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ON PURIFIABLE SUBSOCLES OF A PRIMARY ABELIAN 
GROUP 

JOHN IRWIN AND JAMES SWANEK 

Introduction. In this paper we shall investigate an interesting connection 
between the structure of G/S and G, where S is a purifiable subsocle of G. The 
results are interesting in the light of a counterexample by Dieudonné [3, p. 142] 
who exhibits a primary abelian group G, where G/S is a direct sum of cyclic 
groups, but G is not a direct sum of cyclic groups. Surprisingly, the assumption 
of the purifiability of S allows G to inherit the structure of G/S. In particular, 
we show that if G/S is a direct sum of cyclic groups and 5 supports a pure 
subgroup H, then G is a direct sum of cyclic groups and if is a direct summand 
of G which is of course a direct sum of cyclic groups. It is also shown that if G/S 
is a direct sum of torsion-complete groups and 51 supports a pure subgroup H, 
then G is a direct sum of torsion-complete groups and H is a direct summand 
of G, and is also a direct sum of torsion-complete groups. Using some homo-
logical machinery, we show that if G/S is totally projective and S supports a 
pa-pure subgroup H where a is an appropriately chosen ordinal, then G is 
totally projective and H is a direct summand of G, and is also totally projective. 
Consequently, if G/S is a direct sum of countable groups and 5 supports a 
pa-pure subgroup H, where a is an appropriate ordinal, then G is a direct sum 
of countable groups and H is a, direct summand of G, and is also a direct sum 
of countable groups. 

All groups will be assumed to be additively written primary abelian groups 
for some prime p. We shall follow the notation and terminology of Fuchs [3]. 
All references to topological concepts will be relative to the p-adic topology on 
a primary group G which has the base {pnG} at 0. Let ht(x) denote the general­
ized ^-height of x, that is the least ordinal a such that x (? pa+1Gf where 
p«+*G = p{paG) and paG = fï/3<« pfiG if a is a limit ordinal. 

Definition 1. The subgroup H is pa-pure in G if and only if the exact sequence 
H >-> G -» GIH is in £aExt(G/H, H), where a is an ordinal. 

Note that ^ -pur i ty is the same as the classical concept of purity for 
^-primary abelian groups. See [14]. 

Definition 2. The subsocle S supports the subgroup H if and only if H[p] — S. 

Theorem 1 below will serve as a pattern and will motivate this paper. It is 
interesting in that its proof involves an application of the Kulikov criterion. 
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Definition 3. The sub socle S satisfies the Kulikov criterion in the group G if and 
only if S can be expressed as the union of an ascending sequence of subgroups 
of bounded height. 

Recall that Kulikov has shown that a ^-group G is a direct sum of cyclic 
groups if and only if its socle G[p] satisfies the Kulikov criterion. 

THEOREM 1. If G/S is a direct sum of cyclic groups and S is a sub socle which 
supports a pure subgroup H, then G is a direct sum of cyclic groups and H is a 
summand of G. 

Proof. Notice that H/S c^. pH is a subgroup of G/S, and so pH is a direct sum 
of cyclic groups. Consequently, H is a direct sum of cyclic groups. See [2] for 
results relating pnG and G. To complete the proof, it is sufficient to show that 
G/H is a direct sum of cyclic groups. We show that (G/H)[p] satisfies the 
Kulikov criterion. Consider the map ir: G/S —> G/H. Using the purity of H, 
notice that G[p]/S maps under T onto the socle of G/H. Since G/S is a direct 
sum of cyclic groups, any subsocle of G/S satisfies the Kulikov criterion in G/S. 
Consequently, G[p]/S satisfies the Kulikov criterion in G/S. Using the purity 
of H, it can be shown that ir(G[p]/S) = (G/H)[p] satisfies the Kulikov 
criterion in G/H. Consequently, G/H is a direct sum of cyclic groups. 

It is possible to extend the above result, as Theorem 2 and its corollaries will 
indicate. First, we consider a definition. 

Definition 4. The subsocle S is purifiable in G if and only if there is a pure 
subgroup H where H[p] = 5. 

THEOREM 2. Let G be a p-primary group and S a subsocle which supports a pure 
subgroup H. If G[p]/S is purifiable in G/S, then H is a direct summand of G. 

We need the following three lemmas to prove the above theorem. 

