases. Examples and an 
application to the calculation of extreme cases of Sobolev embeddings are 
given. 

2. One d i m e n s i o n a l r e a r r a n g e m e n t s . For a real valued measurable 
function / on the domain [0, b] the equimeasurable decreasing rearrangement 
/ * of / is defined as a function yrl inverse to /x, where n(y) is the measure of 
the set \x\f(x) > y). Since / * is monotonie / * ' is defined almost everywhere 
on [0, b]. T h e multiplicity n(y) of / a t the level y is the number of roots xk = 
%k(y), k = 1, . . . , n(y) of the equation y = f(x), in [0, b]. If this number of 
roots is infinite, we set n(y) = oo. 

The basic relation connecting the derivatives of / £ C[0 , b] can now be 
derived [4] and a derivation using differentials will be sketched here. If y 
varies by dy, then xk and x* will vary by amounts dxk, dx* respectively. From 
the equimeasurable property it follows tha t 

n 

\dx*\ = X) \dxjc\ 
J c = l 
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794 G. F. D. DUFF 

Divide this relation by dy, and let dy —> 0. By the definition of der ivat ive we 
obtain in the limit the basic relation 

1__ ^ 1 

i/*7(*)i h i/'(**) r 
For interpretat ion of the cases where n is infinite or one or more zero values 
appears , reference is made to [4, p. 410]. 

T h e basic relation is local, in the sense t ha t values in the neighbourhood of 
one range point only are involved. Moreover the inequalities of [4] of the type 

jx(r(x))\r(X)\"dx ûfxii) 

where x(f) is a n a rb i t ra ry positive function, show t h a t such inequalities can be 
taken over an arb i t rary subset of the range, with a rb i t ra ry weighting. 

Focussing a t tent ion therefore on the values of the terms in the basic relation 
a t one independent range point, one is led to enquire whether inequalities 
involving functions of these values, subject to some convexity condition, can 
be established. 

3. T h e genera l i n e q u a l i t y . The integrals to be considered have the form 

J G(\f'(x)\)dx 

where the domain D is, in the one-dimensional case, an interval [0, / ;] . I t will 
appear t ha t the natura l condition on G is the convexity of G(x), as will be 
shown in the following lemma and theorem. 

L E M M A 1. If G(x) is convex for x > 0, then H(x) = xG(l/x) is also convex 
for x > 0. 

Proof. Let 0 ^ X ^ 1 and for given positive x, y define 

h _ X;y  
V (1 - \)x + \y 

Evident ly 0 ^ p S 1 with p = 0 when X = 0 and p = 1 when X = 1. Since 

(1 - p)y + px 

it follows t ha t X can be specified for a given value of p. 

/'(*) 
n(f(x)) 

dx, 
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Given p, where 0 ^ p ̂  1, we have 

1 1 - X X 
(1 - X)x + Xy (1 - X)x + Xy ' (1 - X)x + Xy 

= (1 ~ X)* , X3L 
x{ (1 - \)x + Xy} "*" y{ (1 - X)x + Xy} 

+ *L . = l ( l ^ ) 
x V (1 - X)x + Xy/ (1 - X)x + Xy/ ' y{ (1 - X)x + Xy} 

= 1 - f t + t . 
x y ' 

Therefore by the convexity of G(x) we find 

\ (1 — X)x + Xy/ \ x y/ 

g ( l - £ ) G ( l / x ) + £ G ( l / y ) 

= (1 ~ X)xG(l/x) + XyG(l/y) 
(1 - X)x + Xy 

Multiplying by the form (1 — X)x + Xy, we obtain 

{(1 - \)x + \y] G[-{ï _ x | x + x - ) £ (1 - X)xG(l/x) + \yG(l/y) 

and this shows directly that xG(l/x) is convex. 

A result of this type is stated for twice differentiable positive convex func­
tions in [9, p. 97, Theorem 120]. The transformation or functional operation 
H(x) = xG{\/x) is involutory, since G(x) = xH(l/x). 

