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1. Introduction 

Currently little is known about the mass distribution on intermediate scales 
between those probed by deep redshift surveys of galaxies and those probed 
by C O B E . Catalogs of galaxy clusters reach depths of several hundred 
megaparsecs, and, thus, are very useful for those scales. Only the Las Cam-
panas Redshift Survey (LCRS) is comparable with that depth. However, 
the L C R S samples only narrow slices whereas cluster catalogs cover a large 
fraction of the sky. Clusters seems to be the most suitable objects to fill the 
gap between scales probed by C O B E and the galaxy samples. Moreover, 
clusters are advantageous over galaxies as probes of the matter distribution 
in the Universe because our understanding of its formation and evolution is 
better established than it is for galaxies. Clusters are high peaks (mass scale 
M ~ 10 1 5 M 0 ) in the density field, which have collapsed relatively recently. 
Because of that, it is easy to identify clusters in numerical simulations. But 
the number of clusters is much smaller than the number of galaxies, which 
makes the statistics of clusters noisier. Nevertheless, clusters are exception-
ally useful objects for the investigation of the matter distribution on scales 
well above 100 h~l Mpc. Thus, it is worth to apply different statistical tests 
to these objects. 

We have performed numerical simulations for a number of different cos-
mological models, all of them with a substantial part of cold dark matter. 
Using the simulations we have constructed mock samples of clusters which 
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have the same boundaries and selection creteria as the original observa-
tional sample. We discuss the power spectrum of the cluster sample and 
compare it with those of the mock samples and we discuss briefly other 
statistics. 

2. Cosmological models 

We consider seven different cosmological models with cold dark matter: the 
standard cold dark matter (SCDM) model, a low density open cosmologi-
cal model ( O C D M ) , a model with a tilted primordial spectrum ( T C D M ) , 
spatially flat models with a cosmological constant ( A C D M ) and with a 
mixture of cold and hot dark matter (CHDM) with two equal mass neu-
trinos (Primack et al. 1995), a model with a decaying massive neutrino 
( r C D M ) proposed by Efstathiou et al. (1992) and a broken scale invariant 
model (BSI) (Gottlöber et al. 1994). These models and their parameters 
are summarized in the following table: 

S C D M h Ω 

O C D M h Ω 

T C D M h Ω η 

A C D M h iïcDM Ω Λ 

C H D M h iïcDM ην 

T C D M h Ω mT 

B S I h Ω kfn- Δ 

The simplest models are described by two free parameters, the Hubble 
constant h and the total matter density which is assumed to be Ω = 1 
(Einstein-deSitter model). The T C D M and A C D M models are described 
by one additional free parameter (the power index η or the value of the 
cosmological constant, i.e. Ω Λ , whereas ilmatter + ΩΛ = 1. The r C D M and 
B S I models have two additional free parameters. The mass and life time of 
the massive particle are related to the scale where the spectrum changes and 
the amount of change relative to the S C D M model. The spectrum is quite 
similar to the B S I spectrum (see Fig. 1), where the scale of the break in the 
spectrum fc&r and the relative height of the step Δ are related to properties 
of the fields in the underlying double inflationary scenario (Gottlöber et al. 
1991). Note that all of these models are additionally characterized by the 
small amount of baryonic matter Ω& Α 7 . , which however does not influence 
the power spectrum on cluster scales. 

It is clear that the models fit the data better with increasing number 
of parameters. Therefore, with three additional parameters also open tilted 
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Figure 1. The power spectrum of different cosmological models in COBE-normalisat ion 

models ( O T C D M ) or models with a cosmological constant and a tilted pri-
mordial spectrum ( A T C D M ) or an additional hot dark matter component 
( A C H D M ) have been discussed in the literature. 

3. Clusters of galaxies - observation vs. simulation 

We consider an extended redshift sample of Abell and A C Ο clusters with 
richness R > 0 (Abell 1958; Abell, Corwin & Olowin 1989). This sample 
was compiled by Plionis & Valdarnini (1991) (for details see also Borgani 
et al. 1996; Plionis & Valdarnini 1995). The galactic absorption is modelled 
according to the standard cosecant dependence on the galactic latitude and 
the cluster-redshift selection function is determined by fitting the cluster 
density as a function of redshift. In order to limit the effects of galactic 
absorption and errors due to the low density on large distances only clusters 
with a latitude > 30° and a distance < 240 h~l Mpc are taken into account. 
The resulting catalog of 417 A b e l l / A C O clusters is approximately volume 
limited. 