LEMMA 3. Let G be a p-primary group and S a subsocle of G. If S supports a pure 
subgroup H, then 

(i) (G/S)[p] = (H/S)[p] ® G[p]/S, 
(ii) 7r: G/S —> G/H is height-preserving on G[p]/S, 

(iii) Ifh + Se (H/S)[p] andk + S G G[p]/S, then 

ht(h + k + S) = min{ht(& + S), ht(* + 5)}. 

Proof, (i) To see that (H/S)[p] P\ G[p]/S = 0, it is sufficient to notice that 
H C\ G[p] = S. Suppose that x + S G (G/S)[p]. Map x + S onto x + H. By 
[9, p. 15, Lemma 1], there is a y G G\p] such that x + H = y + H and 
x — y = h G H. Hence x + S = (h + S) + (y + S) and so 

(G/S)[p] = (H/S)[p] ® G[p]/S. 

(ii) Suppose that x + S G G[p]/S and x + H = pnz + H. Using the purity 
of H, we can assume that pnz G G[p] and pnz Q S. Consequently, 

x - pnz£ H[p] = 5 
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and so x + S = pnz + S. Therefore, w: G/S —> G/H is height-preserving on 
G[pys. 

(iii) follows from (ii). 

LEMMA 4. Let G be a p-primary group with pure subgroups H and Kf where 
G[p] = H[p] ® K[p}. If ht (A + k) = min{ht(A), ht (A)} for all h Ç H[p] and 
k £ K[p], then G = H ® K. 

Proof. By [9, p. 20, Lemma 7], H ® K is a pure subgroup of G. Since 
(H ® K)[p] = G[p], we have G = H ® K by [9, p. 24, Lemma 12]. 

Finally, we need the following lemma of Hill and Megibben [6]. 

LEMMA 5. Let G be a p-primary group containing subgroups H and K, where H 
is neat in G. Then (H + K)[p] = H[p] + K[p] if and only ifHC\K is neat in K. 

Proof of Theorem 2. By hypothesis, G[p]/S supports a pure subgroup K/S. 
By Lemmas 3 and 4, G/S = H/S ® K/S and so G = H + K. Since H is pure 
in G and (H + K)[p] = H[p] + K[p\, then by Lemma 5, H C\ K is neat in K. 
Now H r\ K = S, and consequently S must be pure in K. Thus, 5 is a summand 
of K and so G = H + K = H + (S ® Kf) = H ® K'. 

COROLLARY 6. Let G satisfy the hypothesis of Theorem 2; then G = H ® (G/H) 
and G/S = H/S ® G/H ~ pH ® (G/H). 

COROLLARY 7. If G/S is a direct sum of cyclic groups and S supports H pure 
in Gy then G is a direct sum of cyclic groups and H is a summand of G. 

Proof. Notice that every subsocle of a direct sum of cyclic groups is 
purifiable. 

Definition 5. The group G is pure-complete if and only if every subsocle of G 
is purifiable. 

Definition 6. The reduced ^-group G is quasi-closed if and only if the closure 
of any pure subgroup is a pure subgroup. 

COROLLARY 8. If G/S is quasi-closed and S supports a pure subgroup H, then G 
is quasi-closed and H is a summand of G which is quasi-closed. 

Proof. Quasi-closed groups are pure complete and summands of quasi-closed 
groups are quasi-closed. Also, pG quasi-closed implies that G is quasi-closed. 
See [6] for additional properties of quasi-closed groups. 

COROLLARY 9. If G/S is pure complete and S supports a pure subgroup H, 
then G is pure complete and H is a summand of G. 

Proof. G[p]/S supports a pure subgroup K/S. By Lemmas 3 and 4, 
G/S = H/S ® K/S. Note that if G = A ® B and G is pure complete, then 
G/B[p] ~A ® pB is pure complete. Consequently, (G/S)/(K/S)[p] is pure 
complete. But (G/S)/(K/S)[p] = (G/S)/(G[p]/S) ~ G/G[p]~pG. Now G is 
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pure complete if and only if pnG is pure complete for some integer n. Con­
sequently, G is pure complete. 

COROLLARY 10. / / G/S is pure complete, S supports a pure subgroup H, and 
G/S has an unbounded direct sum of cyclic groups summand, then G has an 
unbounded direct sum of cyclic groups summand and H is a summand of G. 

Proof. O'Neill has proved in [15] that if G = H © K and G has an unbounded 
direct sum of cyclic groups summand, then either H or K has such a summand. 
If pH has an unbounded direct sum of cyclic groups summand, then H has such 
a summand. 

