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Abstract

Delimited control is a powerful mechanism for programming language extension which has been
recently proposed for Prolog (and implemented in SWI-Prolog). By manipulating the control
flow of a program from inside the language, it enables the implementation of powerful features,
such as tabling, without modifying the internals of the Prolog engine. However, its current
formulation is inadequate: it does not capture Prolog’s unique non-deterministic nature which
allows multiple ways to satisfy a goal.

This paper fully embraces Prolog’s non-determinism with a novel interface for disjunctive
delimited control, which gives the programmer not only control over the sequential (conjunctive)
control flow, but also over the non-deterministic control flow. We provide a meta-interpreter
that conservatively extends Prolog with delimited control and show that it enables a range of
typical Prolog features and extensions, now at the library level: findall, cut, branch-and-bound
optimisation, probabilistic programming, . . .
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1 Introduction

Delimited control is a powerful programming language mechanism for control flow ma-

nipulation that was developed in the late ’80s in the context of functional program-

ming (Felleisen (1988); Danvy and Filinski (1990)). Schrijvers et al. (2013) have recently

ported this mechanism to Prolog.

Compared to both low-level abstract machine extensions and high-level global pro-

gram transformations, delimited control is much more light-weight and robust for im-

plementing new control flow and dataflow features. Indeed, the Prolog port has en-

abled powerful applications in Prolog, such as high-level implementations of both tabling

(Desouter et al. (2015)) and algebraic effects and handlers (Saleh and Schrijvers (2016)).

Yet, at the same time, there is much untapped potential, as the port fails to recognise

the unique nature of Prolog when compared with functional and imperative languages

that have previously adopted delimited control.

∗ This article is an extended version of the paper with the same name that first appeared in the LOPSTR
2021 post-proceedings edited by Emanuele De Angelis and Wim Vanhoof.
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Indeed, computations in other languages have only one continuation, i.e., one way to

proceed from the current point to a result. In contrast, at any point in a Prolog con-

tinuation, there may be multiple ways to proceed and obtain a result. More specifically,

we can distinguish 1) the success or conjunctive continuation which proceeds with the

current state of the continuation; and 2) the failure or disjunctive continuation which

bundles the alternative ways to proceed, e.g., if the conjunctive continuation fails.

The original delimited control only accounts for one continuation, which Schrijvers

et al. have unified with Prolog’s conjunctive continuation. More specifically, for a given

subcomputation, they allow to wrest the current conjunctive continuation from its track,

and to resume it at leisure, however many times as desired. Yet, this entirely ignores the

disjunctive continuation, which remains as and where it is.

In this work, we adapt delimited control to embrace the whole of Prolog and cap-

ture both the conjunctive and the disjunctive continuations. This makes it possible to

manipulate Prolog’s built-in search for custom search strategies and enables clean im-

plementations of, e.g., findall/3 and branch-and-bound. This new version of delimited

control has an executable specification in the form of a meta-interpreter (Section 3), that

can run both the above examples, amongst others. Appendices to this paper are available

in the extended version (Vandenbroucke and Schrijvers (2021)) and the paper’s code is

available in the online repository at https://github.com/alexandervandenbroucke/

tplp-disjunctive-delimited-continuations.

2 Overview and Motivation

We briefly review conjunctive delimited control, explain its obliviousness to Prolog dis-

junctions, and introduce disjunctive delimited control by example.

2.1 Background: Conjunctive Delimited Control

In earlier work, Schrijvers et al. (2013) have introduced a Prolog-compatible interface for

delimited control that consists of two predicates: reset/3 and shift/1.

Motivation While library developers and advanced users typically do not build in new

language features in Prolog, they have traditionally been able to add various language ex-

tensions by means of Prologs rich meta-programming and program transformation facili-

ties. Examples are definite clause grammars (DCGs), extended DCGs (Van Roy (1989)),

Ciao Prologs structured state threading (Ivanovic et al. (2009)) and logical loops (Schimpf

(2002)). However, there are several important disadvantages to non-local program trans-

formations for defining new language features: A transformation that combines features

can be quite complex and is fragile under language evolution. Moreover, existing code

bases typically need pervasive changes to, e.g., include DCGs.

Delimited continuations enable new language features at the program level rather than

as program transformations. This makes features based on delimited continuations more

light-weight and more robust with respect to changes, and it does not require pervasive

changes to existing code.
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Behavior The predicate reset(Goal,ShiftTerm,Cont) executes Goal, and, (a) if Goal

fails, reset/3 also fails; (b) if Goal succeeds, then reset/3 also succeeds and unifies

Cont and ShiftTerm with 0; (c) if Goal calls shift(Term), then the execution of Goal

is suspended and reset/3 succeeds immediately, unifying ShiftTerm with Term and

Cont with the remainder of Goal. The shift/reset pair resembles the more familiar

catch/throw predicates, with the following differences: shift/1 does not copy its

argument (i.e., it does not refresh the variables), it does not delete choice points, and

also communicates the remainder of Goal to reset/3.

