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Abstract

The integration of vector (and operator) valued functions with respect to vector (and operator) valued
measures can be simplified by assuming that the measures involved take values in the positive elements
of a Banach lattice.

2000 Mathematics subject classification: primary 28B05,46G10; secondary 46B42,47B65.

1. Introduction

Given a countably additive vector measure m : y -> Z/(/A) and a strongly m-
measurable function/ : Q —> X with values in a Banach space X, the question of the
existence of the integral

(1.1) [ f ®dmeLp(tJ.;X),
JA

arises in numerous contexts. For the case where m is either positive, or dominated by
a positive measure, we provide a simple condition involving the scalar function | | / 1 | :
£2 —*• K which guarantees the existence of the integral (1.1) as well as establishing
an upper bound for the norm of the function y \-t (fAf® dm) (y) for /^-almost all
y e T (Theorem 2.2).

We also consider the case where m is replaced by either a positive or dominated
operator valued measure M : 5? -*• ^f(Lp(fj.)) a n d / is replaced by an operator
valued function F : £2 —• -£f(X). In this setting we provide a simple condition
involving the scalar function | |f ||J?<JO : S2 —>- IR. which establishes the existence of
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the integral JAF® dM e j£?(Z/(/z; X)) as well as providing an upper bound for its
value (Theorem 3.8).

Bilinear integration, under various guises, has been investigated by several authors.
See for example, [1, 3, 4, 5, 10, 12]. Also, see Remark 3.3 for a short comparison of
the bilinear integrals of Jefferies and Okada [9] and Bartle [1] in the operator valued
setting.

We establish some basic notation. Throughout (£2, y) will denote a measurable
space, X a Banach space with norm || • ||*, and Jf(X) will denote the space of bounded
linear operators acting on X (equipped with the strong operator topology). For the
sake of brevity we drop the term linear and just refer throughout to bounded operators.

We shall always assume that (f, <?, /x) is a nonzero <r-finite measure space and
that 1 < p < oo. Let F denote either the real or complex numbers. The set of all
equivalence classes of F-valued functions / o n f for which f \f \p~x is /i-integrable
is denoted by Z/(F) and is equipped with the usual Lp-norm || • \\LP. By LP(X) we
denote the vector space of ^-equivalence classes of strongly /x-measurable functions
v : F -+ X such that ||y||z.p(X) : = (/r l lyl lx^)1^ is finite. It is a Banach space under
the norm || • \\um-

Let y e Lp (F). We write y > 0 and say that y is positive if y (y) > 0 for /x-almost
every y e T. A bounded operator 5 € j£?(Z/(F)) is positive if Sy > 0 holds for all
y > 0.

The algebraic tensor product LP(F) <g> X is the set of all finite sums £ ; = 1 yjXj,
where Xj 6 X, y, e £P(F) and k e M. We shall assume that the vector space
Lp (F) ® X is endowed with the relative norm of Lp (X). In this case the completion of
Lp (F) ® X is given by Lp (X). The bilinear mapping of relevance here is the canonical
map (y, x) i-> yx for y e Z/(F) and x e X, defining the algebraic tensor product

A a -additive set function m : y —*• Lp(¥) will be referred to as a vector measure
while a set function M : 5? -> J?(LP (F)) which is countably additive with respect to
the strong operator topology of ^f(Lp (F)) will be called an operator valued measure.
Oui definition of a vector measure differs from that of [2] where only finite additivity
is assumed. We shall use the notation My to denote the vector measure My :
A h-> M(A)y for all A e y . Similarly, for the case of an operator valued function
F : Q. —> S£(X), we use the notation Fx to denote the vector valued function
Fx : to h-> F{co)x for all co € Q.

2. Dominated measures: the vector case

In this section we establish Bochner (that is, scalar) type conditions guaranteeing
a vector valued function's integrability with respect to a dominated vector measure
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[3] Bilinear integration with positive vector measures 281

(Theorem 2.2) and a useful estimate (Theorem 2.4).
Throughout this section m and n denote vector measures and / : £2 -> X is a

vector valued function. We use \\f \\x to denote the scalar function ||/ ||x : £2 —• D5.
We write m > 0 and say that m is positive if m(A) > 0 for all A e 5?. We

say that m is order bounded if there exists a positive vector measure, «, for which
u(A) > \m(A)\ holds forall A e 5?. In the present context, this is equivalent to saying
that m has order bounded range in the Banach lattice LP(F) (see [10, Lemma 4.4.4];
note that the condition that the Banach lattice should have an order continuous norm
is missing from the final part of [10, Lemma 4.4.4]) The smallest positive measure
satisfying this requirement is denoted by \m\. We write \m\ > |n| and say that m
dominates n if |/n|(A) > \n\(A) for all A e y .