THEOREM 1. Let f be differentiable almost everywhere in [0, 6] and let G(y) be 
a function convex for y ^ 0. Then 

(crwi^./'cfg^ 
o ^o \n(f(x))/ 

Proof. Using x* as independent variable for the rearranged function /*, 
we have 

|/*'(**) | = \dy/dx*\, 

hence from the basic relation 

dx* _ ày _ A _dy_ _ A 

Therefore 

G(\n)dx* = G((J: d/'cx,)!)-1)l) t, (i/'(**)i)_1dy 
\ \ *=1 ' / /c=l 
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By Lemma 1, H{x) = xG(l/x) is convex. We now introduce n equal 'proba­
bilities' pk =•- l/n in the convexity condition H(J^pkSk) S J^Pk.H(Sk)j where 
n = n(f(x)). Thus we obtain 

G(\f*'(x*)\)dx* =H(J: (l/»)(»/|/'(**)|)W 

^ Ê (l/n)H(n/\f(xk)\)dy 

= Ê (l/«)(»/!/'(**)I)G(I/'(**)|/»)^ 

using in the last step the relation dy = \f'(xk)\ dxk. Integration over the do­
main [0, b] now yields the stated result, as the integral elements based on the 
dxk exactly cover the interval [0, b] once when the summation over all integral 
elements based on dx* is performed. This completes the proof of Theorem 1. 

Example 1. Choose G(x) = p(p — 1) xl~v, where p Ç R. The convexity of 
xG(l/x) can be directly verified, and this choice yields the three primary 
inequalities stated separately in Theorem 1 of [4] for the ranges p > 1, 
0 < p < 1 and p < 0. In the case p = 1 equality holds. 

Example 2. Choose G(x) = \/T~+~x^. Convexity of xG(l/x) = \ / l + x2 

can be verified straightforwardly and leads to inequalities for integrals of arc 
length of the graphs of /* and//w. As n is discontinuous, one may construct a 
continuous function 

n(f(s)) 

for which the graph consists of segments with n constant and which are con­
gruent to portions of the graph of/, but vertically reduced in the proportion of 
1 to n. The theorem then states that the arc length of /* is less than that of -Ĵ ~. 

COROLLARY 1.1. Let x(f) and a(f) be arbitrary positive junctions on the range 
of f. Then, assuming the indicated expressions are defined and that G(x) is con­
vex, we have 

jx(f*)G(a(f*)\r\)dx ^ jx(f)G[a(f) | ^ | ) < & 

Proof. The positive function x( / ) c a n be inserted in the proof of the theorem 
simply on multiplication by x( / ) = x(/*) before the final integration. That 
the factor a(f) can also be inserted as indicated can be verified by repeating 
the main calculation. However for positive a(f) the same result can be achieved 
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if the theorem is applied to the function 

Hf)= j a(f)df 

and its rearrangement F(f*) which involves the same rearrangement of points 
of the x axis. Indeed F(f*) = F* for positive a(f). From these observations 
Corollary 1.1 follows easily. 

Remarks. Since the multiplicity function n is defined on the range, either 
x(f) or a(f) can be functions of n as well as of/. For example, n itself is a 
function of / . As this case has independent interest we state it as a separate 
Corollary when a(f) = n and x(f) is taken to be unity. 

COROLLARY 1.2. If G(x) is convex, then 

f G(n(n\f'\)dx ti f G(\f\)dx 

Note that the function F(f) in this instance satisfies dF = ndf* = —n\df\ 
and thus F is essentially the equivariational transform of [4, Section 7]. The 
particular choice G(x) = \/\ + x2 then yields Theorem 4 of that section. The 
present proof is direct and avoids the need of vector constructions for this 
result on arc length. 

4. The m-dimensional case. Recall from [4, p. 417] that a function/(x) = 
f(xi, . . . , xm) has a spherically symmetric equimeasurable decreasing rear­
rangement which is essentially a function f*(x) of volume or of radial distance 
only. Let 

n(z) = meas. {(xu . . . , xn)\f(xlf . . . , xn) > z}, 

and let 

/*(*) = ^(x) 

The basic relation for/ G PC1 is derived by integration over the level sur­
face / = /* in the domain D involved. If dn denotes the inward normal 
differential, and V / the gradient, then \Vf\dn = df. Since 

/ dv= I fi(z) = | dV = f dndS 

we find 

dfx = X) J dndS = X) J T^TfdS 

The summation runs over all components of the level surface/ = /*. However, 

,, _ _ _£/!_ 
M \f*'\x)\ 
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798 G. F. D. DUFF 

while \df\ = \df*\. Comparing, we obtain the ra-dimensional basic relation in 
the form [4, p. 418] 

dS 
!/*'(*) i ^ J,.,*iv/r 

The ra-dimensional analogue of the multiplicity function is now the level sur­
face area 

5 = 2J I dS 

THEOREM 2. Le/ G(x) &e convex for x > 0. 77zew 

JG(|/*'(*)|)<*V£ J c ( ^ ) d 7 . 