Example

Consider DCGs, a language extension to sequentially access the elements of an implicit

list. It is conventionally defined by a program transformation that requires special syn-

tax to mark DCG clauses H --> B and to mark non-DCG goals {G}. The delimited

control approach requires neither. It introduces two new predicates: c(E) consumes the

next element E in the implicit list, and phrase(G,Lin,Lout) runs goal G with implicit

list Lin and returns unconsumed remainder Lout. For instance, the following predicate

implements the grammar (ab)n and returns n.

ab(0).

ab(N) :- c(a), c(b), ab(M), N is M + 1.

?- phrase(ab(N),[a,b,a,b],[]).

N = 2.

The two DCG primitives are implemented as follows in terms of shift/1 and reset/3.

c(E) :- shift(c(E)).

phrase(Goal,Lin,Lout) :-

reset(Goal,Cont,Term),

( Cont == 0 ->

Lin = Lout

; Term = c(E) ->

Lin = [E|Lmid],

phrase(Cont,Lmid,Lout)

).

In words, phrase/3 executes the given goal within a reset/3 and analyzes the possible

outcomes. If Cont == 0, this means the goal succeeds without consuming any input. Then

the remainder Lout is equal to the input list Lin. Alternatively, the execution of the goal

has been suspended midway by the invocation of a shift/1 because it wants to consume

an element from the implicit list with c/1. In that case, Term has been instantiated with

a request c(E) for an element E. This request is satisfied by instantiating E with the first

element of Lin. Finally, the remainder of the suspended goal, Cont (the continuation), is

resumed with the remainder of the list Lmid.
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Other examples of language features implemented in terms of delimited control are

co-routines, algebraic effects (Saleh and Schrijvers (2016)) and tabling (Desouter et al.

(2015)).

Obliviousness to Disjunctions This form of delimited control only captures the conjunc-

tive continuation. For instance reset((shift(a),G1),Term,Cont) captures in Cont goal

G1 that appears in conjunction to shift(a). In a low-level operational sense, this cor-

responds to delimited control in other (imperative and functional) languages where the

only possible continuation to capture is the computation that comes sequentially after

the shift. Thus, this approach is very useful for enabling conventional applications of

delimited control in Prolog.

In functional and imperative languages, delimited control can also be characterised

at a more conceptual level as capturing the entire remainder of a computation. Indeed,

in those languages the sequential continuation coincides with the entire remainder of a

computation. Yet, the existing Prolog approach fails to capture the entire remainder of a

goal, as it only captures the conjunctive continuation and ignores any disjunctions. This

can be illustrated by the reset((shift(a),G1;G2),Term,Cont) which only captures the

conjunctive continuation G1 in Cont and not the disjunctive continuation G2. In other

words, only the conjunctive part of the goal’s remainder is captured.

This is a pity because disjunctions are a key feature of Prolog and many advanced

manipulations of Prolog’s control flow involve manipulating those disjunctions in one

way or another.

2.2 Delimited Continuations with Disjunction

This paper presents an approach to delimited control for Prolog that is in line with the

conceptual view that the whole remainder of a goal should be captured, including in

particular the disjunctive continuation.

For this purpose we modify the reset/3 interface, where depending on Goal,

reset(Pattern,Goal,Result) has three possible outcomes:

1. If Goal fails, then the reset succeeds and unifies Result with failure. For in-

stance,

?- reset(_,fail,Result).

Result = failure.

2. If Goal succeeds, then Result is unified with success(PatternCopy,

DisjCont) and the reset succeeds. Here DisjCont is a goal that represents the

disjunctive remainder of Goal. For instance,

?- reset(X,(X = a; X = b),Result).

X = a, Result = success(Y,Y = b).

Observe that, similar to findall/3, the logical variables in DisjCont have been

renamed apart to avoid interference between the branches of the computation. To
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be able to identify any variables of interest after renaming, we provide PatternCopy

as a likewise renamed-apart copy of Pattern.

If there is no disjunctive remainder, DisjCont will simply be fail.

3. If Goal calls shift(Term), then the reset succeeds and Result is unified with

shift(Term,ConjCont,PatternCopy,DisjCont). This contains in addition to the

disjunctive continuation also the conjunctive continuation. The latter is not re-

named apart and can share variables with Pattern and Term. For instance,

?- reset(X,(shift(t),X = a; X = b),Result).

Result = shift(t,X = a, Y, Y = b).

