ENDOMORPHISM RINGS OF QUASI-INJECTIVE MODULES

B. L. OSOFSKY

Y. Utumi (14 and 15) obtained some interesting results on self-injective rings. He showed that, if R is right self-injective, then so is R/J, where J is the Jacobson radical of R. Also, if R is right self-injective and regular, then R is left self-injective \Leftrightarrow for any set of orthogonal idempotents $\{e_i\}$, $\prod_i e_i R$ is an essential extension of $\sum_i \bigoplus e_i R$. This note extends these results to endomorphism rings of quasi-injective modules.

Let R be a ring with identity 1, M_R a unital right R-module. M_R is called injective if it is a direct summand of every R-module containing it. The following are well-known properties of injective modules (see 1, Chapter 1).

(I.1) A direct summand of an injective module is injective.

(I.2) A finite direct sum of injective modules is injective.

(I.3) If $A_R \subseteq B_R$, and $f: A \to M$, where M is injective, then f extends to a map $f': B \to M$.

(I.4) If for any right ideal I of R and map $f: I \to M$, there is an $m \in M$ such that f(x) = mx for all $x \in I$, then M is injective.

 M_R is called an essential extension of N_R , written $M' \supseteq N$ or $N \subseteq' M$, if $M \supseteq N$ and for all $K_R \subseteq M$, $K \cap N = 0 \Leftrightarrow K = 0$. Every M_R has an injective essential extension called the injective hull of M. Every injective module containing M contains an isomorphic copy of this injective hull. (See Eckmann and Schopf 2.)

 N_R is called closed in M_R if N_R has no essential extension in M_R . It is called complemented in M_R if there exists $B_R \subseteq M$ such that N is a maximal element in the set of all submodules of M which have zero intersection with B.

 M_R is called quasi-injective if, for all $N_R \subseteq M_R$ and all $f: N \to M$, f extends to a map from M to M. This condition is weaker than injectivity. For example, any simple module is quasi-injective but not necessarily injective.

LEMMA 1. Let $N_R \subseteq M_R$. Then N is closed in $M \Leftrightarrow N$ is complemented in M.

Proof. This is an immediate consequence of Proposition 1.7 of Miyashita (9).

LEMMA 2. Any closed submodule of a quasi-injective module M is quasiinjective and a direct summand of M.

Proof. This is Proposition 4.3 of (9).

Received November 15, 1966. This research was partially supported by the National Science Foundation under grant GP-4226.

B. L. OSOFSKY

COROLLARY 3. Let N_R be a closed submodule of the quasi-injective module M_R . Let $P \subseteq M$, f: $P \to N$. Then f extends to a map from M to N.

Proof. Extend f to a map from M to M and follow this by a projection onto the direct summand N.

LEMMA 4. Let M be quasi-injective, $N \subseteq M$. Then there is a direct summand P of M such that $P' \supseteq N$.

Proof. By Zorn's lemma, one can find a maximal essential extension P of N in M. Since $K' \supseteq P' \supseteq N$ implies $K' \supseteq N$, P is closed. By Lemma 2, P is a direct summand of M.

If M, N, and P are as in Lemma 4, P will be called a quasi-injective closure of N in M. Unlike the injective hull of N, quasi-injective closures of N in distinct quasi-injective modules need not be isomorphic. However, two quasiinjective closures P and P' of N in M must be isomorphic. For the identity of N extends to a map f from P to P' whose kernel has zero intersection with N. Since $P' \supseteq N$, f is a monomorphism. By (9, Proposition 4.4), $P \approx P'$.

Property I.2 for injective modules does not hold for quasi-injective modules. However, the following weaker version is sufficient for our purpose.

LEMMA 5. Let M be quasi-injective, $M = A \oplus B = C \oplus D$ where $A \cap C = 0$. Then the projection of C on B is a direct summand of B, and $A \oplus C$ is a direct summand of M.

Proof. Let π project M on B with kernel A. Then π restricted to C is a monomorphism. Let $\sigma: \pi(C) \to C$ be its inverse. σ extends to a map: $B \to C$. Then $\sigma\pi$ is the identity of C, so $B = \pi(C) \oplus$ kernel σ . We show that $M = A \oplus C \oplus$ kernel σ .

Let $x \in M$. Then $x = a + \pi(c) + d$ for some $a \in A$, $c \in C$, $d \in \text{kernel } \sigma$. Moreover, $\pi(c) = c - a'$ for some $a' \in A$. Then

$$x = (a - a') + c + d \in A + C + \text{kernel } \sigma,$$

and therefore $A + C + \text{kernel } \sigma = M$.