A scalar function h : £2 -> F is said to be strongly m-integrable if it is integrable
with respect to the scalar measure (m, y') : A i-> (m(A), y') for every y' € Lq(¥).
Here q satisfies \/p + l/q = 1 with the usual convention that q = oo if p = 1.
The integral of h over A with respect to m, is an element of Z/(F) which we denote
by fAhdm and which satisfies \fAhdm,y') = fAhd(m,y') for all / € L«(F)
and A e J?. Every bounded, ^"-measurable function is strongly m-integrable, [11,
Lemma II.3.1]. This notion of integration is developed more generally for locally
convex space valued measures by [11].

An X-valued 5?-simple Junction is a function g : Q —> X for which there exist
t e N , sets Ej e 5? and vectors Xj e X, j = 1 , . . . , k, such that g = £*= 1 XJXEJ •
For the vector measure m define fAg® dm = £/=i Xj [m(A H Ejj\ € LP(X) for
all A e ^". A vector valued function / is strongly m-measurable if it is the limit
m-almost everywhere of X-valued ^-simple functions.

DEFINITION 2.1 ([9, Definition 1.5]). A function / is said to be m-integrable in
LP(X) if there exist X-valued ^-simple functions / 7 , j e N, such that fj —> /
pointwise m-almost everywhere as j —> oo and [fA fj <g> dm }° f̂ converges in V (X)
for each A e y . Let fAf ® dm denote this limit.

The above limit is well defined and independent of the approximating sequence
[10, Lemma 4.1.4]. The set function A —> fAf ® dm, A € «̂ *\ is a -additive
in LP(X) by the Vitali-Hahn-Saks theorem [2, Theorem 1.5.6]. Clearly, the map
(f, m) (-• / / ® dm is bilinear in the obvious sense. Also, for the case X — F, /
is m-integrable in Z/(F) if and only if it is strongly m-integrable [10, Remark after
Definition 4.1.5].

THEOREM 2.2. Suppose thatm is orderbounded andthat n is dominated by m. If the
function f : Q -*• X is strongly m-measurable and \\f \\x is strongly \m\-integrable,
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then f is n-integrable in LP(X) and the inequality

\(jf®dn\{y) < (f \\f \\xd\m\\ (y)

holds for all A e S" and for fi-almost every y e F.

PROOF. We begin by considering the special case n = m > 0. First we establish
the estimate for simple functions. Let / € N. Suppose that h = Yl'j=ixjXE ' s

an X-valued ^-simple function with Xj e X and Ej e 5? pairwise disjoint for
j = 1 , . . . , / . Let A e <¥. Then for ju,-almost every y € I \

(2.1) (K)

J *

= (J \\h\\xdm\xdm I (y).

The positivity of the vector measure is crucial here.
Next we prove that/ is m-integrable in LP(X). By assumption / is strongly m-

measurable and so there exists a sequence (Vo }Jli °f X-valued ^"-simple functions
such that \//j —• / m-almost everywhere asy -> oo. Now let

_Uj(eo) if\Wj(a>)\\x<2\\f(a))\\x

[0 ifUj(co)\\x>2\\f(co)\\x.

Then each fj is an X-valued ^-simple function such that fj-+f m-almost every-
where and further \\fj (co)\\x < 2\\f (co)\\x for all a) € S2. Thus to ensure integrability
it suffices to show that the sequence [fAfj <8> dm}°°=l converges in LP(X) for each

Lety, k e N. By construction, ||/;(-) — /(Ollx < 3||/()| |x and by assumption
||/| |x is strongly m-integrable so, making use of inequality (2.1) and dominated
convergence for vector measures [11, II.4] we have