Note that reset(P,G,R) always succeeds if R is unbound and never leaves choicepoints.

Encoding not/1 As a small warm-up exercise, we show how to encode not/1.

not(Goal) :-

reset(_,Goal,Result),

Result = failure.

This encoding calls Goal through reset/3 and checks that the result is failure; in this

case the pattern argument of reset/3 is irrelevant. If the outcome is anything else,

not(Goal) clearly fails as required.

Encoding findall/3 Section 4 presents larger applications of disjunctive delimited con-

trol, but our encoding of findall/3 with already gives an idea of the expressive power:

findall(Pattern,Goal,List) :-

reset(Pattern,Goal,Result),

findall_result(Result,Pattern,List).

findall_result(failure,_,[]).

findall_result(success(PatternCopy,DisjCont),Pattern,List) :-

List = [Pattern|Tail],

findall(PatternCopy,DisjCont,Tail).

This encoding is structured around a reset/3 call of the given Goal followed by a case

analysis of the result. Here we assume that shift/1 is not called in Goal, which is a

reasonable assumption for plain findall/3.

Encoding !/0 Our encoding of the !/0 operator illustrates the use of shift/1:

cut :- shift(cut).

scope(Goal) :-

copy_term(Goal,Copy),

reset(Copy,Copy,Result),

scope_result(Result,Goal,Copy).
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scope_result(failure,_,_) :-

fail.

scope_result(success(DisjCopy,DisjGoal),Goal,Copy) :-

Goal = Copy.

scope_result(success(DisjCopy,DisjGoal),Goal,Copy) :-

DisjCopy = Goal,

scope(DisjGoal).

scope_result(shift(cut,ConjGoal,DisjCopy,DisjGoal),Goal,Copy) :-

Copy = Goal,

scope(ConjGoal).

The encoding provides cut/0 as a substitute for !/0. Where the scope of regular cut

is determined lexically, we use scope/1 here to define it dynamically. For instance, we

encode

p(X,Y) :- q(X), !, r(Y).

p(4,2). as

p(X,Y) :- scope(p_aux(X,Y)).

p_aux(X,Y) :- q(X), cut, r(Y).

p_aux(4,2).

The logic of cut is captured in the definition of scope/1; all the cut/0 predicate does is

request the execution of a cut with shift/1.

In scope/1, the Goal is copied to avoid instantiation by any of the branches. The

copied goal is executed inside a reset/3 with the copied goal itself as the pattern. The

scope result/3 predicate handles the result:

• failure propagates with fail;

• success creates a disjunction to either unify the initial goal with the now instan-

tiated copy to propagate bindings, or to invoke the disjunctive continuation;

• shift(cut) discards the disjunctive continuation and proceeds with the conjunc-

tive continuation only.

Encoding Non-Backtrackable State Disjunctive delimited control can also be used to ex-

press custom dataflows, such as non-backtrackable state. For the sake of simplicity, we

encode here a single nameless global state. This can be easily extended to support SIC-

Stus Prolog’s blackboard primitives or SWI-Prolog’s non-backtrackable variables.

The state is read and written with respectively get/1 and put/1. For instance, predi-

cate q/1 writes 1 to the global state in the first clause, fails and backtracks to the next

clause to read and use the value of the global state.

q(_) :- put(1), fail.

q(Y) :- get(X), Y is X + 1.

The run state(Goal,Initstate,FinalState) is the analog of DCG’s phrase/3 for

running a goal with a given initial value for the global state and resulting final value.

?- run_state(q(Y),0,S).

Y = 2,

S = 1.
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Fig. 1. Encoding of non-backtrackable state.

As this query illustrates, the value 1 written in the first branch survives the backtracking

and is still available in the second branch.

Figure 1 shows the implementation of this non-backtrackable state interface. Both

get/1 and put/1 are defined in terms of shift/1. The run state/3 predicate calls the

goal inside reset/3 and subsequently handles the result with state handler/5. The

latter auxiliary predicate essentially acts as a meta-interpreter for the non-deterministic

structure of the goal without resorting to Prolog’s underlying backtracking. This way it

avoids backtracking over the global state.

3 Meta-Interpreter Semantics

We provide an accessible definition of disjunctive delimited control in the form of a meta-

interpreter. Broadly speaking, it consists of two parts: the core interpreter, and a top

level predicate to initialise the core and interpret the results.

3.1 Core Interpreter

Figure 2 defines the interpreter’s core predicate, eval(Conj, PatIn, Disj,

PatOut, Result). It captures the behaviour of reset(Pattern,Goal,Result) where

the goal is given in the form of a list of goals, Conj, together with the alternative branches,

Disj. The latter is renamed apart from Conj to avoid conflicting instantiations.