Let a + c + d = 0, $a \in A$, $c \in C$, $d \in \text{kernel } \sigma$. Then c = -a - d, thus $\pi(c) = -d \in \pi(C) \cap \text{kernel } \sigma = 0$. Thus a + c = 0, and therefore a and c are in $A \cap C = 0$. We conclude that the sum is direct.

A ring R is called regular if every finitely generated right ideal is generated by an idempotent. Every finitely generated left ideal of a regular ring is also generated by an idempotent.

We note that, for any module M_R , $N_R \subseteq M$ is a direct summand of M if and only if there is an idempotent $e = e^2 \in \operatorname{Hom}_R(M, M)$ such that N = eM.

In the following, M will denote a quasi-injective R-module; $\Lambda = \text{Hom}_R(M_R, M_R)$; e, f, and g will denote idempotents in Λ ; J = the Jacobson radical of Λ ; $\overline{\Lambda} = \Lambda/J$; and for $x \in \Lambda$, \overline{x} will denote its image in $\overline{\Lambda}$. If $N_R \subseteq P_R$, where P is a direct summand of M, then E(N) will denote any quasi-injective closure of

N in P. By the above, N is a closed quasi-injective submodule of $M \Leftrightarrow N = eM$ for some $e = e^2 \in \Lambda$.

References to (14) indicate that Utumi's proof goes through with very minor changes.

LEMMA 6. Let $\bar{x} = \bar{x}^2 \in \overline{\Lambda}$. Then there exists an $e = e^2 \in \Lambda$ such that $\bar{x} = \bar{e}$. Proof. See (7), or (14, Corollary 3.2).

We will henceforth write idempotents in $\overline{\Lambda}$ as \overline{e} , \overline{f} , or \overline{g} . Of course, the lifting idempotent need not be a unique idempotent of Λ .

LEMMA 7. $J = \{x \in \Lambda | \text{ kernel } x \subseteq' M\}$, and $\overline{\Lambda}$ is regular.

Proof. See Utumi (11, or 14, Lemma 4.1).

1. Right self-injectivity of $\overline{\Lambda}$. It is well known that Λ need not be a right self-injective ring. For example, the *p*-adic integers equal $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_{p^{\infty}},\mathbb{Z}_{p^{\infty}})$ are not self-injective. However, if J = 0, then Λ_{Λ} must be injective. (See Johnson and Wong (6).) Moreover, if M = R, $\Lambda = R$, then M is injective by I.4 and $\overline{\Lambda_{\Lambda}}$ is injective by Utumi's theorem. In this section we show that Utumi's result is true in general; that is, the quasi-injectivity of M implies injectivity of $\overline{\Lambda_{\Lambda}}$.

LEMMA 8. Let $\bar{e}\Lambda \cap \bar{f}\Lambda = 0$. Then there exists a $g = g^2 \in \Lambda$ such that $f\Lambda = g\Lambda$ and $\bar{g}\bar{e} = 0$.

Proof. Since $\overline{\Lambda}$ is regular by Lemma 7, $\Lambda = \overline{e}\overline{\Lambda} \oplus \overline{f}\overline{\Lambda} \oplus \overline{I}$. Let $\overline{f}\overline{\Lambda} = \overline{h}\overline{\Lambda}$, $\overline{e}\overline{\Lambda} \oplus \overline{I} = (\overline{1} - \overline{h})\overline{\Lambda}$ for $h = h^2 \in \Lambda$. Then $\overline{h}\overline{f} = \overline{f}$, $\overline{f}\overline{h} = \overline{h}$, and

$$\bar{h} = \bar{h}\bar{f} + \bar{h}(\bar{1} - \bar{f}) = \bar{f} + \bar{f}\bar{h}(\bar{1} - \bar{f}).$$

Set g = f + fh(1 - f). Then $g\Lambda = f\Lambda$, $g^2 = g$, and $\bar{g} = \bar{h}$, thus

$$\bar{e} = (\bar{1} - \bar{h})\bar{e} + \bar{g}\bar{e} \Rightarrow \bar{g}\bar{e} = 0.$$

LEMMA 9. $N \subseteq' M \Rightarrow eN \subseteq' eM$ for all $e = e^2 \in \Lambda$.

