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Abstract

Simple chemical reactions can be described by the Michaelis-Menten response curve relat-
ing the velocity V of the reaction and the concentration [5] of the substrate S. To handle
more complicated reactions without introducing general polynomial response curves, the
rate constants can be considered to be scale dependent. This leads to a new response curve
with characteristic sigmoidal shape. But not all sigmoidal curves can be accurately fit with
three parameters. In order to get an accurate fit, the lower part of the / shaped curve
cannot be too shallow and the upper part can't be too steep. This paper determines an exact
mathematical expression for the steepness and shallowness allowed.

1. Introduction

The simple chemical reaction

£ + S = f = ± C—^— E + P (1)

can be described by the Michaelis-Menten equation

y _ MnaxL-j] ,j.

where [S] is the concentration of the substrate 5 and V = | ^ is the reaction velocity
[6]. The response curve (2) has the characteristic concave form of Figure 1.

It is known that the Michaelis-Menten equation (2) and its fractal version (6) de-
scribed in the next section are both parameter identifiable in the sense that perfect
data for which there is a good fit to one of the curves uniquely determines the param-
eters. However it turns out that not any sigmoidal shaped curve can be fit by a fractal
Michaelis-Menten curve. The steepness and shallowness of both the upper and lower
parts of the curve determine whether or not this can be done.
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[S]

FIGURE 1.

This paper does not deal with the parameter estimation problem which simply
determines the best parameter fit to any sigmoidal curve regardless of how good it is.

To introduce the methods of this paper the Michaelis-Menten equation (2) will be
considered. Suppose that the two data points ([5]1( Vi) and ([S]2, V2) are given.

Thus
Vmax[5],

V,=

Solving each equation for

v> =

[5],

Now solving for KM we find that

we obtain

— Mnax
V2(KM + [5]2)

[Sh

KM =

provided that the denominator is not zero, that is,

V2/[S]2. (3)

Since Vi/[S]\ and V2/[S]2 are the slopes of the lines from the origin to the data
points, it is clear from the graph of (2) that (3) holds (Figure 2).

It has thus been shown that the two points on the concave curve (2) determine the
two parameters uniquely. This is the best that can be accomplished. Clearly, three
or more data points on (2) provide an overdetermined system and in general no exact
solution will exist.

To be a little more specific, for future reference, the condition (3) should be replaced
by

Vi V2

[5], [5]2
(4)
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to take into account the shape of the curve (2). In other words, given two points
([S]i, VI) and ([S]2, V2) satisfying (4), there are two numbers Vmax and KM uniquely
determined such that the curve (2) passes through the two given points. The analogue
of condition (4) for the fractal Michaelis-Menten equation turns out to be significant
for the analysis of this equation.

2. The fractal Michaelis-Menten equation

The simple reaction scheme leading to the Michaelis-Menten equation may be an
oversimplification of the true chemical behavior. Taking into account intermediate
reactions leads to a more general response equation

V =

considered by Wong [7]. To avoid such use of numerous parameters with only a vague
and misleading chemical interpretation, Lopez-Quintela and Casado have introduced
a fractal approach [4]. The idea is to consider the constants kt in (2) as being scale
dependent,

k, = kf = Ai[S]l-D,

where D < 1 is the fractal dimension of the scaling variable [5]. Inserting this form
into (2) yields the new response curve,

V = CxtS]2 - D

(5)
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where V^x and K^[x are new constants. Clearly (5) is a more general response curve
than (2) and reduces to (2) if D = 1. In fact, as discussed in [4], one reason for using
(5) is to determine to what extent a chemical reaction is adequately described by a
Michaelis-Menten response curve.

It is not hard to show that the graph of (5) has the sigmoidal form (for 0 < D < 1)
(Figure 3) with a single inflection point.

[S]

FIGURE 3.

Note that the response curve (5) has three parameters, V^x, ATjjf and D as opposed
to the two parameters in the classical Michaelis-Menten equation. The purpose of this
paper is to discuss the data fitting problem for (5). It turns out that this three parameter
problem is much more complicated than the corresponding two parameter problem
for (2).

Before beginning this analysis, another three parameter chemical response curve
should be mentioned, namely the Hill equation

V = (6)

arising in cooperative chemical kinetics [6]. The parameter analysis problem for (6)
can be discussed in a similar way, although it is interesting that the final result is
different [3].

