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ON PURIFIABLE SUBSOCLES OF A PRIMARY ABELIAN 
GROUP 

JOHN IRWIN AND JAMES SWANEK 

Introduction. In this paper we shall investigate an interesting connection 
between the structure of G/S and G, where S is a purifiable subsocle of G. The 
results are interesting in the light of a counterexample by Dieudonné [3, p. 142] 
who exhibits a primary abelian group G, where G/S is a direct sum of cyclic 
groups, but G is not a direct sum of cyclic groups. Surprisingly, the assumption 
of the purifiability of S allows G to inherit the structure of G/S. In particular, 
we show that if G/S is a direct sum of cyclic groups and 5 supports a pure 
subgroup H, then G is a direct sum of cyclic groups and if is a direct summand 
of G which is of course a direct sum of cyclic groups. It is also shown that if G/S 
is a direct sum of torsion-complete groups and 51 supports a pure subgroup H, 
then G is a direct sum of torsion-complete groups and H is a direct summand 
of G, and is also a direct sum of torsion-complete groups. Using some homo-
logical machinery, we show that if G/S is totally projective and S supports a 
pa-pure subgroup H where a is an appropriately chosen ordinal, then G is 
totally projective and H is a direct summand of G, and is also totally projective. 
Consequently, if G/S is a direct sum of countable groups and 5 supports a 
pa-pure subgroup H, where a is an appropriate ordinal, then G is a direct sum 
of countable groups and H is a, direct summand of G, and is also a direct sum 
of countable groups. 

All groups will be assumed to be additively written primary abelian groups 
for some prime p. We shall follow the notation and terminology of Fuchs [3]. 
All references to topological concepts will be relative to the p-adic topology on 
a primary group G which has the base {pnG} at 0. Let ht(x) denote the general
ized ^-height of x, that is the least ordinal a such that x (? pa+1Gf where 
p«+*G = p{paG) and paG = fï/3<« pfiG if a is a limit ordinal. 

Definition 1. The subgroup H is pa-pure in G if and only if the exact sequence 
H >-> G -» GIH is in £aExt(G/H, H), where a is an ordinal. 

Note that ^ -pur i ty is the same as the classical concept of purity for 
^-primary abelian groups. See [14]. 

Definition 2. The subsocle S supports the subgroup H if and only if H[p] — S. 

Theorem 1 below will serve as a pattern and will motivate this paper. It is 
interesting in that its proof involves an application of the Kulikov criterion. 
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Definition 3. The sub socle S satisfies the Kulikov criterion in the group G if and 
only if S can be expressed as the union of an ascending sequence of subgroups 
of bounded height. 

Recall that Kulikov has shown that a ^-group G is a direct sum of cyclic 
groups if and only if its socle G[p] satisfies the Kulikov criterion. 

THEOREM 1. If G/S is a direct sum of cyclic groups and S is a sub socle which 
supports a pure subgroup H, then G is a direct sum of cyclic groups and H is a 
summand of G. 

Proof. Notice that H/S c^. pH is a subgroup of G/S, and so pH is a direct sum 
of cyclic groups. Consequently, H is a direct sum of cyclic groups. See [2] for 
results relating pnG and G. To complete the proof, it is sufficient to show that 
G/H is a direct sum of cyclic groups. We show that (G/H)[p] satisfies the 
Kulikov criterion. Consider the map ir: G/S —> G/H. Using the purity of H, 
notice that G[p]/S maps under T onto the socle of G/H. Since G/S is a direct 
sum of cyclic groups, any subsocle of G/S satisfies the Kulikov criterion in G/S. 
Consequently, G[p]/S satisfies the Kulikov criterion in G/S. Using the purity 
of H, it can be shown that ir(G[p]/S) = (G/H)[p] satisfies the Kulikov 
criterion in G/H. Consequently, G/H is a direct sum of cyclic groups. 

It is possible to extend the above result, as Theorem 2 and its corollaries will 
indicate. First, we consider a definition. 

Definition 4. The subsocle S is purifiable in G if and only if there is a pure 
subgroup H where H[p] = 5. 

THEOREM 2. Let G be a p-primary group and S a subsocle which supports a pure 
subgroup H. If G[p]/S is purifiable in G/S, then H is a direct summand of G. 