Proof. This is (14, Lemma 2.2) with right ideals replaced by submodules of M. Let $eM \supseteq K$, $K \cap eN = 0$. Let $y \in K \cap N$. Then y = ey since $K \subseteq eM$, and therefore $y \in eN \cap K = 0$. Hence K = 0 since $N \subseteq' M$.

LEMMA 10. Let $\bar{e}, \bar{f} \in \Lambda$, $\bar{e}\Lambda \cap \bar{f}\Lambda = 0$. Then $eM \cap fM = 0$, $e\Lambda \cap f\Lambda = 0$, and $e\Lambda + f\Lambda = g\Lambda$ for some $g = g^2 \in \Lambda$.

Proof. By Lemma 8, we may assume that $f\bar{e} = 0$. Then $fe \in J$. By Lemma 7, $N = \text{kernel } fe \subseteq M$. Then $eN \cap fM = 0$, so by Lemma 9, $eM \cap fM = 0$. (See 14, Lemma 3.4.) Since $x \in e\Lambda \cap f\Lambda$ takes M to $eM \cap fM$, $e\Lambda \cap f\Lambda = 0$. Moreover, $eM \oplus fM$ is a direct summand of M by Lemma 5. Hence there is a $g = g^2 \in \Lambda$ such that $eM \oplus fM = gM$. ge = e and gf = f, so $g\Lambda \supseteq e\Lambda + f\Lambda$. Let π_1 project M on eM with kernel fM + (1 - g)M, π_2 project M on fMwith kernel eM + (1 - g)M. Then $g = e\pi_1 + f\pi_2 \in e\Lambda + f\Lambda$. Thus

$$e\Lambda + f\Lambda = g\Lambda.$$

LEMMA 11. Let $\{e_i | i \in \mathscr{I}\}$ be idempotents in Λ such that $\sum \overline{e}_i \overline{\Lambda}$ is direct. Then $\sum e_i \Lambda$ is direct, $\sum e_i M$ is direct, and if \mathscr{I} is finite, $\sum e_i \Lambda = e \Lambda$ for some $e = e^2 \in \Lambda$, where $eM = \sum \bigoplus e_i M$.

Proof. Since independence of modules depends only on finite sums, it suffices to consider only the case when \mathscr{I} is finite. If \mathscr{I} has only one element, the lemma is true. Now assume the lemma for all sets of n-1 idempotents e_i . Then if $\sum_{i=1}^{n} \bar{e}_i \bar{\Lambda}$ is direct,

$$\sum_{i=1}^{n-1} e_i \Lambda = e' \Lambda, \qquad e' M = \sum_{i=1}^{n-1} e_i M,$$

and the sums are direct. Since

$$\sum_{i=1}^{n} \bar{e}_{i} \overline{\Lambda} = \bar{e}' \overline{\Lambda} \oplus \bar{e}_{n} \overline{\Lambda},$$

by Lemma 10, $e' \Lambda \cap e_n \Lambda = 0$, and

$$\sum_{i=1}^{n} \oplus e_{i}\Lambda = e'\Lambda \oplus e_{n}\Lambda = e\Lambda$$

for some $e = e^2 \in \Lambda$, where

$$eM = e'M \oplus e_nM = \sum_{i=1}^n \oplus e_iM.$$

THEOREM 12. $\overline{\Lambda}_{\overline{\Lambda}}$ is injective.

Proof. Let I be a right ideal of $\overline{\Lambda}$, $f: I \to \overline{\Lambda}$. Let $\{\overline{e}_i | i \in \mathscr{I}\}$ be a maximal set of idempotents in I such that $\sum \overline{e}_i \overline{\Lambda}$ is direct. Then $I' \supseteq \sum_{i \in \mathscr{I}} \overline{e}_i \overline{\Lambda}$, since $\overline{x}\overline{\Lambda} \cap \sum_{i \in \mathscr{I}} \overline{e}_i \overline{\Lambda} = 0$ implies $\overline{x}\overline{\Lambda} + \sum_{i \in \mathscr{I}} \overline{e}_i \overline{\Lambda}$ is a direct sum. Since $\overline{\Lambda}$ is regular by Lemma 7, $\overline{x}\overline{\Lambda} = \overline{f}\overline{\Lambda}$ for some $\overline{f} = \overline{f}^2 \in \overline{\Lambda}$. Then $\overline{f} = 0$ by the maximality of $\{\overline{e}_i | i \in \mathscr{I}\}$.