/(fj -fk)®dm < f \\fj - fk\\x dm
JA LP(X) JA

< [\\fj-
JA

f\\xdm+ [ \\f -fk\\xdm->0
J

asj,k-> oo. Thus/ is m-integrable in LP(X).
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Finally, we establish that inequality (2.1) holds for the function / . We know that
lim^oo fAfj <8> dm = fA f <g> dm in LP(X) for each A e y . By taking an ap-
propriate subsequence, if necessary, we may assume that \\(fAfj ® dm)(y)\\x —*•
l(fAf ® dm)(y)\\x for ^i-almost every y e V also. Since \\f\\x is assumed to
be strongly m-integrable, dominated convergence for vector measures again ensures
that fA WfjWxdm -> fA \\f\\xdm in LP(F) as j -* oo for all A e y . By tak-
ing a further subsequence, if necessary, we may assume that (fA ||/7 \\x dm) (y) —•
(IA 11/ II* dm) (y) for /^-almost every y e V as well. See [6, Corollary 2.32]. This
guarantees that inequality (2.1) holds for the function / and establishes the result for
the case n = m > 0.

The general case is obtained by reduction to the above special case via the inequality

. / = '

and a repetition of the arguments used previously. D

Next we introduce an adaptation of the notion of semivariation to the bilinear
setting. It was originally introduced in [7] and used extensively by Bartle, [1]. The
following definition is taken from [9, Section 2].

DEFINITION 2.3. The X-semivariation, px(m) : y ->• [0, oo] of m is defined by

k

= sup • xjm(Ej DA)

where the supremum is taken over all pairwise disjoint sets E\,..., Ek from y and
vectors x\,... ,xk from X, such that ||jcy- \\x < 1 for all j = 1,... ,k and k 6 N.
For the special case where X = F, X-semivariation reduces to the usual notion of
semivariation and we write ||m||(A) in place of fix(m)(A) [2, Proposition 1.1.11 (a)].

If in the above definition, px(m)(Q) < oo, then we say that the vector measure m
has finite X-semivariation. We say that the vector measure m has continuous X-
semivariation if, for all sets Ak e y decreasing to the empty set, f}x(m)(Ak) —> 0 as
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k -*• oo. The implications of continuous X-semivariation were explored by Dobrakov
in [3, 4, 5]. Bartle in [1] refers to continuous X-semivariation as the ""-property.
According to [3, *-Theorem], if 1 < p < oo and X contains no subspace isomorphic
to c0, then the X semivariation of m is continuous once it is finite. We note here that if
m has continuous X-semivariation then the class of m-integrable functions coincides
with the class of functions integrable in the sense of Bartle [1] and also coincides with
the class of functions integrable in the sense of Dobrakov [3]. See [10, Remark end of
Section 4.2] for a discussion on these points. A result that will be of use to us later is
that if m has continuous X-semivariation then every strongly w-measurable, bounded
function/ is m-integrable in LP(X) [1, Theorem 7 and L^mma 3].

Theorem 2.2 can be used to show that dominated vector measures have continuous
X-semivariation. This result is presented next as:

THEOREM 2.4. Suppose that m is order bounded and that n is dominated by m.
Then Pxin) is continuous and fix(n)(A) < |||m|||(A) = |||W|(A)||LP(IF) holds true for
all A 6 y.

PROOF. Let A e y . For k e N, let x} e X satisfy \\xj \\x < 1 for all; = 1 , . . . , k.
Let Ej, j = 1 , . . . , k, be pairwise disjoint sets belonging to y . Then by Theorem 2.2
and the definition of semivariation we have

k

n A) \\Xj\\\m\(EjnA)

; = iLUX)

Thus Px(n)(A) < |||m|||(A) for all A € y .
We next make the observation that if A, B e

< IIMIKA).
LP(f)

with A c B then

This is easily seen by noting that \m\(B) — \m\(A) = \m\(B\A) > 0. This observation,
in combination with [2, Proposition I.I 1], gives us that |||m|(A)||z,(.(F) < |||/n|||(A).
To prove the reverse inequality we again make use of Theorem 2.2 (with the Banach
space X = IF), and the above observation. Let it e N and let Uj e IF with |ay | < 1 for
j = 1,... ,k. Also let Ej, j = 1 , . . . , k be pairwise disjoint subsets of y . Then

J *

< \\\m\(A)\\LPm.

From the definition of semivariation this implies |||m|||(A) < |||wi|(A)||tP(iF) and we
have established the equality. The continuity of fix (n) follows immediately. •
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3. Dominated measures: the operator case

In this section we consider positive or dominated operator valued measures. We
present Bochner type conditions guaranteeing the integrability of an operator valued
function with respect to a positive or dominated operator valued measure.