We need the following three lemmas to prove the above theorem. 

LEMMA 3. Let G be a p-primary group and S a subsocle of G. If S supports a pure 
subgroup H, then 

(i) (G/S)[p] = (H/S)[p] ® G[p]/S, 
(ii) 7r: G/S —> G/H is height-preserving on G[p]/S, 

(iii) Ifh + Se (H/S)[p] andk + S G G[p]/S, then 

ht(h + k + S) = min{ht(& + S), ht(* + 5)}. 

Proof, (i) To see that (H/S)[p] P\ G[p]/S = 0, it is sufficient to notice that 
H C\ G[p] = S. Suppose that x + S G (G/S)[p]. Map x + S onto x + H. By 
[9, p. 15, Lemma 1], there is a y G G\p] such that x + H = y + H and 
x — y = h G H. Hence x + S = (h + S) + (y + S) and so 

(G/S)[p] = (H/S)[p] ® G[p]/S. 

(ii) Suppose that x + S G G[p]/S and x + H = pnz + H. Using the purity 
of H, we can assume that pnz G G[p] and pnz Q S. Consequently, 

x - pnz£ H[p] = 5 
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and so x + S = pnz + S. Therefore, w: G/S —> G/H is height-preserving on 
G[pys. 

(iii) follows from (ii). 

LEMMA 4. Let G be a p-primary group with pure subgroups H and Kf where 
G[p] = H[p] ® K[p}. If ht (A + k) = min{ht(A), ht (A)} for all h Ç H[p] and 
k £ K[p], then G = H ® K. 

Proof. By [9, p. 20, Lemma 7], H ® K is a pure subgroup of G. Since 
(H ® K)[p] = G[p], we have G = H ® K by [9, p. 24, Lemma 12]. 

Finally, we need the following lemma of Hill and Megibben [6]. 

LEMMA 5. Let G be a p-primary group containing subgroups H and K, where H 
is neat in G. Then (H + K)[p] = H[p] + K[p] if and only ifHC\K is neat in K. 

Proof of Theorem 2. By hypothesis, G[p]/S supports a pure subgroup K/S. 
By Lemmas 3 and 4, G/S = H/S ® K/S and so G = H + K. Since H is pure 
in G and (H + K)[p] = H[p] + K[p\, then by Lemma 5, H C\ K is neat in K. 
Now H r\ K = S, and consequently S must be pure in K. Thus, 5 is a summand 
of K and so G = H + K = H + (S ® Kf) = H ® K'. 

COROLLARY 6. Let G satisfy the hypothesis of Theorem 2; then G = H ® (G/H) 
and G/S = H/S ® G/H ~ pH ® (G/H). 

COROLLARY 7. If G/S is a direct sum of cyclic groups and S supports H pure 
in Gy then G is a direct sum of cyclic groups and H is a summand of G. 

Proof. Notice that every subsocle of a direct sum of cyclic groups is 
purifiable. 

Definition 5. The group G is pure-complete if and only if every subsocle of G 
is purifiable. 

Definition 6. The reduced ^-group G is quasi-closed if and only if the closure 
of any pure subgroup is a pure subgroup. 

COROLLARY 8. If G/S is quasi-closed and S supports a pure subgroup H, then G 
is quasi-closed and H is a summand of G which is quasi-closed. 

Proof. Quasi-closed groups are pure complete and summands of quasi-closed 
groups are quasi-closed. Also, pG quasi-closed implies that G is quasi-closed. 
See [6] for additional properties of quasi-closed groups. 

COROLLARY 9. If G/S is pure complete and S supports a pure subgroup H, 
then G is pure complete and H is a summand of G. 

Proof. G[p]/S supports a pure subgroup K/S. By Lemmas 3 and 4, 
G/S = H/S ® K/S. Note that if G = A ® B and G is pure complete, then 
G/B[p] ~A ® pB is pure complete. Consequently, (G/S)/(K/S)[p] is pure 
complete. But (G/S)/(K/S)[p] = (G/S)/(G[p]/S) ~ G/G[p]~pG. Now G is 
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pure complete if and only if pnG is pure complete for some integer n. Con
sequently, G is pure complete. 