By Lemma 11, $\sum_{i \in \mathscr{I}} e_i \Lambda$ is direct. Hence we may define a Λ -homomorphism $\phi: \sum_{i \in \mathscr{I}} e_i \Lambda \to \Lambda$ by $\phi(e_i) = x_i e_i$ for all $i \in \mathscr{I}$, where x_i is any element in Λ such that $f(\bar{e}_i) = \bar{x}_i \bar{e}_i$.

Define $\psi: \sum_{i \in \mathscr{I}} e_i M \to M$ by

$$\psi\left(\sum_{j=1}^{m} e_{j}m_{j}\right) = \sum_{j=1}^{m} \phi(e_{j})m_{j}$$

 ψ is an *R*-homomorphism if it is well-defined. Let $\sum_{j=1}^{m} e_j m_j = 0$. By Lemma 11, $\sum_{j=1}^{m} e_j \Lambda = e \Lambda$ for some $e = e^2 \in \Lambda$. Then $e_j = e e_j$, and

$$\psi\left(\sum_{j=1}^{m} e_{j}m_{j}\right) = \sum_{j=1}^{m} \phi(e_{j})m_{j} = \sum_{j=1}^{m} \phi(e)e_{j}m_{j}$$
$$= \phi(e)\sum_{j=1}^{m} e_{j}m_{j} = 0,$$

thus ψ is well-defined. Since M is quasi-injective, ψ extends to an element $\lambda \in \Lambda$. Then for all $u \in M$,

$$\lambda e_i(u) = \lambda(e_i(u)) = \psi(e_i(u)) = \phi(e_i)(u) = x_i e_i(u).$$

Then $\bar{\lambda}\bar{e}_i = \bar{x}_i\bar{e}_i = f(\bar{e}_i)$ for all $i \in \mathscr{I}$, and $(\bar{\lambda} - f)\sum_{i \in \mathscr{I}}\bar{e}_i\bar{\Lambda} = 0$. Let $\bar{x} \in I$, and set $K = \{\bar{z} \in \bar{\Lambda} | \bar{x}\bar{z} \in \sum_{i \in \mathscr{I}}\bar{e}_i\bar{\Lambda}\}$. Then $(\bar{\lambda}\bar{x} - f(\bar{x}))K = 0$. Since

$$I' \supseteq \sum_{i \in \mathscr{I}} \vec{e}_i \overline{\Lambda}, \qquad \overline{\Lambda}' \supseteq K.$$

Let $\overline{\Lambda}(\overline{\lambda}\overline{x} - f(\overline{x})) = \overline{\Lambda}\overline{e}$, where $\overline{e} = \overline{e}^2$. Then $\overline{e}\overline{\Lambda} \cap K = 0$, so $\overline{e}\overline{\Lambda} = 0$ and $f(\overline{x}) = \overline{\lambda}\overline{x}$ for all $\overline{x} \in I$. Then $\overline{\Lambda}\overline{\Lambda}$ is injective by I.4.

The argument used in proving Theorem 12 is basically that of Johnson and Wong; see (6).

We have as immediate corollaries the theorems whose proofs were modified to prove Theorem 1.

COROLLARY 13 (Utumi). Let R be a right self-injective ring. Then R/J(R) is a right self-injective ring.

COROLLARY 14 (Johnson-Wong). Let M_R be quasi-injective, and $\Lambda = \text{Hom}_R(M_R, M_R)$ regular. Then Λ_{Λ} is injective.

As in Utumi's work, we can show that an arbitrary set of orthogonal idempotents in $\overline{\Lambda}$ lifts orthogonally to Λ . Indeed, the following lemma and theorem are a minor modification of (14, Theorem 4.9).

LEMMA 15. Let $\sum \bar{e}_i \overline{\Lambda}$ be direct, and $eM' \supseteq \sum e_i M$. Then $\bar{e} \overline{\Lambda}' \supseteq \sum \bar{e}_i \overline{\Lambda}$.

Proof. Since $\overline{\Lambda}$ is regular, we need only show any non-zero right ideal generated by an idempotent intersects $\sum \overline{e}_i \overline{\Lambda}$ non-trivially. Let $\overline{f} \in \overline{e} \overline{\Lambda}$, $\overline{f} \overline{\Lambda} \cap \sum \overline{e}_i \overline{\Lambda} = 0$. By Lemma 11, $fM \oplus \sum e_i M$ is a direct sum. Since $ef - f \in J$, by Lemma 7 there is an $N \subseteq' M$ such that (ef - f)N = 0. Hence $fN \subseteq eM$. Since $eM' \supseteq \sum e_i M$, $fN' \supseteq fN \cap \sum e_i M = 0$. Thus fN = 0. By Lemma 9, $fM' \supseteq fN = 0$, so fM = 0. Then $\overline{f} = 0$ and $\overline{e} \overline{\Lambda}' \supseteq \sum \overline{e}_i \overline{\Lambda}$.