3. The parameter analysis

Since there are three parameters in (5), three data points are needed. Changing
notation for simplicity in the lengthy calculations to follow, suppose (*,, y,) satisfy

y, = Jff- (7)
for i = 1, 2, 3 where 1 < n < 2, 0 < Xi < x2 < x3 and 0 < yi < y2 < y3. The
following theorem will be established.
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THEOREM 1. Let

lnx3 lnjci
a= > 1.

In ;c3 — l

Then the equations obtained by putting (JC,-, y,) in (7) have a unique solution for M,

Qandnify* <yiyafX-

Later it will be shown that in the non-unique case there are either two solutions for
M, Q and n or no solutions.

The proof is long and computational. Each of the data equations is solved for n,

1 . ydQ + x,) .
n = - In — , r = l , 2 , 3 ,

In*, M

and, solving for In M,

lnM = , J = 2 , 3 .
ln^i — lnx,

Setting these two expressions for In M equal to each other and rearranging gives

+ Xi)[ln

= ln(<2

where

k\ = lnAri[lny2(lnjC3 — \nx{) — Iny3(ln*2 — lnxO — lnyi(lnx3 — lnjc2)].

Thus

where

k =
— lnjc2)

Thus

where k3 = In - ^
Finally
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and the original three equations (7) in M, Q and n have been reduced to a single
equation in Q.

Defining

f (Q) = yi(Q and h(Q) =

it follows that (8) has a solution whenever the curves / ( 0 and h(0 intersect. The
character of/ and h will now be investigated. It will first be shown that h(Q) is
monotone increasing and concave up. For simplicity consider

(Q+x2y
g(Q) = i - i

(Q + x2) + a(x3 -x2)

It is easily shown that

for Q + x\ > 0. Differentiating again, it turns out that

g"(Q) =

also showing that g, and hence h, is increasing and concave up, for Q + X\ > 0.
Several cases must now be considered. If y\ > -^ then lim^oo j^Q > 1, that is,

for sufficiently large Q, f (Q) > h(Q). The concavity of h then requires a unique
point Q of intersection for / and h as indicated in Figure 4.

FIGURE 4.

Next suppose that Vi = -£r. To proceed further, the asymptote as Q —> oo for the
curve / i ( 0 is needed. The equation of the asymptote is found by finding the Taylor
series expansion of

with R = Q + x3, as R ->• oo.
Ra-l
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Letz = l//?and

= [ - J , as z -> oo.

Then //(z) = [1 + (JC2 - x3)z]a satisfies #(0) = 1 and H'(0) = a(x2 - x3). Thus

H(z) = l+a(x2-x3)z + --- , a s z - ^ O ,

G(z) = ^ - = — + a f e - jc3)z
1"a + • • • , as z -* 0,

z" za

[R + (x2 - x3)]
a

RRa-l

—^— = Q + x3 + a(x2 -x3)-\ , as Q ->• oo,

and finally

and the first term on the right-hand side is the asymptote. The asymptote's Q intercept
is the point

Q = a{x3 -x2) -x3.

It will now be shown that a > i2^x which implies that a{x3 — x2) — x3 > —xy. This
is accomplished by examining the equation a = £i^£L which can be rewritten as

/ lnx3 — lnx \
= x3 - (x3 - xi).

\lnj3 — In*!/

Now consider the function

ct(x)

It turns out that ct(x\) = x\, a(x3) = x3, a'{x) > 0 and a"(x) < 0. This implies that
x2 < a(x2) for^i < x2 < x3 and thus

x2 <x3-
Mx3 -

which proves the assertion.
But a(x3 — x2) — x3 > —xx implies the following alignment between the graphs of

/ and h (Figure 5).
Thus the case yi = -^j means that the asymptote for h has the same slope as /

and lies strictly below / . Hence h and / have a unique point of intersection and the
theorem is proved.
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- X , a(x,-x2)-x3

FIGURE 5.

REMARK 1. Q must be positive to have a useful implementation in the fractal
Michaelis-Menton equation. From the above analysis Q > 0 exactly when h(0) >
/ (0), or for

(9)

But a = jn*Hn*i can be rewritten as

- (X3Y
Then (9) reduces to -^ > yt. Hence Q < 0 in the uniqueness region of Theorem 1

except on the boundary yi = -£r where Q = 0. By similar reasoning Q is always
positive under the hypothesis or Theorem 2.

THEOREM 2. Suppose yiy3 < y\. If, in addition,

(n —I/a (a-l)/a(a

(10)

there are two solutions for M, Q and n. If the inequality in (10) is reversed, there
are no solutions for M, Q and n, and if the inequality is replaced by an equality, then
there is exactly one solution.