COROLLARY 10. / / G/S is pure complete, S supports a pure subgroup H, and 
G/S has an unbounded direct sum of cyclic groups summand, then G has an 
unbounded direct sum of cyclic groups summand and H is a summand of G. 

Proof. O'Neill has proved in [15] that if G = H © K and G has an unbounded 
direct sum of cyclic groups summand, then either H or K has such a summand. 
If pH has an unbounded direct sum of cyclic groups summand, then H has such 
a summand. 

Definition 7. A group G is essentially indecomposable if and only if whenever 
G = H © K, either H or K is bounded. 

COROLLARY 11. If G/S is pure complete, essentially indecomposable, and S 
supports a pure subgroup H, then G is essentially indecomposable and H is a 
summand of G. 

Proof. Apply Corollary 6. 

COROLLARY 12. If G/S is a direct sum of torsion-complete groups and S supports 
a pure subgroup H, then G is a direct sum of torsion-complete groups and H is a 
summand of G which is a direct sum of torsion-complete groups. 

Proof. We use the following result which follows from a theorem by Hill [4]. 
If G is a direct sum of torsion-complete groups and G[p] = S © T, where 
ht (s + t) = min{ht(s), ht(£)} for all 5 G S and t 6 T, then S and T support 
summands of G which are direct sums of torsion-complete groups. By Hill's 
result, G[p]/S supports a summand K/S in G/S which is a direct sum of 
torsion-complete groups. 

Hill [4] and Warfield [18] have shown that a summand of a direct sum of 
torsion-complete groups is a direct sum of torsion-complete groups. Note that 
if pH is a direct sum of torsion-complete groups, then H is such a direct sum. 
Consequently, applying Corollary 6 we see that G is a direct sum of torsion-
complete groups and H is a summand of G. 

Definition 8. The group G is semi-complete if and only if G is the direct sum 
of a torsion-complete group and a direct sum of cyclic groups. 

As an immediate consequence of Corollary 12, if G/S is semi-complete and S 
supports a pure subgroup H, then G is semi-complete and H is a summand of G. 
The condition that S supports a pure subgroup H is essential. Dieudonné 
[3, p. 142] has constructed an example where G/S is a direct sum of cyclic 
groups, but G is not such a direct sum. It is also easy to see that G[p]/S is not 
always a purifiable subsocle of G/S. Consider the pure resolution K >-> G-^H, 
where H is a ^-group which is not a direct sum of cyclic groups and G is a 
direct sum of cyclic groups. Let 5 = K\p\. If G[p]/S were purifiable in G/S, 
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then by Theorem 2, K would be a summand of G. But this contradicts the fact 
that H is not a direct sum of cyclic groups. 

Using the concept of large subgroup introduced by Pierce [16], we can relate 
the G/S problem to the class of thick groups and the class of thin groups. 

Definition 9. The subgroup L is a large subgroup of G if and only if L is fully 
invariant and L + B = G for every basic subgroup B of G. 

Definition 10. The group G is thick if and only if for every map/ : G —> J2 Z (pn), 
the kernel contains a large subgroup of G. 

LEMMA 13. If Lis a large subgroup of G and S is a sub socle of G, then (L + S)/S 
contains a large subgroup of G/S. 

Proof. Pierce [16] has shown that a subgroup H contains a large subgroup if 
and only if for each integer k there is an integer nk where (pnkG)[pk] C H. Let k 
and nk be the appropriate integers for L in G. For (L + S)/S in G/S, let 
Nk = nk+1 for each integer k. It is easy to see that (pNk(G/S))[p*] Q (L + S)/S. 
Consequently, (L + S)/S contains a large subgroup of G/S. 

THEOREM 14. G is thick if and only if G/S is thick. 

Proof. Let / : G/S —* ]£ Z(pn) be a map with kernel K/S. Consider the 
composite map 

G-^G/S^^Z(pH). 

G thick implies that K 3 L, where L is large in G. The subgroup K/S contains 
(L + S)/S which contains a large subgroup of G/S. Consequently, G/S is 
thick. The converse follows from Lemma 13 and the following relation: 

G[p]/S ~ G/S -» G/G[p] ~ />G. 

Definition 11. The group G is thin if and only if for every map / : B —> G, 
where 5 is the torsion completion of X) Z(pn), the kernel of/ contains a large 
subgroup of 5 . 