Definition 7. A group G is essentially indecomposable if and only if whenever 
G = H © K, either H or K is bounded. 

COROLLARY 11. If G/S is pure complete, essentially indecomposable, and S 
supports a pure subgroup H, then G is essentially indecomposable and H is a 
summand of G. 

Proof. Apply Corollary 6. 

COROLLARY 12. If G/S is a direct sum of torsion-complete groups and S supports 
a pure subgroup H, then G is a direct sum of torsion-complete groups and H is a 
summand of G which is a direct sum of torsion-complete groups. 

Proof. We use the following result which follows from a theorem by Hill [4]. 
If G is a direct sum of torsion-complete groups and G[p] = S © T, where 
ht (s + t) = min{ht(s), ht(£)} for all 5 G S and t 6 T, then S and T support 
summands of G which are direct sums of torsion-complete groups. By Hill's 
result, G[p]/S supports a summand K/S in G/S which is a direct sum of 
torsion-complete groups. 

Hill [4] and Warfield [18] have shown that a summand of a direct sum of 
torsion-complete groups is a direct sum of torsion-complete groups. Note that 
if pH is a direct sum of torsion-complete groups, then H is such a direct sum. 
Consequently, applying Corollary 6 we see that G is a direct sum of torsion-
complete groups and H is a summand of G. 

Definition 8. The group G is semi-complete if and only if G is the direct sum 
of a torsion-complete group and a direct sum of cyclic groups. 

As an immediate consequence of Corollary 12, if G/S is semi-complete and S 
supports a pure subgroup H, then G is semi-complete and H is a summand of G. 
The condition that S supports a pure subgroup H is essential. Dieudonné 
[3, p. 142] has constructed an example where G/S is a direct sum of cyclic 
groups, but G is not such a direct sum. It is also easy to see that G[p]/S is not 
always a purifiable subsocle of G/S. Consider the pure resolution K >-> G-^H, 
where H is a ^-group which is not a direct sum of cyclic groups and G is a 
direct sum of cyclic groups. Let 5 = K\p\. If G[p]/S were purifiable in G/S, 
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then by Theorem 2, K would be a summand of G. But this contradicts the fact 
that H is not a direct sum of cyclic groups. 

Using the concept of large subgroup introduced by Pierce [16], we can relate 
the G/S problem to the class of thick groups and the class of thin groups. 

Definition 9. The subgroup L is a large subgroup of G if and only if L is fully 
invariant and L + B = G for every basic subgroup B of G. 

Definition 10. The group G is thick if and only if for every map/ : G —> J2 Z (pn), 
the kernel contains a large subgroup of G. 

LEMMA 13. If Lis a large subgroup of G and S is a sub socle of G, then (L + S)/S 
contains a large subgroup of G/S. 

Proof. Pierce [16] has shown that a subgroup H contains a large subgroup if 
and only if for each integer k there is an integer nk where (pnkG)[pk] C H. Let k 
and nk be the appropriate integers for L in G. For (L + S)/S in G/S, let 
Nk = nk+1 for each integer k. It is easy to see that (pNk(G/S))[p*] Q (L + S)/S. 
Consequently, (L + S)/S contains a large subgroup of G/S. 

THEOREM 14. G is thick if and only if G/S is thick. 

Proof. Let / : G/S —* ]£ Z(pn) be a map with kernel K/S. Consider the 
composite map 

G-^G/S^^Z(pH). 

G thick implies that K 3 L, where L is large in G. The subgroup K/S contains 
(L + S)/S which contains a large subgroup of G/S. Consequently, G/S is 
thick. The converse follows from Lemma 13 and the following relation: 

G[p]/S ~ G/S -» G/G[p] ~ />G. 

Definition 11. The group G is thin if and only if for every map / : B —> G, 
where 5 is the torsion completion of X) Z(pn), the kernel of/ contains a large 
subgroup of 5 . 

LEMMA 15. The group G/S is thin if and only if G is thin. 

Proof. Richman [17] proved that extensions of thin groups by thin groups are 
thin groups. Applying this to the exact sequence S >-> G -» G/S proves the 
lemma one way. The converse is proved by considering the exact sequence 

G[p]/S w G/S -*> G/G[p] ~ pG. 

Using basic homological techniques, we can gain a further insight into the 
relationship of the structure of G/S to the structure of G. 

Definition 12. The group G is cotorsion if and only if G is a reduced group and 
any extension of G by a torsion-free group splits. 