The power spectrum of this sample of A b e l l / A C O clusters has been de-
termined by Retzlaff et al. (1997). In the calculation of the power spectrum 
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the main attention has to be focused on the selection effects. Accounting 
for the geometry of the sample, and, more subtle, proper correction for the 
selection in redshift and galactic latitude are important. The power spec-
trum of the A b e l l / A C O clusters (stars) is shown in Fig. 2. For k > 0.05 h 
M p c - 1 the cluster power spectrum is well approximated by a power law, 
P(k) oc kn with η ~ —1.9, while it changes sharply to a positive slope at 
smaller wavenumbers. 

Recently, the cluster correlation function has been estimated for a sam-
ple of 1304 A b e l l / A C O clusters of galaxies (Einasto et al. 1997a). The 
Fourier transform of the correlation function gives the power spectrum, 
which shows a pronounced peak at 100 h~l Mpc scale (Einasto et al. 1997b, 
see also Einasto, this volume). The parent cluster catalog - the A b e l l / A C O 
catalog - is the same for both determinations of the power spectrum. While 
the selection of richness class R > 0 clusters within the angular boundaries 
dictated by galactic absorption is also identical for our sample and that 
used by Einasto et al., the redshift samples are very different. The sample 
used by Einasto et al. extends to a depth of 340 h~lMpc with a high frac-
tion of estimated cluster redshifts (33%). For our sample this fraction is 
just 4%. Besides the difference in the observational data, we use different 
methods for estimating the power spectrum. Finding the same P(k) slope 
of η « —1.9 with both methods clearly demonstrates the robustness of this 
result. The maximum of P(k) is situated at the same scale, though the 
sharp peak which was found by Einasto et al. turns out to be less signif-
icant from our analysis. Recently, Gaztanaga and Baugh (1997) found a 
steep slope for the real space power spectrum of A P M galaxies in the same 
range as the steep slope of the cluster power spectrum. 

To compare the observed power spectrum with those predicted by dif-
ferent cosmological models we have performed a series of numerical simula-
tions from which we have extracted mock catalogs with the same properties 
as the observational catalog. We normalized the power spectra according to 
the two year C O B E measurement following Gorski et al. (1994) and Stom-
por, Gorski & Banday (1995). However, we checked also that the slightly 
lower four year normalisation does not change the result. We used a stan-
dard P M iV-body code with Np = 2563 particles and Ng = 512 3 grid cells 
in a simulation box of L = 500 h~l Mpc comoving length. This provides 
a dynamical range of about 0.9 h~l Mpc (one cell). We made simulations 
for four random realizations for S C D M , three realizations for A C D M , and 
one realization for each of the other models. Thus, we were able to assess 
the statistical variance for S C D M and A C D M while assuming a similar 
behaviour for the other models. 

We use two different methods for determining the position of galaxy 
clusters in the simulation. The first is based on the friend-of-friend (FOF) 
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algorithm and the second is based on the peak-of-density algorithm. We find 
the centers of groups of particles using the F O F method or the location of 
peaks in the density field. In the next step we center spheres with the Abell 
radius 1.5 h~l Mpc around these points and determine the centers of mass 
of the particles inside these spheres. After few iterations the centers of mass 
converge. We find that both methods identify the same clusters in almost 
all cases. We use the same linking length of 0.2 (in units of the mean 
separation) for all simulations - even for A C D M models where a higher 
virialization overdensity (~ 300; cf. Kitayama h Suto 1996, Appendix A) 
is expected. Results are rather insensitive to the choice of the linking length. 
This is not surprising because with lower linking lengths the algorithm finds 
substructures inside groups found with larger linking length. The most 
prominent of these substructures, however, are centered on the clusters 
themselves. Since we are looking only for the most massive groups in the 
simulation we will pick up the same centers almost independent of the 
linking length. This is also the reason why the results do not depend on 
the normalisation of the power spectrum as mentioned above. Note that the 
situation is different from that in finding galaxy-size halos where the results 
are sensitive to the galaxy finding algorithm (e.g. Klypin et al. 1997). 

Fig. 2 shows that both the S C D M and O C D M (with Ω = 0.35) predic-
tions lie well below the observed power spectrum whereas C H D M , A C D M 
and B S I and r C D M are in better agreement. Note, however, that on scales 
smaller than the scale of the maximum (about 120 h~l Mpc) the observed 
power spectrum seems to be much steeper than all the simulated ones. From 
our data and the simulation we cannot conclude whether the peak in the 
power spectrum is real or just a statistical fluctuation. A similar structure 
of excess power has been found by several authors (e. g., Landy et al. 1996, 
Einasto et al. 1997b). However, the turnover at k « 0.05/i M p c - 1 seems to 
be real. 