Proof. The integral on the left has the differential 

G(|/*'(X)|)JF = G ( ( E / (IV/ir1^) ') E fdSdn 

= #(E Jiv/r1^/ 

= ff((l/S) E / (S/|V/|)ds)# 

For use in the convexity relation hÇ%2px) ̂  ^2pH(x) we take the "probability 
differential" dp = dS/S. Hence 

G{\f*'{x)\)dV ^ (1/5) E f ff(5/|V/|)dSf/ 

= (1/5) E f ( 5 / | V / | ) G ( | V / | / 5 ) d 5 i / 

= Z I G(|V/|/S)dSd» 

= Z [ G(\Vf\/S)dV 

The result now follows, as in the one dimensional case, by integration over 
the domain D. 

Again it is possible to include a positive weight function x(f) = x(/*) ° n 

the range in the integration, and an arbitrary positive function a(f) in the 
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argument of G. The corollary thus has the form 

COROLLARY 2.1. Let G(x) be convex, and let x(/)> a(f) be arbitrary positive 
functions on the range of f. Then 

fx(nG(a(f*)\f*'(x)\)dV g f x(f)G^£ti!M)dV. 

The functions %(/) and a(f) may again be functions of 5 since S = S(f). 
In contrast to the one-dimensional case, 5 will generally be a continuous 
function of/. We note in particular the choice x( / ) = 1 a n d a(f) = S which 
yields 

f G(S\f*'(x)\)dV£ f G(\Vj\)dV. 
u D* d D 

With the choice G{x) = y l + x2 this gives a surface area inequality that 
could be used to motivate the definition of a higher dimensional equivaria-
tional transform. However we do not pursue any details here. 

The choice for s(x) of the power function p(p — l)x1-?7 leads to inequalities 
derived in Theorem 2 of [4]. These in the quadratic case are Dirichlet integrals 
and the inequality leads to another proof of the decrease of capacity of a 
domain D under Steiner or Schwarz symmetrization (or their analogues in 
higher dimension) as described in [12, p. 157]. 

The rearrangement function /* (x) used in the foregoing has domain 0 ^ x ^ 
meas (D) and thus x represents an m-dimensional volume. In preparation for 
the following section we introduce the "radial" rearrangement fm*(r) = /*(x), 
where 

m 
m i 2 \ ~^ 2 

x = IJL = œmr /m, r = 2^ %t 

and o?m is the surface area of the unit sphere in Rm. We see that 
J { } dx œmrm ldr S*(r) 

where primes as usual denote derivatives with respect to the argument indi­
cated, and S*(r) is the area of the sphere of radius r in Rm. With this notation 
Theorem 2 takes the form 

f G{\fm*'(r)\/S*(r))dV£ f G(\Vf\/S)dV, 

where dV = um rm~l dr dti and 0 ^ r ^ r*, where r* is the radius of a sphere 
D* having volume equal to the measure of D. 

In the foregoing form of the inequality the comparison of the given surface 
z = f(x\, . . . , xm) and its symmetrized counterpart z = fm(r) is made in the 
most direct and comparable way, the two surfaces entering in the same form 
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and on separate sides of the inequality. For a general choice of the arbitrary 
functions x( / ) and a(f) this symmetry of comparison may be lost. For example 
the choice x( / ) = 1, a(f) = S(r) mentioned above now leads to the form 

SA S{r) 
S*(r) I/»*'(01 )dv*L G(\Vf\)dV 

in which the left side contains the term S(r) referring to the given surface and 
not the symmetrized surface. In the concluding section which follows, still 
another variant of this type will be employed. 

For functions G(x) which are increasing as well as convex, we may derive a 
simpler inequality from which the surface area factors have been removed. 
Since 5* ^ S by the "isoperimetric" inequality for surfaces enclosing the 
same volume, we deduce 

/ G(\fm*'(r)\)dV 
J £)* \ 

S(r) 

< 

S*(r) 

f G(\Vf\)dV 

\fm*'(r)\)dv 

This inequality was established in a different way by Polya and Szegô [12, 
p. 154] also for convex increasing functions G. 