The pattern that identifies the variables of interest (similar to findall/3) is present

in three forms. Firstly, PatIn is an input argument that shares the variables of interest
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Fig. 2. Meta-Interpreter Core.

with Conj (but not with Disj). Secondly, PatOut outputs the instantiated pattern when

the goal succeeds or suspends on a shift/1. Thirdly, the alternative branches Disj are

of the form alt(BranchPatIn,BranchGoal) with their own copy of the pattern.

When the conjunction is empty (1–4), the output pattern is unified with the input

pattern, and success/2 is populated with the information from the alternative branches.

When the first conjunct is true/0 (5–6), it is dropped and the meta-interpreter pro-

ceeds with the remainder of the conjunction. When it is a composite conjunction (G1,G2)

(7–8), the individual components are added separately to the list of conjunctions.

When the first conjunct is fail/0 (9–10), the meta-interpreter backtracks explicitly by

means of auxiliary predicate backtrack/3 (see Fig. 3). If there is no alternative branch,

it sets the Result to failure.

Otherwise, it resumes with the alternative branch. Note that by managing its own

backtracking, eval/5 is entirely deterministic with respect to the meta-level Prolog

system.

When the first conjunct is a disjunction (G1;G2) (11–14), the meta-interpreter adds

(a renamed apart copy of) (G2,Conj) to the alternative branches with disjoin/3 (see

Fig. 3) and proceeds with [G1|Conj].
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Fig. 3. Auxiliary Predicates for Meta-Interpreter Core.

Note that we have introduced a custom built-in conj(Conj) that turns a list of goals

into an actual conjunction. It is handled (15–17) by prepending the goals to the current

list of conjuncts, and never actually builds the explicit conjunction.

When the first goal is shift(Term) (18–21), this is handled similarly to an empty

conjunction, except that the result is a shift/4 term which contains Term and the

remainder of the conjunction in addition the branch information.

When the first goal is a reset(RPattern,RGoal,RResult) (22–27), the meta-

interpreter sets up an isolated call to eval/5 for this goal. When the call returns, the

meta-interpreter passes on the results and resumes the current conjunction Conj. Notice

that we are careful that this does not result in meta-level failure by meta-interpreting

the unification.

Finally, when the first goal is a call to a user-defined predicate (28–33), the meta-

interpreter collects the bodies of the predicate’s clauses whose head unifies with the call.

If there are none, it backtracks explicitly. Otherwise, it builds an explicit disjunction with

disjoin clauses (see Fig. 3), which it pushes on the conjunction stack.

An example execution trace of the interpreter can be found in (Vandenbroucke and

Schrijvers 2021, Appendix C).

3.2 Toplevel

The toplevel(Goal)-predicate (see Fig. 4) initialises the core interpreter with a conjunc-

tion containing only the given goal, the pattern and pattern copy set to (distinct) copies

of the goal, and an empty disjunction. It interprets the result by non-deterministically

producing all the answers to Goal and signalling an error for any unhandled shift/1.

3.3 Performance Discussion

Our meta-interpreter is an executable specification that allows prototyping new language

features on top of disjunctive control. Yet, it clearly has scalability issues. Notably, the
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Fig. 4. Meta-Interpreter Toplevel.

interpreter makes use of copy term/2 at every disjunction. This can easily lead to a

quadratic runtime on its own. Moreover, several applications (like our encoding of cut)

add further uses of copy term/2 on top of that.

These scalability issues can be partly mitigated by providing native (e.g., WAM-level)

support for disjunctive control. We expect that more significant (algorithmic) gains can

be obtained by providing native support for new language features implemented with

delimited control, effectively moving them from the prototyping stage to the production

stage. This way unnecessary overhead, that stems from the generic nature of disjunctive

control, can be removed in favour of exploiting feature-specific properties. An example

of a language feature that has undergone a similar evolution is SWI-Prolog’s tabling

(Desouter et al. 2015), which was originally implemented with conjunctive delimited

control and pure Prolog datastructures, and later several of its components were re-

implemented in C for greater performance.

4 Case Studies

To illustrate the usefulness and practicality of our approach, we present two case stud-

ies that use the new reset/3 and shift/1: branch-and-bound search and probalistic

programming in both the PRISM and ProbLog flavors.

4.1 Branch-and-Bound: Nearest Neighbour Search

Branch-and-bound is a well-known general optimisation strategy, where the solutions in

certain areas or branches of the search space are known to be bounded. Such branches

can be pruned, when their bound does not improve upon a previously found solution,

eliminating large swaths of the search space in a single stroke.

We provide an implementation1 of branch-and-bound (see Figure 5) that is generic, i.e.,

it is not specialised for any application. In particular it is not specific to nearest neighbour

search, the problem on which we demonstrate the branch-and-bound approach here.