Throughout this section M and N are operator valued measures and F : Q -*•
J£(X) is an operator valued function. We use ||F||&&) to denote the scalar function
I I 1 * ( J O :«-»• R.

If M(A) is a positive operator on Z/(F) for each A e y then M is said to
be a positive operator valued measure. We write M > 0 if this is the case. We
write M > \N\, and say that N is dominated by M if M(A)y > \N(A)y\ for all
y >0gZ/ (F )andA e y .

The question of when an operator valued measure is guaranteed to be dominated by
a positive operator valued measure does not, in general, seem to have a straightforward
answer. Partial results, involving Jordan decompositions of operator valued measures,
can be found in the monograph by Schmidt, [16]. Nevertheless, a large class of
operator valued measures that arise in applications to the Feynman-Kac formula in
Lp -spaces is so dominated [8].

We first introduce a notion of integration for scalar valued functions with respect
to operator valued measures. It is analogous to the scheme introduced in Section 2 for
integrating scalar functions with respect to vector measures.

A scalar function h : £1 -> IF is said to be M-integrable in j£?(Z/(F)) if for
each y g Z/(F) and y' e Lq(¥), it is integrable with respect to the scalar measure
(My, y') : A h-» (M(A)y, y'), A e y . The integral of h over A with respect to
M, is an element of Jf (Lp (¥)) which we denote by fA h dM and which satisfies
((/A h dM) y,y') = fAhd {My, y') for all y € U (F), y' e L«(F) and A € y . Every
bounded, ^"-measurable function is M-integrable, [11, Lemma II.3.1]. Again see
Kluvanek and Knowles, [11], for more details.

Now we define a notion of integration for operator valued functions with respect to
operator valued measures.

DEFINITION 3.1 ([10, Definition 4.3.2]). A function F is said to be M-integrable
in S£{U> (X)), if for each A g y , there exists an operator fA F <g> dM g &{U (X))
such that for every x e X andy e / / (F) , the X -valued function Fx, is My-integrable
in LP(X) and the equality

(I F®dMj(yx)= f[Fx]®d[My]

holds for every A e y .

https://doi.org/10.1017/S1446788700003773 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003773


286 Brian Jefferies and Paul Rothnie [8]

We observe that the set function A t-> fA F 0 dM, A e &', is a-additive in the
strong operator topology of Jjf (Lp (X)) [10, Lemma 4.3.3].

Next we introduce an operator valued analogue of the notion of X-semivariation.

DEFINITION 3.2 ([10, Definition 4.3.6]). We say that M has finite Jf(X)-semivari-
ation if

(i) T 0 (M(A)) e .if (Lp(X)) for each T e Jf(X) and A e y , and
(ii) there exists C > 0 such that ||£J=i 7} 0 (MG*;))!^ < c> f o r a11

7} e .if (X) with || 7} ||JS*(JO < 1 and pairwise disjoint sets Aj e y,j = 1 n, and
n e N. v

Let P&m(M)(A) be the smallest such number C as the sets Aj above range over all
subsets of A e S*. Then the set function Pj?(xy(M) is called the J£'(X)-semivariation
of A/.

REMARK 3.3. The well established Bartle integral [1] is perhaps the obvious can-
didate for a bilinear integral here. However when applied to the current situation, it
requires stronger assumptions than does the integral presented above. We demonstrate
this next.

Let T : X -> X and 5 : Lp (F) ->• Z/ (F) be bounded operators and suppose that 5
is also positive. Then the bilinear map (5, T) i->- 5 0 T from 3?+(Lp (F)) x JSf (X) ->•
%(Lp (X)) exists [15, Exercise IV.22 (b) for the case where X is a Banach lattice. The
extension to a general Banach space presents no difficulty.]. To apply Battle's integral
here we would need some control over the j£?(X)-semivariation of M. Typically,
this would involve assuming that M has continuous .S?(X)-semivariation with the
resulting implication that M is a-additive in the operator norm on LP(F). Further,
the resulting indefinite bilinear integral would be a-additive in the uniform operator
topology of J?(LP(X)). For most applications, cr-additivity in the strong operator
topologies of JSf(Z/(F)) and ^f(Lp(X)) is more appropriate. See [10, Notes 4.7] for
a more detailed discussion on these points.

PROPOSITION 3.4. Suppose that fem(M) is finite. Then for each y 6 LP(F), the
vector measure My has finite X-semivariation.