LEMMA 15. The group G/S is thin if and only if G is thin. 

Proof. Richman [17] proved that extensions of thin groups by thin groups are 
thin groups. Applying this to the exact sequence S >-> G -» G/S proves the 
lemma one way. The converse is proved by considering the exact sequence 

G[p]/S w G/S -*> G/G[p] ~ pG. 

Using basic homological techniques, we can gain a further insight into the 
relationship of the structure of G/S to the structure of G. 

Definition 12. The group G is cotorsion if and only if G is a reduced group and 
any extension of G by a torsion-free group splits. 

Definition 13. The group G is a p-adic module if and only if G is a module over 
the ring Rp which is the set of all rational numbers of the form a/6, where b is 
prime to p. 
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LEMMA 16. Let G be a p-adic module. If G/S is cotorsion, then G is cotorsion. 

Proof. It is sufficient to show that Hom(Q, G) = 0 = Ext((), G), where Q is 
the set of rational numbers. Consider the exact sequence 

0 -* Hom((), S) -» Hom(<2, G) -* Hom(<2, G/S) -> Ext(Q, S) -> Ext(Q, G) -> 

Ext(Q, G / S ) - > 0 . 
Since 5 and G/S are cotorsion, the lemma follows. 

Definition 14. The group G is algebraically compact if and only if G is a direct 
summand of every group which contains G as a pure subgroup. 

Definition 15. The subgroup Pext(^4,5) of Ext(A,B) consists of all pure 
extensions of B by A. In fact, Pext(^4, B) is the elements of infinite height of 
Ext ( i4 ,5) . See [3]. 

Note. It is well known that a reduced group G is algebraically compact if and 
only if G is cotorsion and Pext(Q/Z, G) = 0. 

LEMMA 17. Let G be a p-adic module without elements of infinite height. If G/S 
is algebraically compact, then G is algebraically compact. 

Proof. We must show that Horn (Q,G) = 0 = Ext(Q, G) and Pext (Q/Z,G) = 0. 
Since G is necessarily cotorsion (by Lemma 16), the first two conditions follow. 
It is easy to see that G ~ Ext(Q/Z, G) and consequently Pext(<2/Z, G) = 0 
since G has no elements of infinite height. Thus, G is algebraically compact. 

LEMMA 18. Let G be a p-primary group without elements of infinite height and S 
a closed subsocle of G. G is torsion-complete if and only if G/S is torsion-complete. 

Proof. A ^-primary group G is torsion-complete if and only if 

Pext (ZGO, G) - 0. 

Consider the exact sequence 

Ext(Z(£°°), S) >-> Ext(ZO r a) , G) -» Ext(Z(pœ), G/S). 

Now Ext(Z(£°°),S) c^S and the torsion subgroup of Ext(Z(£°°), G) is iso
morphic to G. Now G1 = 0 and Pext(Z(£°°), G/S) = 0 imply that 

Pext(Z(£œ),G) = 0. 

That is, G/S torsion-complete implies that G is torsion-complete. 

Conversely, Pext(Z(£œ), G) = 0 implies Pext(Z(>œ), G/S) = 0; otherwise, 
since Ext(Z(£°°), G)/S ~ Ext(Z(^°°), G/S), we could construct a ^-divisible 
subgroup of Ext(Z(£œ), G), but Ext(Z(£œ), G) is ^-reduced. 

Note that it is necessary that S be closed. Consider the standard B and let S 
be the socle of a basic subgroup of B ; then clearly B/S is not torsion-complete. 

We can generalize the concept of a direct sum of cyclic groups by considering 
the class of projective and totally projective groups. First we list some 
fundamental results of Nunke [13]. 
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Definition 16. The group G is pa-projective if and only if paExt(G, C) = 0 for 
all groups C. 

Definition 17. The functor ^>aExt is hereditary if and only if each £a-pure 
subgroup of a ^-projective group is ^-projective. 