1 The code in Figures 5 and 6 uses if-then-else ( -> ; ) which is not supported by the meta-interpreter.
We use it here to simplify the presentation, as the code could be easily re-written without if-then-else.
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Fig. 5. Branch-and-Bound Effect Handler.

The framework requires minimal instrumentation: it suffices to begin every prunable

branch with bound(V), where V is a lower bound on the values in the branch.2

1. If the Goal succeeds normally (i.e., Result is success), then Data contains a new

solution, which is only accepted if it is an improvement over the existing Value.

The handler then tries the next Branch.

2. If the Goal calls bound(V), V is compared to the current best Value:

• if it is less than the current value, then Cont could produce a solution that

improves upon the current value, and thus must be explored. The alternative

Branch is disjoined to Cont, and DataCopy is restored to Data (ensuring that

a future reset/3 copies the right variables);

• if it is larger than or equal to the current value, then Cont can be safely

discarded.

3. Finally, if the goal fails entirely, Min is the current minimum Value.

Nearest Neighbour Search The code in Figure 6 shows how the branch and bound frame-

work efficiently solves the problem of finding the point (in a given set) that is nearest to

a given target point on the Euclidean plane.

The run nn/3 predicate takes a point (X,Y), a Binary Space Partitioning (BSP)-tree3

that represents the set of points, and returns the point, nearest to (X,Y). The algorithm

implemented by nn/3 recursively descends the BSP-tree. At each node, it first tries the

partition to which the target point belongs, then the point in the node, and finally

the other partition. For this final step we can give an easy lower bound: any point in

the other partition must be at least as far away as the (perpendicular) distance from the

given point to the partition boundary.

2 The framework searches for a minimal solution.
3 A BSP-tree is a tree that recursively partitions a set of points on the Euclidean plane, by picking
points and alternately splitting the plane along the x- or y-coordinate of those points. Splitting along
the x-coordinate produces an xsplit/3 node, a split along the y-coordinate produces a ysplit/3 node.
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Fig. 6. 2D Nearest Neighbour Search with Branch-and-Bound.

(1,0.1)
(0,0)

(0.5,0.5)

(-0.5,0.5)

(-0.75,-0.5)

Fig. 7. Nearest-Neighbour Search using a BSP-tree.

As an example, we search for the point nearest to (1, 0.1) in the set {(0.5, 0.5), (0, 0),
(−0.5, 0), (−0.75,−0.5)}. Figure 7 shows a BSP-tree containing these points, the solid

lines demarcate the partitions. The algorithm visits the points (0.5, 0.5) and (0, 0), in that

order. The shaded area is never visited, since the distance from (1,0.1) to the vertical

boundary through (0, 0) is greater than the distance to (0.5, 0.5) (1 and about 0.64). The

corresponding call to run nn/3 is:

?- BSP = xsplit((0,0),

ysplit((-0.5,0),leaf,xsplit((-0.75,-0.5),leaf,leaf)),

ysplit((0.5,0.5),leaf,leaf)),

run_nn((1,0.1),BSP,(NX,NY)).

NX = NY, NY = 0.5.
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4.2 Probabilistic Programming

Probabilistic programming languages (PPLs) are programming languages designed for

probabilistic modelling. In a probabilistic model, components behave in a variety of

ways—just like in a non-deterministic model—but do so with a certain probability.

Instead of a single deterministic value, the execution of a probabilistic program results

in a probability distribution of a set of values. This result is produced by probabilistic

inference (Wood et al. (2014)), for which there are many strategies and algorithms, the

discussion of which is out of scope here. Instead, we focus on two concrete probabilistic

logic programming languages: PRISM (Sato (2009)) and PRISM (Fierens et al. (2015)).

PRISM-Style Probabilistic Logic Programming A PRISM program looks just like a reg-

ular Prolog program extended with two special predicates:

• values x(Switch,Values,Probabilities) This predicate defines a probabilis-

tic switch Switch, that can assume a value from Values with the probability

that is given at the corresponding position in Probabilities (the contents of

Probabilities should sum to one).

• msw(Switch,Value) This predicate samples a value Value from a switch Switch.

For instance, if the program contains a switch declared as values x( coin,

[h,t], [0.4,0.6]), then msw(coin,V) assigns h (for heads) to V with proba-

bility 0.4, and t (for tails) with probability 0.6. Remark that each distinct call

to msw leads to a different sample from that switch. For instance, in the query

msw(coin,X),msw(coin,Y), the outcome could be either (X = h, Y = h),(X =

t, Y = t), (X = h, Y = t) or (X = t,Y = h).