5. Calculation of embedding constants. The inequality of the preceding 
section will now be used in a particular case to calculate the least value of the 
constant C such that the inequality 

{Ij^vY^iIj^dvT 
holds for functions u £ Cl which vanish on the boundary of the domain D. 

We begin by constructing the inequality of Corollary 2.1 for G(x) = xp
} 

p > 1 and with the radial rearrangement function fm*(r), 

L x(f) fJ'ir) 
S*(r) 

dV < 
/ . x(/) W 

5 
dV. 

We then take x(/*) = S*{r)v and use the isoperimetric property S* ^ S, where 
5 is the surface area at level/ enclosing the equal volume /x. Thus 

/ \fn*'(r)\'dV è f Ç\vj\pdv^ f \vmv. 
Setting 

= {jmv)l,\ 
we observe that fm*\\q = WJWQ^Y the definition of equimeasurable rearrange-
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ment. Hence 

nvrii, < nv/ii, 
urn. = II/II. ' 

so that if/ is any function of class PC1 on a domain of ra-dimensional measure 
equal to that of D, the variational quotient above has value at least equal to 
the rearranged quotient on the left. Denoting the minimum of this quotient 
by C~1

1 we observe that 

ll/ll.^c||v/iu 

so that C is a Sobolev embedding constant [13]. 
To determine C we shall consider the following alternative formulation: for 

all functions /* with \\f*\\g = 1, find the minimum of | |V/*| |P = | | /* '(r) | |P . 
That is, we seek the free minimum of 

1= l | V / | | / - X | | / | | / = f [\df/dr\> - \\f\<\dV, 

where/ = f*(r) is a function of r only. 
Variation of / produces the expression 

81 = J {p(df/dr)p-lb (df/dr) - Xqf^oftr^drdti 

= - J {pd/dr ((df/drY^r™-1) + Xg/^V771-1} dfdrdQ. 

The vanishing of the first variation 81 at the extremal leads to the ordinary 
nonlinear differential equation for / : 

p d/dr (r™-1 (df/dr)*-1) + Xqr^f1 = 0. 

The solutions are functions of r on the interval 0 ^ r ^ r* where œm r*m/m = 
meas (D). 

For smooth functions / the quotient vanishes at a maximum, and cor­
respondingly the derivative dfm*(r)/dr will vanish at the origin. Hence the 
boundary conditions are the corresponding variational free boundary condi­
tion 

lim rm-x (df/drf-1 = 0 at r = 0, 
r->0 

and 

/ = 0 at r = r*. 

If meas (D) is infinite a condition / —•> 0 as r —> oo applies. 
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If m = 3 and p = 2 the differential equation becomes the Lane-Emden 
equation of astrophysics [2, Ch. 4] which describes the embedding or equilib­
rium in space of a mass of gas subject to the polytropic equation of state. For 
1 < q < 6 the Lane-Emden equation has a solution with derivative f'(r) = 0 
at r = 0, and vanishing at a finite value for r. For q = 6, however, the zero of 
this solution reaches infinity and for q > 6 there is no such solution. An explicit 
solution f(r) = (1 + \r2)~112 is known when q = 6 and this expression ap­
proaches zero as r approaches infinity. For further information in this particu­
lar case, we refer to [2] and [5]. 

The explicit solution can also be constructed in the general critical case 

l/p = 1/q + 1/m, p > 1, 

of the embedding inequalities. Indeed, this solution is 

fe(r) = (e + r^-v)-*'"-» 

where e is an arbitrary constant giving rise to a homology family of solutions. 
Thus 

\\fe(r)\W = f r l/.OOIV^dnffi = com P V ^ e + r»l(v-l)Tmdr, 
J U o U o 

where use has been made of the relation pq/' {q — p) = m, and 

ww = 27rm / 2 /r(w/2). 