PROOF. Letn e N, and suppose that Xj e X satisfy ||JC;- \\x < 1 for ally = 1 , . . . , n.
Let Ej, j = 1 , . . . , n, be pairwise disjoint sets belonging to j * . We claim that
there exists a family {7}}?, of bounded linear operators on X with ||7J|| < 1 for
j = 1 , . . . , n, associated with a vector x0 6 X, so that 7}JC0 = xj. To see this, fix
x0 e X with ||jtollx = *• By the Hahn-Banach theorem [6, Theorem 5.2.5], there
exists x'o € X' such that (*o, x'o} = 1 and IIXQIIX' = 1. Fory = 1, . . . , n we define the
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operator 7} by TjX = {x, XQ) XJ , for all x e X. It is easy to check that these operators
satisfy our needs.

Now let y e Z/(F). Then

LUX)

Since we have assumed finite Jif (X)-semivariation, by Definition 2.3 the required
result is achieved. •

Next we provide a convergence theorem for operator valued functions. It is an
operator valued version of [9, Theorem 2.6] and will be used in the proof of this
section's main result.

THEOREM 3.5. Suppose P&{X)(M) is finite and that Fj : Q -*• J?(X), j € N,
are M-integrable functions such that for each x 6 X and y e LP(J) the following
conditions hold:

(a) FjX converges to Fx pointwise My-almost everywhere;
(b) { fA FjX ® d[My]}", converges in U (X) for each A € 5?, and

(c) For each A e 5 ? h f i l f [ f F d M } i i

[My]}, converges in U (X) for each A € 5, and

5? the family of operators [ fA Fj <g> dM}._ is equicontinuousin

Then the function F is M-integrable in J?(LP(X)).

PROOF. Set G}{A) = /AV; ® dM, for all A e 5? and; e N. Then by assumption
Gj (A)<j> will converge in V (X) for each <j> e Lp ®X and A e y . Next, the assumed
equicontinuity of the family { fA Fj ® dM}°° and a standard e/3 argument shows
that Gj(A)<j> will converge for all <f> € LP(X). See [13, Section 1.5], for example. An
application of the uniform boundedness principle [6, Theorem 5.12] establishes the
existence of a limit operator G(A) e J£(LP (X)) such that G(A)4> = l i m , ^ Gj (A)<f>
for each A e y and <f> e LP(X). This operator will be the candidate for our integral.

To show now that F is M-integrable we need confirm two things:

(1) For each x e X and y e L" (F), Fx is A/y-integrable in L" (X), and
(2) G(A)(yx) = JAFx® d[My] holds for all A eS?.
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By Proposition 3.4, for each y e Z/(F), My has finite X-semivariation. Also, by
assumption F,x converges to Fx, A/y-almost everywhere and [JA Fjx ® d[My]}JLx

converges in LP(X). By [9, Theorem 2.6] this implies that Fx is My-integrable for
each x e X and y e Y.

The equality (2) is easily verified since fA Fjx <8> d[My] converges to G(A)(yx)
by the first part of the proof, and also to fA Fx ® d[My] by [9, Theorem 2.6]. •

By [10, Theorem 4.3.7] this next result guarantees that bounded measurable func-
tions are integrable with respect to dominated measures.

PROPOSITION 3.6. Suppose M is positive and that N is dominated by M. Then
P&m(N) is finite, and for each y 6 £P(F) the vector measure Ny has continuous
X -semivariation.

PROOF. We first establish the result for the special case N = M > 0. For / e N
and 1 < i < I let At e Sf(X) with ||A,||^.(X) < 1. For the same finite set of j"s,
let {Bj}'i=x be pairwise disjoint subsets of B e S?. For k e N, let g — ^J
be an X-valued ^"-simple function with Xj e X and G; 6 £ pairwise disjoint for
y = 1, . . . ,&. Also assume that Hgllz.po') 5 1-

Then

The last equality follows from the observation that if A, B e y with A c B then
(x)) < \\M(B)\\<f(Lp(X)y This is easily seen by noting that M ( B ) / -
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[11] Bilinear integration with positive vector measures 289

M(A)f = M(B\A)f > 0 holds for all / > 0. Since X-valued ^-simple functions
are dense in LP(X), by Definition 3.2 this implies Ps?(X)(M)(B) < \\M(B)\\&iL,(x»-

Next we show that for an arbitrary y e LP(F), the Lp(IF)-valued measure My has
continuous X-semivariation. This follows immediately from Theorem 2.4 if we can
show that My is dominated by a positive vector measure. However, decomposing y
first into its real and imaginary parts and then into its positive and negative parts gives
us that |M>>| < 2M\y\. This is easily seen since, for all A e 5?,

\M(A)y\ = \M{A)yx + iM{A)y2\

t - M(A)y~ + iM(A)y+ - iM{A)y~\

+ y~) + M(A)(y+ + y2") = M(A)Qyi\ + M) < 2M(A)\y\.