Consider the following PRISM program, the running example for this section:

values_x(coin1,[h,t],[0.5,0.5]).

values_x(coin2,[h,t],[0.4,0.6]).

twoheads :- msw(coin1,h),msw(coin2,h).

onehead :- msw(coin1,V), (V = t, msw(coin2,h) ; V = h).

This example defines two predicates: twoheads which is true if both coins are heads,

and onehead which is true if either coin is heads. However, note the special structure

of onehead: PRISM requires the exclusiveness condition, that is, branches of a disjunc-

tion cannot be both satisfied at the same time. The simpler goal msw(coin1,heads) ;

msw(coin2, heads) violates this assumption.

The code in Figure 8 interprets this program. Line 1 defines msw/2 as a simple shift.

Next, lines 3–5 define the prism/1 wrapper predicate that computes and prints a goal’s

probability. Lines 7–10 install a reset/3 call over the goal, and analyse the result. The

result is analysed in the remaining lines: A failure never succeeds, and thus has success

probability 0.0 (line 12). Conversely, a successful computation has a success probability of

1.0 (line 13). Finally, the probability of a switch (lines 14–18) is the sum of the probability

of the remainder of the program given each possible value of the switch multiplied with

the probability of that value, and summed with the probability of the alternative branch.
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Fig. 8. An implementation of PRISM-style probabilistic logic programming.

The predicate msw prob finds the joint probability of all choices. It iterates over the

list of values, and sums the probability of their continuations.

msw_prob(_,_,[],[],Acc,Acc).

msw_prob(V,C,[Value|Values],[Prob|Probs],Acc,ProbOfMsw) :-

prob((V = Value,C),ProbOut),

msw_prob(V,C,Values,Probs,Prob*ProbOut + Acc,ProbOfMsw).

Now, we can compute the probabilities of the two predicates above:

?- toplevel(prism(twoheads)).

twoheads: 0.25

?- toplevel(prism(onehead)).

onehead: 0.75

ProbLog-Style Probabilistic Logic Programming We now encode the loop-free, definite

fragment of ProbLog on top of the above encoding of PRISM. Our encoding uses a

different syntax for probabilistic facts than ProbLog:4

% Original ProbLog % Encoding

0.5 :: heads1. values_x(heads1,[t,f],[0.5,0.5]).

?- heads1. ?- fact(heads1).

For the declaration of probabilistic facts we use the PRISM notation (because that is

what we are leveraging underneath). For the invocation of these facts, we use a special

fact/1 predicate.

4 This could be hidden with syntactic sugar based on term expansion.
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Fig. 9. An implementation of PRISM-style probabilistic logic programming.

Semantically, ProbLog distinguishes itself on several accounts from PRISM. Consider

the following variant of twoheads/0.

twoheads1 :- fact(heads1), fact(heads1).

PRISM assigns the probability 0.25 to twoheads1 because it treats the two occurrences

of heads1 as independent samples. In contrast, ProbLog treats them as referring to the

same sample and thus assigns probability 0.5 to twoheads1.

ProbLog also does not require the branches of disjunctions to be mutually exclusive.

Consider the following variant of onehead/0.

onehead1 :- fact(heads1); fact(heads1).

In PRISM, onehead1 is not well-defined because the two branches are not exclusive.

ProbLog in contrast considers onehead1 to be true when heads1 is true, which has

probability 50%. The second branch does not affect the probability; it is redundant.

We implement this ProbLog semantics in the problog/1 predicate as a “pre-processor”

for the prism/1 encoding of PRISM. Hence, a toplevel ProbLog goals G is meant to be

called as prism(problog(G)).

The main work of problog/1 is done by problog/2 which keeps track of a list Pc of

F-V pairs of already sampled probabilistic facts F and their sampled value V; initially this

list is empty. The problog/2 predicate calls the current goal with reset/3 and analyzes

the result. In case of success or failure, it propagates that success or failure, which means

it will be handled by prism/1.

In case the goal calls a probabilistic fact with fact/1, this results in a shift/1 which is

intercepted by reset/3 and handled in one of two ways. If the fact was already sampled

before and its value is thus available in the Pc list, the computation proceeds with that
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value. Otherwise, the msw/2 predicate is used to sample the fact’s value, which is stored

in the Pc list for future uses, and the computation proceeds accordingly. The treatment

of msw/2 and working out the probabilities is delegated to prism/1.

The interplay between problog/1 and prism/1 is somewhat subtle. So let us consider

what happens in the case of the two example queries above.

• fact(heads1), fact(heads1) The first occurrence of heads1 appeals to

msw(heasd1,V), but the second only observes the already sampled value. Hence,

prism only sees one sampling and assigns probability 0.5.

?- solutions(prism(problog(twoheads1))).

problog(twoheads1): 0.5

• fact(heads1); fact(heads1) The first occurrence of heads1 appeals to

msw(heasd1,V) and essentially rearranges the goal to

?- prism(

msw(heads1,V),

problog((V = t ; fact(heads1)), [heads1-V])

).