THEOREM 16. Let $\{\bar{e}_i | i \in \mathscr{I}\}$ be a set of orthogonal idempotents in $\overline{\Lambda}$. Then there exists $\{f_i | i \in \mathscr{I}\} \subseteq \Lambda$ of orthogonal idempotents such that $\bar{f}_i = \bar{e}_i$.

Proof. By Lemma 11, $\sum e_i M$ is direct. Let $eM = E(\sum e_i M)$. For $i \in \mathscr{I}$, iet $g_i M = E(\sum_{j \neq i} e_j M)$ be a quasi-injective closure of $\sum_{j \neq i} e_j M$ in eM. Then $e_i M \cap \sum_{j \neq i} e_j M = 0 \Rightarrow e_i M \cap g_i M = 0$ so

$$M = e_i M \oplus g_i M \oplus (1 - e) M = e_i M \oplus (1 - e_i) M.$$

By Lemma 5,

$$M = e_i M \oplus g_i M \oplus (1 - e_i)(1 - e) M \oplus K,$$

where $K \subseteq (1 - e_i)M$. Since $(1 - e) = e_i(1 - e) + (1 - e_i)(1 - e)$, K = 0. Now let f_i project M on e_iM with kernel $g_iM \oplus (1 - e_i)(1 - e)M$. Then $f_i^2 = f_i, e_i f_i = f_i, f_i e_i = e_i$, and if $i \neq j, f_i e_j = 0$ so $f_i f_j = f_i e_i f_j = 0$. Thus $\{f_i \mid i \in \mathscr{I}\}$ are orthogonal idempotents, and $e_i \Lambda = f_i \Lambda, \ \bar{e}_i \overline{\Lambda} = \bar{f}_i \overline{\Lambda}$ for all i. By Lemma 15, $\bar{g}_i \overline{\Lambda}' \supseteq \sum \bar{e}_j \overline{\Lambda}$. Since $\bar{f}_i (\sum_{j \neq i} \bar{e}_j \overline{\Lambda}) = (\sum_{j \neq i} \bar{f}_i \bar{e}_j \overline{\Lambda}) = 0$, we have, as in the proof of Theorem 12, that $\bar{f}_i (\bar{g}_i \overline{\Lambda}) = \bar{e}_i (\bar{g}_i \overline{\Lambda}) = 0$. Moreover, $\bar{f}_i (\overline{1} - \bar{e}_i) (\overline{1} - \bar{e}) = 0$. Hence $(\overline{1} - \bar{f}_i) \overline{\Lambda} \supseteq \bar{g}_i \overline{\Lambda} \oplus (\overline{1} - \bar{e}_i) (\overline{1} - \bar{e}) \overline{\Lambda}$. Since

$$\overline{\Lambda} = \tilde{e}_i \overline{\Lambda} \oplus \bar{g}_i \overline{\Lambda} \oplus (\overline{1} - \bar{e}_i) (\overline{1} - \bar{e}) \overline{\Lambda},$$

$$(\overline{1} - \bar{f}_i) \overline{\Lambda} = (\overline{1} - \bar{e}_i) \overline{\Lambda} = \bar{g}_i \overline{\Lambda} \oplus (\overline{1} - \bar{e}_i) (\overline{1} - \bar{e}) \overline{\Lambda}.$$

Then

$$\bar{f}_i = \bar{f}_i \bar{e}_i + \bar{f}_i (\overline{1} - \bar{e}_i) = \bar{f}_i \bar{e}_i = \overline{(f_i e_i)} = \bar{e}_i.$$

2. Left self-injectivity of $\overline{\Lambda}$. Let $\{e_i | i \in \mathscr{I}\}$ be a family of orthogonal idempotents of Λ . Then there exists a map $\phi: M \to \prod_{i \in \mathscr{I}} e_i M$ given by $\phi(m) = \langle e_i m \rangle$. ϕ is an isomorphism between $\sum_{i \in \mathscr{I}} e_i M \subseteq M$ and

$$\sum_{i \in \mathcal{I}} \bigoplus e_i M \subseteq \prod_{i \in \mathcal{I}} e_i M.$$

 ϕ is then a monomorphism on any essential extension of $\sum e_i M$ in M, in particular on $E(\sum e_i M)$. As in Utumi's work (12), we investigate when ϕ is onto.