THEOREM 19 [14, especially p. 163, Theorem 6.3]. If H is pa-pure in G, then 
the following sequences are exact, where C is any abelian group: 

0 -> Hom(C, H) -> Hom(C, G) -> Hom(C, G/H) -* £«Ext(C, H) 

- • £«Ext(C, G) -» £*Ext(C, G/H) 

0 -* Horn (G/H, C) -> Hom(G, C) -» Hom(# , C) -* £«Ext (G/fT, C) 

->£*Ext(G, G) ->£"Ext(tf, C). 

/ / , w addition, paExt is hereditary, then the right-hand maps are epic. 

THEOREM 20 [13, p. 211, Theorem 4.4]. Let (3 g a < 0 + co, where p = 0 or is a 
limit ordinal. Then £aExt is hereditary if and only if /3 = 0 or is the limit of a 
countable ascending sequence of ordinals. 

THEOREM 21 [13, p. 194, Proposition 2.5]. If A is a p-group such that A/p8A is 
pP-projective and p$A is p~*-projective, then A is pP+i'-projective. 

THEOREM 22 [13, p. 200, Proposition 3.1]. If B is pa+l-pure in the pa-projective 
p-group A, then B is a direct summand of A, hence B and A IB are pa-projective. 

THEOREM 23 [13, p. 199, Theorem 2.12]. A p-group is a direct sum of countable 
reduced groups if and only if it is totally projective and has length ^fi , where 12 is 
the first uncountable ordinal. 

Note that a ^-group G is ^"-projective if and only if G is a direct sum of 
cyclic groups. Also, paExt is hereditary for countable ordinals. 

THEOREM 24. If G/S is pa-projective, S supports H which is pa-pure in G, and 
paExt is hereditary, then G is pa-projective. 

Proof. Consider the commutative diagram: 

i IT G 
E\\ H >->G -»77 

Jtl 
(Di) fl g[ || 

„ H j GP G 

Note that £ 2 =fEi are equivalent exact sequences and thus Ex € ^ E x t ^ / i J . i ? ) 
implies E2 £ p"Ext(G/H, H/S) since/(E + E') = JE + JE', where E + E' is 
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the Baer sum of two extensions. By Theorem 19, we obtain the exact sequences 
in the following diagram (D2). 

0 -+ H o m ( | , c) Z Hom(§, c ) 5 H o m ( | , C )^l / E x t ( | , c ) £ / E x t ( | , c) C / E x t ( | , c ) -> 0 

(D2) 1*} g*| /*{ 1*} g*\ /*{ 

0 ^ H o m ( j | , c j C Hom(G, C) ^ Uom(H, C) ^ / E x t ( j | , c j ^ paExt(G, C) Ù paExt(Hf C) -» 0 

where di and d2 are the connecting homomorphisms and 1* is the identity map. 
By the naturality of the maps, diagram (D2) is commutative. G/S being 
^-projective implies that H/S is ^"-projective by considering diagram (D2). 
H/S c^. pH being ^-projective implies that H is ̂ "-projective by Theorem 21. 
By diagram chasing we see that G is ^"-projective. 

If paExt is not hereditary or if S does not support a £"-pure subgroup, we 
obtain the following weaker result. 

LEMMA 25. If G/S is pa-projective, then G is pa+l-projective, where a ^ c o . 

Proof. Consider the exact sequence 

G[p]/S w G/S ^> G/G[p] ~ pG 

which induces the exact sequence 

o-H-G& •c) *««»(§•c) M<f . c ) Miry c) MS- *) M<¥- <) -
Now 

P*Ext(G/G\p], C) * , a p , r / r r , n v 
^ E r t ( G / G W , . 0 H a(Hom(Gb]/5, Q ) ~ T (^ E x t ( G / G M ' C» 

and 

^E x t(^]' c)) e^E x t(l- c) = 0' 
since G/S is ̂ "-projective. Thus 

/ E x t ( ^ , c ) ç a ( H o m ( ^ , c ) ) ^ £ Z,(£) 

since Horn (G[£]/S, C) c^. I I C[£] which is bounded of order p. Consequently, 
£"+1Ext(G/G|>], C) = 0 or £G is £«+^projective and by Theorem 21, G is then 
£"+1-projective. 

Note that the above lemmas cannot in general be sharpened. Dieudonné has 
constructed an example of a ^-primary group G without elements of infinite 
height where G/S is a direct sum of cyclic groups, but G is not a direct sum of 
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cyclic groups. In homological terms, G/S is ^-projective, and consequently G 
is £w+1-projective, but G is not ^-projective. 