Since M is a positive operator valued measure it follows that M\y\ > 0. This
completes the proof for the positive case.

To prove that the dominated measure N has finite Sf(X)-semivariation it suffices to
note that \N(A)XG\ 5 M{A)xc for all A e y and G e £ and repeat the argument for
the positive case. To prove Ny has continuous X-semivariation for each y € LP(\F) it
suffices to note that \Ny\ < 2M\y\, that is, that the vector measure Ny is dominated
by a positive measure. The result then follows from Theorem 2.4. •

The principle result of this section is an operator valued version of Theorem 2.2.
We give a preliminary result below in Proposition 3.7. The assumption of integrability
on the operator valued function will be removed in Theorem 3.8.

PROPOSITION 3.7. Suppose that M is positive and that N is dominated by M.
Further suppose F is N-integrable in Jj?(Z/(X)) and that || F\\#m is M-integrable
in3f(Lp(¥)). Then the estimate

I F®dN L
holds for all A G

PROOF. We establish the result for the special case N = M > 0 first. For n e
N, let g = Ylj=ixjXcj be an X-valued ^"-simple function with Xj € X and Gj
pairwise disjoint for j = 1 , . . . , n, such that ||g||{.i>(x) < 1. Then, making use of
Proposition 2.2, we have

uF(co)®dM(co) )g
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xj](a>)<8>d[MxajKa>))(y)

[12]

(y)

- f [T,(f \\F((o)xj\\xd[MxGj](co)] (y)

t"(F)

\2 I \\F{oo)\\<em\\Xj\\xd[MxGjMa))
: J A

(I
f ^F(a>)\\seiX)dM(Q))

JA

L

IS(F)

VVf)

\\F{fo)\\sfiX)dM{<o)

holding for all A e 5?. Since X-valued ^-simple functions are dense in LP(X) this
establishes the required inequality and completes the proof for the positive case.

The inequality for the case where N is dominated by M follows analogously to the
positive case taking note that, when x e X and E e &,

if.[Fx](a>) ® d[NXEKco) \\F(co)x\\xd[MXE](co))(y)

h o l d s t r u e f o r a l l A e S* a n d / ^ - a l m o s t e v e r y y e P ( P r o p o s i t i o n 2 . 2 ) . •
Finally, we provide a Bochner type condition guaranteeing the integrability of

an operator valued function with respect to a positive or dominated operator valued
measure. It is an operator valued version of Theorem 2.2 and substantially strengthens
the results of Proposition 3.7.

THEOREM 3.8. Suppose that M is positive and that N is dominated by M. Let F be
such that for each x e X andy 6 LP(F), Fx is strongly My-measurable and \\F\\&(x)
is M-integrable in _S?(LP (F)). Then the function F is N-integrable in JC(LP (X)) and
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F®dN \\F\\jeiX)dM

holds for all A e y.

PROOF. AS usual we consider the special case N = M > 0 initially. For j e N,
let Aj = {co e Q. : ||F(a))||j?(;o 5 j)- Next define a family of bounded functions
Fj; : S2 - • i f (X) by setting F, = F.xA. . From Proposition 3.6 we have finite 3?(X)-
semivariation and continuous pointwise X -semivariation in this setting. By [10,
Theorem 4.3.7] this implies that bounded ^"-measurable functions are M-integrable.
Thus we have a sequence [Fj }°°=l of M-integrable functions converging pointwise in
the operator norm to F. Verifying the conditions of Theorem 3.5 will show F to be
M-integrable in Sf(Lp(X)).

Condition (a) of Theorem 3.5 is obviously satisfied since, for each fixed co 6 Q,
Fj (co) = F(co) if j is taken large enough.