Definition 13. The group G is a p-adic module if and only if G is a module over 
the ring Rp which is the set of all rational numbers of the form a/6, where b is 
prime to p. 
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LEMMA 16. Let G be a p-adic module. If G/S is cotorsion, then G is cotorsion. 

Proof. It is sufficient to show that Hom(Q, G) = 0 = Ext((), G), where Q is 
the set of rational numbers. Consider the exact sequence 

0 -* Hom((), S) -» Hom(<2, G) -* Hom(<2, G/S) -> Ext(Q, S) -> Ext(Q, G) -> 

Ext(Q, G / S ) - > 0 . 
Since 5 and G/S are cotorsion, the lemma follows. 

Definition 14. The group G is algebraically compact if and only if G is a direct 
summand of every group which contains G as a pure subgroup. 

Definition 15. The subgroup Pext(^4,5) of Ext(A,B) consists of all pure 
extensions of B by A. In fact, Pext(^4, B) is the elements of infinite height of 
Ext ( i4 ,5) . See [3]. 

Note. It is well known that a reduced group G is algebraically compact if and 
only if G is cotorsion and Pext(Q/Z, G) = 0. 

LEMMA 17. Let G be a p-adic module without elements of infinite height. If G/S 
is algebraically compact, then G is algebraically compact. 

Proof. We must show that Horn (Q,G) = 0 = Ext(Q, G) and Pext (Q/Z,G) = 0. 
Since G is necessarily cotorsion (by Lemma 16), the first two conditions follow. 
It is easy to see that G ~ Ext(Q/Z, G) and consequently Pext(<2/Z, G) = 0 
since G has no elements of infinite height. Thus, G is algebraically compact. 

LEMMA 18. Let G be a p-primary group without elements of infinite height and S 
a closed subsocle of G. G is torsion-complete if and only if G/S is torsion-complete. 

Proof. A ^-primary group G is torsion-complete if and only if 

Pext (ZGO, G) - 0. 

Consider the exact sequence 

Ext(Z(£°°), S) >-> Ext(ZO r a) , G) -» Ext(Z(pœ), G/S). 

Now Ext(Z(£°°),S) c^S and the torsion subgroup of Ext(Z(£°°), G) is iso­
morphic to G. Now G1 = 0 and Pext(Z(£°°), G/S) = 0 imply that 

Pext(Z(£œ),G) = 0. 

That is, G/S torsion-complete implies that G is torsion-complete. 

Conversely, Pext(Z(£œ), G) = 0 implies Pext(Z(>œ), G/S) = 0; otherwise, 
since Ext(Z(£°°), G)/S ~ Ext(Z(^°°), G/S), we could construct a ^-divisible 
subgroup of Ext(Z(£œ), G), but Ext(Z(£œ), G) is ^-reduced. 

Note that it is necessary that S be closed. Consider the standard B and let S 
be the socle of a basic subgroup of B ; then clearly B/S is not torsion-complete. 

We can generalize the concept of a direct sum of cyclic groups by considering 
the class of projective and totally projective groups. First we list some 
fundamental results of Nunke [13]. 
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Definition 16. The group G is pa-projective if and only if paExt(G, C) = 0 for 
all groups C. 

Definition 17. The functor ^>aExt is hereditary if and only if each £a-pure 
subgroup of a ^-projective group is ^-projective. 

THEOREM 19 [14, especially p. 163, Theorem 6.3]. If H is pa-pure in G, then 
the following sequences are exact, where C is any abelian group: 

0 -> Hom(C, H) -> Hom(C, G) -> Hom(C, G/H) -* £«Ext(C, H) 

- • £«Ext(C, G) -» £*Ext(C, G/H) 

0 -* Horn (G/H, C) -> Hom(G, C) -» Hom(# , C) -* £«Ext (G/fT, C) 

->£*Ext(G, G) ->£"Ext(tf, C). 

/ / , w addition, paExt is hereditary, then the right-hand maps are epic. 

THEOREM 20 [13, p. 211, Theorem 4.4]. Let (3 g a < 0 + co, where p = 0 or is a 
limit ordinal. Then £aExt is hereditary if and only if /3 = 0 or is the limit of a 
countable ascending sequence of ordinals. 

THEOREM 21 [13, p. 194, Proposition 2.5]. If A is a p-group such that A/p8A is 
pP-projective and p$A is p~*-projective, then A is pP+i'-projective. 

THEOREM 22 [13, p. 200, Proposition 3.1]. If B is pa+l-pure in the pa-projective 
p-group A, then B is a direct summand of A, hence B and A IB are pa-projective. 