Setting x = rvl{-v~l\ dx = (p/(p - l))rU{p-l)dr we find, using [10, p. 285, 
Formula 3] that 

i = ll/.ll/ = «MP - i)/P) P V - i - 1 ^ - ^ - » / ^ + x)-»dx 
J 0 

r 
J o 

= «„((/> - \)/p)e-mlv{Y(m - (m/p))T(m/p)/T(m)) 

Similarly, we find 

nv/e|i/= fVuw^-^ 
J o 

= "JP2/«Q -P)(P- 1))]" f ° rm+1/(p-1,(e + r " ^ " ) " " ^ 

where use is made of the formula 
dfe _ -p2 ~li(*-l) 

= um((p - l)/p) I s^ - " - - " "^ ! + zy
mdz • e~m/p 

0 

fe(r) "" 
dr (q-p)(p-l) (e + r P/(P—D\ Q/(Q-P) 
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Again sett ing x = rp,^v~l) we find 

nv7f M v _ r p2 t f™xm(p-i)hdx-(p-i)/p 
IIV/.II, -<*mlfi_p)(p_1)_\ JQ (* + *)" 

j> - 1 f ft2 > f" (x/e)m ( ?~1 ) / prf(x/e)e
1-m / ' ' 

"m £ L(g->)(*>-1)J Jo (1 + x/c)" 
* - i f P2 > r»2

m(p-i)/^2-e
l-m/p r PI T ( 

L(q-p)(p-l)S Jo 
P L(q-P)(p-I)l Jo (1+2)" 

£ - 1 — T 
- D J 

P r ( m - m/ft + l)r(fw//> - l^1-"17" 
m P L ( f f - / > ) ( p - 1 ) J T(m) 

I t follows t ha t 

r - Mk _ i / g - i / P ^ - l V / g ~ 1 / ? (g-p)(p-l) 

v (T(™- m/p)T(m/p)\1/Q (v(m - m/p + l)T(m/p - l ) \ ~ 1 / p 

x \ r(m) / \ r(m) / 
_ r P - ITijn - m/p + l)Y{m/p - l ) ] ~ 1 / m 

" LWm £ r(m) J 
A \m(p - 1)/ p2 

-IJP^J](P~I)/P ,(,-i)/,i r r w IIM 

Ww \ p J q mlT(m - m/p + l)Y(m/p - 1 ) J 
For example if m = 3, p = 2 and q = 6 then C = 22/33-1/27r~2/3 = 0.427 . . . 

This spherically symmetric form of the inequality is equivalent under a change 
of variable to an inequality studied by Hardy and Littlewood [7], and Bliss [1]. 
From the viewpoint of the calculus of variat ions this problem is irregular with 
infinite domain and singular values of the factor rm~1. By a special proof, Bliss 
showred tha t the particular solution here denoted by fe(r) a t ta ins a global mini­
mum. I t follows tha t C is the best possible constant in theSobolev inequality. 

A detailed s tudy of the best constant has also been made recently by 
Talent i [14], who describes connections of the formula with geometric measure 
theory. E. Rodemich wrote a manuscript on this in 1966. 

T h e formulas of this and the preceding section permit one other extension 
of the "best cons tan t" in Sobolev's inequality. We have 

11/11, = 11/11» ^ C\\Vf*\\, £ C\\S*/S V / | | „ ^ C e s s max ( 5 * / 5 ) | | V / | | „ 

and for certain configurations the factor S*/S may be shown to have essential 

maximum less than unity. 

Example 1. Let / be smooth in Rn with support in the spherical annulus 
r\ ^ r ^ Yi = afi, where a > 1, and l e t / be non-negative with maximum taken 
on a surface encircling the inner sphere of radius r\. Then every intermediate 
value of / is taken on a surface twice encircling the inner sphere, so t ha t 
S ^ 2œnr1

n~1. If max 5* is given by unR
n~l, where V = n~1œn(r2

n — rin) = 
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rr1unrl
n{an - 1) = rrlunR

n, then 

ess max S*/S S ~ ^ i = f ( W 1 = * ( « " - l ) 0 " " * 
zavi 

For a sufficiently close to 1, this expression is itself less than unity. 

Example 2. L e t / be smooth in Rn with compact support of the form /(p) , 
where/(p) is monotonie and 

p2 = X Cfctfjfc2, Cjt > 0 

Then 5*/5 is a constant less than unity being the ratio of surface areas of an 
ellipsoid and a sphere having equal volume. 

These examples can be combined for a function with support in an ellipsiodal 
annulus. The product of two geometric factors of the above types will appear. 

The author wishes to thank the National Research Council of Canada for 
support under Grant A 3004, and the Science Research Council of the U.K. 
for support in the summer of 1975. Thanks are also due the referee who made 
valuable comments. 
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