4. Higher order statistics 

Besides the first order statistics (like the power spectrum or the correlation 
function) higher order statistics have been widely applied to cosmological 
problems. Mecke et al. (1994) have introduced Minkowski functionals into 
cosmology. They include informations about all orders of correlation func-
tions. Minkowski functionals measure the geometry and topology of bodies. 
However, in cosmology one has to deal with point distributions. In order 
to describe such a point distribution with Minkowski functionals Mecke 
et al. (1994) proposed to surround each point by a sphere and calculate 
the Minkowski functionals of the resulting body. With increasing radius 
of these spheres the Minkowski functionals of the resulting body changes. 
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Figure 2. The cluster power spectrum of mock catalogs in different cosmological models 
in comparison with the spectrum of A b e l l / A C O clusters 

Thus the radius can be used as diagnostic parameter in order to determine 
the differences between the point distributions under consideration. 

In order to describe Minkowski functionals in an intuitive way let us 
consider a compact, convex three-dimensional body and the surrounding 
body at a distance ε. Then the volume of the surrounding body can be 
given in a series of ε1 (i = 0, . . . , 3) where the coefficients are (with some 
constant factor) the four Minkowski functionals of this body. Therefore, the 
first and second Minkowski functionals are simply the volume and surface 
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of this body. The first Minkowski functional is closely related to the void 
probability function. As the void statistics described by Gottlöber, Retzlaff, 
Turchaninov (1997) it is much less discriminative between models than the 
other functionals. The third functional is proportional to the integral mean 
curvature of the surface (in case of a sphere the radius) and the fourth 
is given by the mean Gaussian curvature and up to 4π it is equal to the 
Euler characteristic. The Euler characteristic is closely related to the genus 
of isodensity surfaces which has become a commonly applied statistics in 
cosmology. 

The sample of A b e l l / A C O clusters and the mock samples are three-
dimensional point distributions within the double cone which defines the 
sample geometry. It is clear that for small radii the resulting body is a set of 
disjoint spheres. With increasing radius these spheres start to overlap and 
build up more and more complicated structures with loops, voids and tun-
nels. Depending on the clustering properties the four Minkowski function-
als show different behaviours. Obviously, in case of a highly clustered point 
distribution the first and second Minkowski functionals increase slower (to-
tal volume and total surface are smaller) than in the case of the Poisson 
distribution. The sign of the third Minkowski functional describes whether 
mainly convex (positive) or concave (negative) structures exist. Finally, the 
Euler characteristic exhibits the topology. For tunnels outweighing isolated 
objects and cavities it becomes negative. The Minkowski functionals for 
the A b e l l / A C O cluster sample and the set of mock catalogs of the four 
simulation samples have been calculated by Kerscher et al. (1997). The 
comparison of the Minkowski functionals of the observed and simulated 
samples has shown that the S C D M and T C D M models show significant 
departure from the observed cluster distribution whereas the A C D M and 
B S I models fit reasonable well the data (for all functionals the differences 
were below the 1σ level). 

5. Conclusions 

Comparing the observed and predicted distribution of clusters of galaxies 
we can discriminate between different cosmological models. Contrary to 
the case of galaxies the conclusions from numerical simulations of cluster 
distributions are independent of the cluster identification scheme. 

Measuring the observed and simulated distributions of A b e l l / A C O clus-
ters with the power spectrum, void statistics, and Minkowski functionals 
we found reasonable agreement of the observations with the B S I (h = 0.5, 
Δ = 3, A;^ 1 = 1.5Λ"1 Mpc) and A C D M models (h = 0.7, tlCDM = 0.35). In 
case of the C H D M model (h = 0.5, ΩΟΌΜ = 0.8, 2 ν) we have calculated 
only the power spectrum of mock catalogs. It fits reasonable well the data. 
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Surprisingly, the r C D M mock catalogs fit the data much worse than the 
B S I mock catalogs though the initial spectra for the simulations at ζ — 25 
are quite similar (cf. Fig. 1). The S C D M , O C D M ( Ω ί ο ί = 0.35) and T C D M 
(n = 0.9) models are clearly ruled out. 

Note however, that none of these models can explain the apparent sharp 
break in the power spectrum at km « 0.05Λ, M p c - 1 and the steep slope with 
η « —1.9 at k > km. 
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