When the sampling yields value t, the V = t unification in the left branch suc-

ceeds and the alternative branch is discarded. When the sampling yields value f,

the unification fails and the right branch is executed: The second and remaining

occurrence of fact(heads1) now consults the recorded f value—rather than sam-

pling again—and also fails because it is not t. Hence, overall there is one success

and this success involved one sampling with probability 0.5.

?- solutions(prism(problog(onehead1))).

problog(onehead1): 0.5

5 Properties of the Meta-Interpreter

In this section, we establish two important correctness properties of our meta-interpreter

with respect to standard SLD resolution. Together these establish that disjunctive de-

limited control is a conservative extension. This means that programs that do not use

the feature behave the same as before.

The proofs of these properties are in (Vandenbroucke and Schrijvers 2021, Ap-

pendix A). The first theorem establishes the soundness of the meta-interpreter, i.e.,

if a program (not containing shift/1 or reset/3) evaluates to success, then an SLD-

derivation of the same answer must exist.

Theorem 1 (Soundness)

For all lists of goals [A1, . . . , An], terms α, β, γ, ν, variables P,R conjunctions B1, . . . , Bm;

C1, . . . , Ck and substitutions θ, if

?− eval([A1, . . . , An], α, alt(β, (B1, . . . , Bm)), P,R).

P = ν,R = success(γ,C1 , . . . ,Ck ).
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and the program contains neither shift/1 nor reset/3, then SLD-resolution5 finds the

following derivation:

← (A1, . . . , An, true); (α = β,B1, . . . , Bm)
...

�
(with solution θ s.t. αθ = ν)

Conversely, we want to argue that the meta-interpreter is complete, i.e., if SLD-derivation

finds a refutation, then meta-interpretation—provided that it terminates—must find the

same answer eventually. The theorem is complicated somewhat by the fact that the first

answer that the meta-interpreter arrives at might not be the desired one due to the order

of the clauses in the program. To deal with this problem, we use the operator ?-p, which

is like ?-, but allows a different permutation of the program in every step.

Theorem 2 (Completeness)

For any goal ← A1, . . . , An, if it has solution θ, then

?-p eval([A1, . . . , An], α, alt(β, (B1, . . . , Bm)), P,R).

P = success(γ, (C1, . . . , Ck)), R = αθ.

Together, these two theorems show that our meta-interpreter is a conservative exten-

sion of the conventional Prolog semantics.

6 Related Work

We briefly discuss the main areas of related work.

Continuations in λ-Prolog Perhaps most closely related to our work is that of

Brisset and Ridoux (1993), who present a continuation-passing style semantics for λ-

Prolog. Their semantics distinguishes three different continuations: the classic success

and failure continuations, and a third “cut failure” continuation which cut uses to over-

write the failure continuation with. They also expose the first two continuations, through

the well-known call-with-current-continuation operator from functional programming for

the success continuation and an analog operator for the failure continuation. They illus-

trate how the latter can be used to make cut work appropriately for meta-calls.

A syntactic difference with our work is that they provide two seperate operators to

capture the success and failure continuation rather than a single one. More importantly,

their operators capture the full continuation while ours capture delimited continuations.

Filinski (1996) has shown that the latter are more expressive than the former.

Conjunctive Delimited Control Disjunctive delimited control is the culmination of a line

of research on mechanisms to modify Prolog’s control flow and search, which started

with the hook-based approach of Tor (Schrijvers et al. (2014a)) and was followed by the

development of conjunctive delimited control for Prolog (Schrijvers et al. (2013; 2014b)).

5 Standard SLD-resolution, augmented with disjunctions and conj/1 goals.
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Fig. 10. Encoding of conjunctive delimited control.

The listing of Figure 10 shows that disjunctive delimited control entirely subsumes

conjunctive delimited control. It encodes the conjunctive reset conj reset/3 in terms

of our disjunctive reset/3, while using the same shift/1. The conjunctive behaviour is

recovered by disjoining the captured disjunctive branch. We believe that Tor is similarly

superseded.

Abdallah (2017) presents a higher-level interface for (conjunctive) delimited control on

top of that of Schrijvers et al. (2013). In particular, it features prompts, first conceived

in a Haskell implementation by Dyvbig et al. (2005), which allow shifts to dynamically

specify up to what reset to capture the continuation. We believe that it is not difficult to

add a similar prompt mechanism on top of our disjunctive version of delimited control.

Interoperable Engines Tarau and Majumdar (2009)’s Interoperable Engines propose

engines as a means for co-operative coroutines in Prolog. An engine is an independent

instance of a Prolog interpreter that provides answers to the main interpreter on request.