THEOREM 23 [13, p. 199, Theorem 2.12]. A p-group is a direct sum of countable 
reduced groups if and only if it is totally projective and has length ^fi , where 12 is 
the first uncountable ordinal. 

Note that a ^-group G is ^"-projective if and only if G is a direct sum of 
cyclic groups. Also, paExt is hereditary for countable ordinals. 

THEOREM 24. If G/S is pa-projective, S supports H which is pa-pure in G, and 
paExt is hereditary, then G is pa-projective. 

Proof. Consider the commutative diagram: 

i IT G 
E\\ H >->G -»77 

Jtl 
(Di) fl g[ || 

„ H j GP G 

Note that £ 2 =fEi are equivalent exact sequences and thus Ex € ^ E x t ^ / i J . i ? ) 
implies E2 £ p"Ext(G/H, H/S) since/(E + E') = JE + JE', where E + E' is 
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the Baer sum of two extensions. By Theorem 19, we obtain the exact sequences 
in the following diagram (D2). 

0 -+ H o m ( | , c) Z Hom(§, c ) 5 H o m ( | , C )^l / E x t ( | , c ) £ / E x t ( | , c) C / E x t ( | , c ) -> 0 

(D2) 1*} g*| /*{ 1*} g*\ /*{ 

0 ^ H o m ( j | , c j C Hom(G, C) ^ Uom(H, C) ^ / E x t ( j | , c j ^ paExt(G, C) Ù paExt(Hf C) -» 0 

where di and d2 are the connecting homomorphisms and 1* is the identity map. 
By the naturality of the maps, diagram (D2) is commutative. G/S being 
^-projective implies that H/S is ^"-projective by considering diagram (D2). 
H/S c^. pH being ^-projective implies that H is ̂ "-projective by Theorem 21. 
By diagram chasing we see that G is ^"-projective. 

If paExt is not hereditary or if S does not support a £"-pure subgroup, we 
obtain the following weaker result. 

LEMMA 25. If G/S is pa-projective, then G is pa+l-projective, where a ^ c o . 

Proof. Consider the exact sequence 

G[p]/S w G/S ^> G/G[p] ~ pG 

which induces the exact sequence 

o-H-G& •c) *««»(§•c) M<f . c ) Miry c) MS- *) M<¥- <) -
Now 

P*Ext(G/G\p], C) * , a p , r / r r , n v 
^ E r t ( G / G W , . 0 H a(Hom(Gb]/5, Q ) ~ T (^ E x t ( G / G M ' C» 

and 

^E x t(^]' c)) e^E x t(l- c) = 0' 
since G/S is ̂ "-projective. Thus 

/ E x t ( ^ , c ) ç a ( H o m ( ^ , c ) ) ^ £ Z,(£) 

since Horn (G[£]/S, C) c^. I I C[£] which is bounded of order p. Consequently, 
£"+1Ext(G/G|>], C) = 0 or £G is £«+^projective and by Theorem 21, G is then 
£"+1-projective. 

Note that the above lemmas cannot in general be sharpened. Dieudonné has 
constructed an example of a ^-primary group G without elements of infinite 
height where G/S is a direct sum of cyclic groups, but G is not a direct sum of 
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cyclic groups. In homological terms, G/S is ^-projective, and consequently G 
is £w+1-projective, but G is not ^-projective. 

Definition 18. The group G is totally projective if and only if G/paG is 
^"-projective for all ordinals a. 

Definition 19. The length of a ^-primary reduced group G is the least ordinal X, 
where pxG = 0. 

LEMMA 26. If G/S is totally projective and S supports a px+1-pure subgroup H> 
where X is the length of G/S> then H is a direct summand of G, and G is totally 
projective. 

Proof. Now H/S is £x+1-pure in G/S which is ^-projective and so by 
Theorem 22, H/S is a summand of G/S. Consequently, G/H is totally projective 
and since H/S ^ pH, H is totally projective. Consider the exact sequence 
H >-> G -» G/H. Now H is £x-pure in G and G/H is ^-projective. Thus, the 
preceding exact sequence splits and H is a summand of G and G is totally 
projective. 

COROLLARY 27. If G/S is a direct sum of countable reduced p-groups and S 
supports a px+l-pure subgroup H, where X is the length of G/S, then H is a 
summand of G, and G is a direct sum of countable reduced p-groups. 

Proof. Use Theorem 23 and Lemma 26. 
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