LEMMA 17. (i) ϕ is onto \Leftrightarrow for all $f: \sum \Lambda e_i \to \Lambda M$, there exists an $m \in M$ such that $f(\lambda) = \lambda m$ for all $\lambda \in \sum \Lambda e_i$.

(ii) ϕ onto \Rightarrow for all $f: \sum \Lambda e_i \rightarrow \Lambda \Lambda$, there exists a $\gamma \in \Lambda$ such that $f(\lambda) = \lambda \gamma$ for all $\lambda \in \sum \Lambda e_i$.

Proof. (i) Let ϕ be onto, and let $f: \sum \Lambda e_i \to M, f(e_i) = e_i x_i$. Let $\langle e_i x_i \rangle = \phi(m)$. Then $e_i m = e_i x_i = f(e_i)$ for all $i \in \mathscr{I}$, so $\lambda m = f(\lambda)$ for all $\lambda \in \sum \Lambda e_i$.

Conversely, let every $f: \sum \Lambda e_i \to M$ be given by right multiplication by some $m \in M$. Let $\langle e_i x_i \rangle \in \prod e_i M$. Define $f: \sum \Lambda e_i \to M$ by $f(e_i) = e_i x_i$. Then there exists $m \in M$ with $e_i m = e_i x_i$, so $\phi(m) = \langle e_i x_i \rangle$.

(ii) Let $f: \sum \Lambda e_i \to \Lambda$, $f(e_i) = e_i \lambda_i$. Define $\gamma \in \Lambda$ by $\gamma(x) = \phi^{-1} \langle e_i \lambda_i x \rangle$ for all $x \in M$. Then $e_i \gamma(x) = e_i \lambda_i(x)$ for all $x \in M$, $i \in \mathscr{I}$, so $e_i \gamma = e_i \lambda_i = f(e_i)$ for all $i \in \mathscr{I}$.

LEMMA 18. Let ϕ be onto for every set $\{e_i | i \in \mathscr{I}\}$ of orthogonal idempotents. Let $\{N_j | j \in \mathscr{J}\}$ be a family of independent submodules of M. Then $\prod N_j ' \supseteq \sum N_j$. Moreover, if M in injective, then $\prod N_j ' \subseteq \sum N_j$ for every set of independent submodules implies ϕ is onto for every set of orthogonal idempotents.

Proof. Let $\{N_j | j \in \mathscr{J}\}\$ be a family of independent submodules of M, and let $eM = E(\sum_{j \in \mathscr{J}} E(N_j))$. Let N_j^* be a quasi-injective closure of $\sum_{i \neq j} N_i$ in eM. Let e_j project M on $E(N_j)$ with kernel $N_j^* + (1 - e)M$. Then $\{e_j | j \in \mathscr{J}\}\$ is a set of orthogonal idempotents, and $e_j e = e_j$ for all j. Let $\langle e_j x_j \rangle \in \Pi e_j M$. Since ϕ is onto, there exists $m \in M$ such that $\phi(m) = \langle e_j x_j \rangle$. Then $\phi(em) = \langle e_j em \rangle = \langle e_j m \rangle$, so ϕ restricts to an isomorphism from eM to $\prod_{j \in \mathscr{J}} e_j M$. Then $\Pi e_j M' \supseteq \sum e_j M$. Since $e_j M' \supseteq N_j$ for all j, $\sum e_j M' \supseteq \sum N_j$. Hence $\sum N_j \subseteq' \Pi N_j \subseteq \Pi e_j M$. Conversely, assume M is injective. Let $\{e_i | i \in \mathscr{I}\}$ be a set of orthogonal idempotents of Λ . Then $E(\sum e_i M)$ is injective, so $\phi(E(\sum e_i M))$ is a direct summand of $\prod e_i M$. Thus $\prod e_i M' \supseteq \sum e_i M$ implies ϕ is onto.

LEMMA 19. Let S be a right self-injective regular ring. Then S is left selfinjective \Leftrightarrow for every set $\{e_i | i \in \mathscr{I}\}$ of orthogonal idempotents and $f: \sum Se_i \to S$, there is an $m \in S$ such that f(u) = um for all $u \in \sum Se_i$.

Proof. See Utumi (15, § 3).