Let x 6 X and y € Z/(F). We show that the sequence [fA FjX ® d[My]\°°=x

converges in LP(X) for each A e J?'. Recall from the proof of Proposition 3.6 that
the vector measure My is dominated by the positive vector measure 2M|y|. Thus we
can apply Theorem 2.2 to obtain (assuming j > k)

fir,-
JA

Fk)(co)x ® d[My](co)
LP(X)

/ F(co)x (XAJ ~ XAk)(oS) ® d[My](co)
JA

I \\F(co)x\\x(XAi ~ XAk)(co)d[2M\y\](co)
JA

f \\F(co)x\\xd[2M\y\](co)
J\L,,,B,

isHere B,• = {co € A : i — 1 < \\F(co)\\sf(X) < '}• By assumption | |F
integrable so the set function /(-) || Fx \\x d[2M\y \] : y -+ Lp (F) is cr-additive. Since
the B,'s are pairwise disjoint, it follows from the unconditional summability of the
resulting sequence that if j and k are made large enough then the difference between
the corresponding integrals will be arbitrarily small. Thus our sequence of integrals
is Cauchy and condition (b) is satisfied.

Finally, the equicontinuity of the family [fA Fj <g> dM}°l, is established by making
use of Proposition 3.7. We have

® dM
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This uniform bound gives the required equicontinuity and condition (c). Thus F
is M-integrable in Jif(Lp(X)). The estimate now follows from an application of
Proposition 3.7 and completes the proof for the positive case.

To prove the result for dominated N it suffices to repeat the above proof, noting
that \Ny\ < 2M\y\ for all y e Lp and that

Fj ®dN
A

< 1 / \\Fj\\sfmd[2M]
A

holds true for A e S* and j e N. - •

4. Example: a Feynman-Kac formula

Finally, we give an example where a bilinear integral provides a representation for
the solution of an initial value problem.

We define Q to be the collection of all functions co : [0, oo) —• R such that in each
time interval [0, T], there exist finitely many times 0 = to < t\ < t2 < ••• < tk < T,
such that co(t) = a>(/)_1) for each time t such that tj-i < t < t} and u>(t) = co(tk) for
all tk < t < T. Thus £2 is the collection of all piecewise constant functions having a
finite number of discontinuities in each finite time interval. For all t > 0 let y, denote
the cr-algebra a(co(s) : 0 < s < t) generated by the family {co(s) :0<s<t}.

Let 1 < p < oo and l/p + l/q = 1. Recall that a bounded operator 5 e -£?(Z/(F))
is a regular operator if it can be written as a linear combination of positive operators.

l
<L e t i f c : I R x l R - * F b e a measurable function such that /R (/R |jfc(;c, y)\q dy)plq dx

oo. Define a Hilbert-Schmidt operator acting on Z/(R) with kernel it, to be the
operator, A, given by (A/)(x) = f%k(x, y)f(y)dy for e a c h / e LP(K). It is easily
seen that A is bounded and regular.

THEOREM 4.1 ([14, Section 7]). Let\<p<s<oo and p < r < oo satisfy
l/p = \/s + l/r. Let A be a Hilbert-Schmidt operator acting on LP(R) fl Z/(R)
with kernel k. Suppose that B is the infinitesimal generator of a Co-semigroup acting
on Z/(IR) such that the Banach space K = D(B) with norm \\y\\K = Hyll̂ flm +

is reflexive and that a : 1R —> (0, oo) is a function which is an element of

Let<t> e L"(R2)nLs(R2)besuchthatAx(l> e L"(K2)andBy<j> e Z / (R 2 )nZ/
Then for each t > 0 there exists an operator valued measure M, : y, —*• J^(L
which is dominated by a positive operator valued measure, and also there exists an
operator valued function F, : £1 -*• jSf(Lp(IR)) (in fact, a Multiplicative Operator
Functional) which is M,-integrable in S£(LP (K; Lp (K))). Moreover the function
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u(t, x, y) = ([fQ F, ® dM,] <f>) (x, y), t > 0 solves the initial value problem

du f
—(t,x,y) = a(x)Byu(t,x,y) + / k(x, z)u(t, z, y) dz,
dt yK

«(0, x, y) = <p(x, y), for almost all x, y e R.
Here Ax denotes the operator A acting on the x variable of the function u : (t,x,y) h+
(t, x, y) and By denotes the operator B acting on the y variable of the function u.
The derivative with respect to t is in the sense of convergence in LP(R2).
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