To prove the theorem, again consider

(ID
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-x, a(x r x 2 ) -x 3

FIGURE 6.

in which case the asymptote for h has a larger slope than for / . To resolve this case
suppose that the graphs of/ and g have a point of tangency Q (Figure 6).

It is clear from the above diagram that there may be either two, one, or no solutions
in the case (11). A unique solution corresponds to a point of tangency and is the
dividing line between the other two possibilities.

Thus suppose that/(Q) = h(Q) and f'(Q) = h'(Q) for some point Q. Then

and

It follows that

Vi -x2y

y{

'(Q + x2) + a(x3 -x2)'

(Q + x,)

and finally

Expanding and solving for Q yields

(x2 - axi)x3 + (a- \)xxx2
Q =

To complete the analysis compute

+ (a — l)x3 — ax2

(X2-X1)(X3 ~Xj)

\ + (a - \)x3 - ax2

https://doi.org/10.1017/S0334270000011334 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011334


[10] A fractal Michaelis-Menten curve 419

Likewise

a(x3 - x2)(x2 - xi) (a-l)(x3-x2)(x3-x1)
and Q + xand Q + x3

X\ + (a - l)x3 -ax2 xx + (a - l)x3 - ax2

Thus at a point of tangency

y2
a aa 0c 2 -* i ) , ,

"TTTT TZ:~, zrw —x2),

which can be rewritten as

l/a(a-l)/a(C

a

It will now be shown that

> 1
a ( x 2 ( 3

so that the curve (12) for y2 — y2(x2) lies above the curve

It suffices to show that

Thus

! ( l n lnx) J > ( )J(lnjc3 lnx2) J > ( ;
lnjc3 — lnATi / \ l n x 2 —

or

\ / X3 — X2 \ / X2 — Xi \

/ \\nx3 —\nx2) \lnjc2 — Inxij—\nx2) \lnjc2 — Inxij

Inequality (13) is established in [5].
This establishes Theorem 2 and we see that the whole question of solving (7) for

M, Q and n can be summarized in the following diagram (Figure 7):
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(11)

(12)

two solutions

FIGURE 7.

where the curve (11) represents a unique solution.

REMARK 2. Recall from Remark 1 that Q > 0 above (12), Q = 0 on (12) and
Q < 0 below (12). To apply these results to the fractal Michaelis-Menten equation
it is necessary to have Q > 0 and so it is of interest to further analyze the curve (12)
which forms the boundary to this region.

THEOREM 3. The curve V2QC2) = y\lay{"~X)la is monotone increasing, is concave
up if a > ^ and is concave down if— < a .

r J xj JCI •> x , Xi

This theorem is proven by simple differentiation of

In*!— In J: I Imr-i— \n

'y

First write

= e

Thus

and

3"(x) = (
lny3 -

lnx3 —
- 1

Thus P"(x) > 0 if a > ^ and similarly for P"(x) < 0. This proves the theorem.
Since it is for y2 > P(x2) that positive M and Q can be found, the concavity of

P(x) determines the "size" of this region. A P(x) curve which is concave up provides
a larger positive region than the other way around.
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4. An example

421

Finally we use Theorems 1 and 2 to show that sigmoidal data can not always be
fit to a fractal Michaelis-Menten curve. We generate sigmoidal data by using the
sigmoidal function

which satisfies the conditions w(0) = 0 and
Figure 8.

w(x) = 4.99 as shown in

10

8

10 12 14

FIGURE 8.

Now adjust the function y = y\laU)yl~xlaU) s o that it passes through the points
(1, w(l)) and (12, u;(12)) to obtain the concave (up) curve

y(x) =

Also define

v(x) = y(x)
(a(x) -

.a( jc)( jc3-

Both of these curves, y(x) and v(x), are shown in Figure 8 where w is asymptotic to
y = 4.99, y continues above y = 4.99 and v is the remaining curve.

On the interval (1, 12) only points below y{x) can be uniquely fit to a fractal
Michaelis-Menten curve passing through the points (1, u>(l)) and (12, u;(12)). Since
w(x) lies above y(x) on the interval (8.65, 12), then the sigmoidal data w(x) can't be
uniquely fit by a fractal Michaelis-Menten curve on the interval (1, 12). Theorem 2
indicates the possibility of two solutions for the unknown constants in the fractal
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Michaelis-Menten curve provided that w(x) < v(x) on the interval (1, 12). That is
not the case here and so no solutions at all exist on the interval (1, 12) for the unknown
constants in the fractal Michaelis-Menten curve.
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