THEOREM 20. Let ϕ be onto for every orthogonal set of idempotents $\{e_i | i \in \mathscr{I}\} \subseteq \Lambda$. Then $\overline{A} \wedge \overline{A}$ is injective.

Proof. By Theorem 12, $\overline{\Lambda_{\Lambda}}$ is injective. Hence we need only show that for any set $\{\bar{e}_i | i \in \mathscr{I}\}$ of orthogonal idempotents of $\overline{\Lambda}$, and $f: \sum \overline{\Lambda} \bar{e}_i \to \overline{\Lambda}$, there exists $\bar{\gamma} \in \Lambda$ with $f(\bar{e}_i) = \bar{e}_i \bar{\gamma}$ for all $i \in \mathscr{I}$.

By Theorem 16, we may assume that $\{e_i | i \in \mathscr{I}\}\$ are orthogonal idempotents of Λ . Let $f(\bar{e}_i) = \bar{e}_i \bar{\lambda}_i$. By Lemma 17 (ii), there exists $\gamma \in \Lambda$ such that $e_i \gamma = e_i \lambda_i$ for all $i \in \mathscr{I}$. Then $\bar{e}_i \bar{\gamma} = \bar{e}_i \bar{\lambda}_i = f(\bar{e}_i)$ for all $i \in \mathscr{I}$. Lemma 19 then shows that $\bar{\Lambda} \bar{\Lambda}$ is injective.

COROLLARY 21. If M is injective, then $\Pi N_i' \supseteq \sum N_i$ for any independent family of submodules of M implies $\overline{\Lambda} \overline{\Lambda}$ is injective.

Proof. Apply Lemma 18 and Theorem 20.

We note that ϕ is not always onto, even if $\overline{\Lambda\Lambda}$ is injective. Let $M_Z = \sum \bigoplus Z_{p^{\infty}}$, where the sum is over all primes p. Then M is injective, $\Lambda = \prod p$ -adic integers is commutative, so $\overline{\Lambda\Lambda}$ is injective, but $\prod Z_{p^{\infty}}$ is not an essential extension of M. This same example shows that the converse to Lemma 17 (ii) is false.

The hypothesis M injective cannot be removed from the second part of Lemma 18. For let R be a direct product of fields $\prod F_i$, and let $M = \sum F_i$. Then M is quasi-injective, $\prod F_i' \supseteq \sum F_i$, but ϕ is clearly not onto.

3. Singular submodule equal to 0. For each $x \in M$, $N \subseteq M$, let

 $(N:x)_R = \{r \in R \mid xr \in N\}, \qquad (N:x)_\Lambda = \{\lambda \in \Lambda \mid \lambda x \in N\}.$

 $Z(M_R) = \{x \in M | (0:x)_R \subseteq' R_R\}, \qquad Z(\Lambda M) = \{x \in M | (0:x)_\Lambda \subseteq' \Lambda \Lambda\}.$

Then $Z(M_R)$ $(Z(_{\Lambda}M))$ is a submodule of M_R $(_{\Lambda}M)$.

In this section we will assume that $Z(M_R) = 0$. We can then get nicer forms of the theorems of § 2.

LEMMA 22. $Z(M_R) = 0$ implies J = 0. Hence $\Lambda = \overline{\Lambda}$.

Proof. Let $\lambda \in J$. Then kernel $\lambda \subseteq' M$ by Lemma 2. Let $x \in M$. Then $(0 : \lambda x)_R = (\text{kernel } \lambda : x)_R \subseteq' R$ so $\lambda x \in Z(M_R) = 0$. Hence $M = \text{kernel } \lambda$ so $\lambda = 0$.

LEMMA 23. Let $x \in M$, E(xR) = eM. Then $\lambda x = 0 \Leftrightarrow \lambda e = 0$ for all $\lambda \in \Lambda$. Proof. If $\lambda e = 0$, then $\lambda(ex) = \lambda x = 0$.

Let $\lambda x = 0$. For $y \in M$, $(xR : ey)_R \subseteq' R_R$ and $\lambda ey(xR : ey)_R = 0$. Hence $\lambda ey \in Z(M_R) = 0$ so $\lambda e = 0$.

Corollary 24. $Z(_{\Lambda}M) = 0.$

Proof. Let $0 \neq x \in M$, E(xR) = eM. Then $(0:x)_{\Lambda} \cap \Lambda e = 0$ by Lemma 23.