The predicate new engine(Pattern,Goal,Interactor) creates a new engine with

answer pattern Pattern that will execute Goal and is identified by Interactor. The

predicate get(Interactor,Answer) has an engine execute its goal until it produces an

answer (either by proving the Goal, or explicitly with return/1). After this predicate

returns, more answers can be requested, by calling get/2 again with the same engine

identifier. The full interface also allows bi-directional communication between engines,

but that is out of scope here.

Figure 11 shows that we can implement the get/2 engine interface in terms of delimited

control (the full code is available in the online repository).The opposite, implementing

disjunctive delimited control with engines, seems impossible as engines do not provide

explicit control over the disjunctive continuation. Indeed, get/2 can only follow Prolog’s

natural left-to-right control flow and thus we cannot, e.g., run the disjunctive continuation

before the conjunctive continuation, which is trivial with disjunctive delimited control.

Functional Programming Models of Nondeterminism and Backtracking Prolog-style non-

determinism, and in particular its backtracking approach, have been widely studied from

a Functional Programming perspective and various abstraction mechanisms have been

proposed to capture it.

Carlsson (1984) has shown how to implement Prolog-style backtracking with a sin-

gle “success” continuation. A decade later, Gudeman (1992) uses a second “failure”
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Fig. 11. Interoperable Engines in terms of delimited control.

continuation in the denotational semantics of the goal-oriented Icon language to conve-

niently express control flow manipulations.

Wadler (1985) has shown how to encode backtracking with lazy lists, Spivey (1990)

noticed that this fit the category theoretical structure of monads which was further

expanded upon by Wadler (1990). Later, Hinze (2012) has shown that the lazy list monad

and the two-continuation approach, which also has monadic structure, are two equivalent

representations obtained from the same adjunction.

Another related development is that of algebraic effects & handlers, pioneered by

Plotkin and Pretnar (2013), a high-level mechanism for modelling side effects such as

nondeterminism. Kammar et al. (2013) have shown that this mechanism can be imple-

mented both in terms of delimited control and of the so-called free monad. The latter

reifies the computation as a tree-like data structure. We can find precursors of this ap-

proach in Curry’s encapsulated search tree (Braßel et al. (2004)) and the monadic con-

straint programming framework (Schrijvers et al. (2009)), which both expose an explicit

search tree that can be manipulated to obtain various search strategies.

Tabling without non-bactrackable variables Tabling (Swift and Warren (2012);

Santos Costa et al. (2012)) is a well-known technique that eliminates the sensitivity

of SLD-resolution to clause and goal ordering, allowing a larger class of programs to

terminate. As a bonus, it may improve the run-time performance (at the expense of

increased memory consumption).

One way to implement tabling—with minimal engineering impact to the Prolog

engine—is the tabling-as-a-library approach proposed by Desouter et al. (2015). This

approach requires (global) mutable variables that are not erased by backtracking to

store their data structures in a persistent manner. With the new reset/3 predicate, this
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is no longer needed, as (non-backtracking) state can be implemented in directly with

disjunctive delimited control.

Probabilistic Logic Programming The implementation techniques used by existing proba-

bilistic logic programming systems use more elaborate and sophisticated approaches than

the lightweight technique we have presented. PRISM is implemented on top of B-Prolog

(Sato and Kameya (2001)) and uses its tabling mechanism to execute programs that

are transformed to collect rather than execute msw/2 calls. Based on the answer tables,

support graphs are constructed from which the probabilities are computed.

The first version of ProbLog (Kimmig et al. (2011)) used a similar tabling-based ap-

proach to collect all the proofs of a goal and post-process these. The present version

of ProbLog (Fierens et al. (2015)) converts a program to a weighted boolean formula,

then converts this to a circuit in deterministic, decomposable negation normal form

(Darwiche (2004)) which can be directly evaluated with structural recursion.

7 Conclusion and Future Work

We have presented disjunctive delimited control, an extension to delimited control that

takes Prolog’s non-deterministic nature into account. This is a conservative extension that

enables implementing disjunction-related language features and extensions as a library.

In future work, we plan to explore a WAM-level implementation of disjunctive delim-

ited control, inspired by the stack freezing functionality of tabling engines, to gain access

to the disjunctive continuations efficiently. Similarly, the use of copy term/2 necessitated

by the current API has a detrimental impact on performance, which might be overcome

by a sharing or shallow copying scheme.

Inspired by the impact of conjunctive delimited control, which has brought tabling

to SWI-Prolog, we believe that further development of disjunctive delimited control is

worthwhile. Indeed, it has the potential of bringing powerful disjunctive control abstrac-

tions like branch-and-bound search to a wider range of Prolog systems.
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