Definition 18. The group G is totally projective if and only if G/paG is 
^"-projective for all ordinals a. 

Definition 19. The length of a ^-primary reduced group G is the least ordinal X, 
where pxG = 0. 

LEMMA 26. If G/S is totally projective and S supports a px+1-pure subgroup H> 
where X is the length of G/S> then H is a direct summand of G, and G is totally 
projective. 

Proof. Now H/S is £x+1-pure in G/S which is ^-projective and so by 
Theorem 22, H/S is a summand of G/S. Consequently, G/H is totally projective 
and since H/S ^ pH, H is totally projective. Consider the exact sequence 
H >-> G -» G/H. Now H is £x-pure in G and G/H is ^-projective. Thus, the 
preceding exact sequence splits and H is a summand of G and G is totally 
projective. 

COROLLARY 27. If G/S is a direct sum of countable reduced p-groups and S 
supports a px+l-pure subgroup H, where X is the length of G/S, then H is a 
summand of G, and G is a direct sum of countable reduced p-groups. 

Proof. Use Theorem 23 and Lemma 26. 

REFERENCES 

1. P . Crawley and B. Jônsson, Refinements for infinite direct decompositions of algebraic 
systems, Pacific J. Math. H (1964), 797-855. 

2. D. Cutler, Quasi-isomorphism for infinite abelian p-groups, Pacific J. Math. 16 (1966), 25-45. 
3. L. Fuchs, Abelian groups (Publishing House of the Hungarian Academy of Sciences, 

Budapest, 1958). 
4. P. D. Hill, The isomorphic refinement theorem for direct sums of closed groups, Proc. Amer. 

Math. Soc. 18 (1967), 913-919. 
5. P. D. Hill and C. K. Megibben, On primary groups with countable basic subgroups, Trans. 

Amer. Math. Soc. 124 (1966), 49-59. 
5# Quasi-closed primary groups, Acta Math . Acad. Sci. Hungar. 16 (1965), 271-274. 
7. J. Irwin and F . Richman, Direct sums of countable groups and related concepts, J. Algebra 2 

(1965), 443-450. 
8. J. Irwin, F . Richman, and E. Walker, Countable direct sums of closed groups, Proc. Amer. 

Math. Soc. 17 (1966), 763-766. 
9. I. Kaplansky, Infinite abelian groups (Univ. Michigan Press, Ann Arbor, 1954). 

10. T. Koyama and J. Irwin, On topological methods in abelian groups, Studies on Abelian 
Groups, Symposium, Montpellier, 1967, pp. 207-222 (Springer, Berlin, 1968). 

11. C. Megibben, Large subgroups and small homomorphisms, Michigan Math . J. 18 (1966), 
153-160. 

12. R. J. Nunke, On the structure of Tor. I I , Pacific J. Math. 22 (1967), 453-464. 
13. Homology and direct sums of countable abelian groups, Math . Z. 101 (1967), 182-212. 
14. Purity and subfunctors of the identity, Topics in Abelian Groups, Proc. Sympos., 

New Mexico State Univ., 1962, pp. 121-171 (Scott, Foresman and Co., Chicago, 
Illinois, 1963). 

https://doi.org/10.4153/CJM-1971-005-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-005-7


PRIMARY ABELIAN GROUPS 57 

15. J. O'Neill, On direct products ofabelian groups, Ph.D. Dissertation, Wayne State University, 
Detroit, Michigan, 1967. 

16. R. S. Pierce, Homomorphisms of primary abelian groups, Topics in Abelian Groups, Proc. 
Sympos., New Mexico State Univ., 1962, pp. 215-310 (Scott, Foresman and Co., 
Chicago, Illinois, 1963). 

17. F . Richman, Thin abelian p-groups, Pacific J. Math. 27 (1968), 599-606. 
18. R. Warfield, Complete abelian groups and direct sum decompositions, Ph.D. Dissertation, 

Harvard University, Cambridge, Massachusetts, 1967. 

Wayne State University, 
Detroit, Michigan; 
Ford Motor Company, 
Dearborn, Michigan 

https://doi.org/10.4153/CJM-1971-005-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-005-7