THEOREM 25. If $Z(M_R) = 0$, ${}_{\Lambda}M$ is injective $\Leftrightarrow \phi$ is onto for all $\{e_i | i \in \mathscr{I}\}$ orthogonal idempotents.

Proof. By Lemma 17, ϕ is onto \Leftrightarrow for $f: \sum \Lambda e_i \to {}_{\Lambda}M$ there exists $m \in M$ such that $f(\lambda) = \lambda m$ for all $\lambda \in \sum \Lambda e_i$. It is then clear that ${}_{\Lambda}M$ injective $\Rightarrow \phi$ is onto.

Let ϕ be onto for all $\{e_i \mid i \in \mathscr{I}\}$, ${}_{\Lambda}I \subseteq \Lambda, f: I \to M$. Let $\{\Lambda x_i\}$ be a maximal set of independent principal subideals of I. By Theorem 20, ${}_{\Lambda}\Lambda$ is injective. Let Λe be an injective hull of I in Λ . Then $\sum \Lambda x_i + \Lambda(1-e)$ is a direct sum, and since $\Lambda = \overline{\Lambda}$ is regular, $I' \supseteq \sum \Lambda x_i$ so $\Lambda' \supseteq \sum \Lambda x_i + \Lambda(1-e)$. Let e_i project Λ on Λx_i with kernel the injective hull of $\sum_{j \neq i} \Lambda x_j \oplus \Lambda(1-e)$. Then $\{e_i\} \cup \{1-e\}$ is a set of orthogonal idempotents. If we set f(1-e) = 0, f maps $\sum \Lambda e_i + \Lambda(1-e) \to M$. By Lemma 17, there exists $m \in M$ such that f(u) - um = 0 for all $u \in \sum \Lambda e_i + \Lambda(1-e)$. Let $y \in \Lambda$, and set $\overline{f}(y) = ym$. $\overline{f}: \Lambda \to M$. Let $z \in I$. Then $\Lambda' \supseteq (\sum \Lambda e_i : z)$, and

$$\left(\sum \Lambda e_i : z\right) \left[\bar{f}(z) - f(z)\right] = 0$$

since f and \overline{f} agree on $\sum \Lambda e_i$. Thus $\overline{f}(z) = f(z)$ by Corollary 24, and $_{\Lambda}M$ is injective by I.4.

Even in the case where $Z(M_R) = 0$, we cannot conclude that ${}_{\Lambda}\Lambda$ injective implies ${}_{\Lambda}M$ injective, $M = \sum F_i$, $R = \prod F_i$ is a counterexample to this. Mhere is only quasi-injective, not injective. It is unknown whether one can have $Z(M_R) = 0$, M_R injective, and ${}_{\Lambda}\Lambda$ injective, but not ${}_{\Lambda}M$ injective. We also note that in the above example, ${}_{\Lambda}M$ is quasi-injective. Whether this is always true is also unknown.

References

- 1. H. Cartan and S. Eilenberg, *Homological algebra* (Princeton Univ. Press, Princeton, N.J., 1956).
- 2. B. Eckmann and A. Schopf, Über injektive Moduln, Arch. Math. 4 (1956), 75-78.
- 3. C. Faith, Lectures on injective modules and quotient rings (Springer-Verlag, New York, 1967).
- 4. R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-895.
- 5. Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385–1392.
- 6. R. E. Johnson and E. T. Wong, Self-injective rings, Can. Math. Bull. 2 (1959), 167-173.

902

- 7. Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260-268.
- 8. J. Lambek, On Utumi's ring of quotients, Can. J. Math. 15 (1963), 363-370.
- 9. Y. Miyashita, On quasi-injective modules, J. Fac. Sci. Hokkaido Univ. Ser. I 18 (1965), 158-187.
- 10. J. von Neumann, Continuous geometry (Princeton Univ. Press, Princeton, N.J., 1960).
- 11. Y. Utumi, On a theorem on modular lattices, Proc. Japan Acad. 35 (1959), 16-21.
- 12. On continuous regular rings, Can. Math. Bull. 4 (1961), 63-69.
- ---- On rings of which any one-sided quotient rings are two-sided, Proc. Amer. Math. Soc. 14 (1963), 141-147.
- On continuous rings and self injective rings, Trans. Amer. Math. Soc. 118 (1965), 158–173.
- 15. On the continuity and self-injectivity of a complete regular ring, Can. J. Math. 18 (1966), 404-412.

Rutgers, The State University, New Brunswick, N.J.