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Abstract

This paper is concerned with the behaviour of a Lévy process when it crosses over a
positive level, u, starting from 0, both as u becomes large and as u becomes small. Our
main focus is on the time, τu, it takes the process to transit above the level, and in particular,
on the stability of this passage time; thus, essentially, whether or not τu behaves linearly
as u ↓ 0 or u → ∞. We also consider the conditional stability of τu when the process
drifts to −∞ almost surely. This provides information relevant to quantities associated
with the ruin of an insurance risk process, which we analyse under a Cramér condition.
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1. Introduction

For a random walk S starting from 0 with a positive step length distribution and having
finite mean, the number of steps required to first pass a positive level u, τS

u , say, is, for
large u, asymptotic to a multiple of u, the constant of proportionality being the reciprocal
of the mean step length. More precisely, τS

u /u → 1/c almost surely (a.s.) as u → ∞, and,
further, E τS

u /u → 1/c as u → ∞, where c ∈ (0, ∞) is the expected step length. These express
a kind of long-term linearity of the passage time, and provide useful intuition in applications.
Together with the known, classical, behaviour of other ‘fluctuation’quantities related to passage
over a level, such as the overshoot of the level, and various undershoots, etc., this kind of stability
constitutes one of many well-known properties of the renewal theory of random walks More
generally, properties such as stability of the passage time, etc., have been extended to random
walks on the line. (References and further discussion are given later.)

It is natural to consider carrying the discrete-time results over to a Lévy process (Xt )t≥0,
and this has been done in the literature for some of the fluctuation quantities; see in particular
[17] for stability of the overshoot. Applications of this and related kinds of result abound; we
have in mind, in particular, applications to the insurance risk process; see, e.g. recent results in
[5], [15], [19], [28], and [31]. These authors have tended to concentrate on properties of the
overshoot and undershoots, with less attention paid to the ruin time, τu. But it could be argued
that τu is the most important or at least the most interesting variable, from a practical point of
view.
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Stability of the exit time 713

Our aim in this paper is to set out in detail a comprehensive listing of conditions for the
stability of τu in the Lévy setting. For ‘large-time’ stability, i.e. as u → ∞, the discrete-
time (random walk) results can be consulted to give useful guidance for some of the Lévy
results; some are rather straightforward to transfer, but others again are challenging. We
consider both stability in probability and almost-sure stability of τu/u as u → ∞, both when
lim supt→∞ Xt = ∞ a.s. and when limt→∞ Xt = −∞ a.s.

Even more interesting is the ‘small-time’ stability, i.e. as u → 0, of the passage time.
Here there are of course no corresponding random walks that can be used for guidance, but,
remarkably, small-time results for Lévy processes often parallel large-time results in certain
ways. With this insight and some further analysis we are able to give also a comprehensive
analysis of the small-time stability of τu. Some curious and unexpected results occur (see,
e.g. Remark 2.3). Such results may be thought of as adding to our understanding of the local
properties of Lévy processes.

The setting is as follows. Suppose that X = {Xt : t ≥ 0}, X0 = 0, is a Lévy process
defined on (�, F , P), with triplet (γ, σ 2, �X), �X being the Lévy measure of X, γ ∈ R, and
σ 2 ≥ 0. Thus, the characteristic function of X is given by the Lévy–Khintchine representation,
E(eiθXt ) = et�X(θ), where

�X(θ) = iθγ − σ 2θ2

2
+

∫
R

(eiθx − 1 − iθx1{|x|≤1})�X(dx) for θ ∈ R.

Denote the maximum process by

Xt = sup
0≤s≤t

Xs,

and let
Gt = sup{0 ≤ s ≤ t : Xs = Xs}

be the time of the last maximum prior to time t . Our focus will be on the first passage time
above level u, defined by

τu = inf{t ≥ 0 : Xt > u}, u > 0.

(We adopt the convention that the inf of the empty set is +∞.) Also important will be the
time of the last maximum before passage, Gτu−, and the position after transit above level u,
Xτu . Throughout, we assume that �X is not identically 0 and that X is not the negative of a
subordinator (in which case τu = ∞ for all u > 0). By a compound Poisson process we will
mean a Lévy process with finite Lévy measure, no Brownian component, and zero drift.

We need some further notation. Let (L−1
t , Ht )t≥0 denote the bivariate ascending inverse

local time, ladder height subordinator process of X. The process (L−1, H) is defective when,
and only when, limt→∞ Xt = −∞ a.s. In that case, it is obtained from a nondefective process
(L−1, H) by exponential killing with rate q > 0, say. When (L−1, H) is nondefective,
the killing is unnecessary and we set (L−1, H) = (L−1, H) and take q = 0. We denote
the bivariate Lévy measure of (L−1

t , Ht )t≥0 by �L−1,H (·, ·), and let �L−1 and �H be the
marginal Lévy measures of L−1 and H . The Laplace exponent κ(a, b) of (L−1, H) will play
an important role in our analysis. It is defined by

e−κ(a,b) = e−q E e−aL−1
1 −bH1
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714 P. S. GRIFFIN AND R. A. MALLER

for values of a, b ∈ R for which the expectation is finite. We can write

κ(a, b) = q + dL−1a + dH b +
∫

t≥0

∫
h≥0

(1 − e−at−bh)�L−1,H (dt, dh), (1.1)

where dL−1 ≥ 0 and dH ≥ 0 are drift constants. See, e.g. [7, Chapter VI], [14, Chapter 4], [29,
Chapter 6], and [33] for these relationships.

The following theorem connects the Laplace transform of the fluctuation quantities with the
bivariate Laplace exponent. It is an extension of the ‘second factorisation identity’ (see [32,
Equation (3.2)]). A proof of Theorem 1.1 is given in [22].

Theorem 1.1. (Laplace transform identity.) Fix µ > 0, ρ ≥ 0, λ ≥ 0, ν ≥ 0, and θ ≥ 0. If
µ + λ �= ρ,∫

u≥0
e−µu E(exp(−ρ(Xτu − u) − λ(u − Xτu−) − νGτu− − θ(τu − Gτu−)); τu < ∞) du

= κ(θ, µ + λ) − κ(θ, ρ)

(µ + λ − ρ)κ(ν, µ)
. (1.2)

In the present paper we apply these concepts to study the stability of the passage time, τu, by
which we mean that τu/u has a finite and positive nonstochastic limit, where the convergence
may be as u → 0 or u → ∞, and the convergence may be in probability, almost sure, or
in mean. We will also consider, to a lesser extent, the position, Xτu , of X as it crosses the
boundary. Some other results of interest, especially that the τu/u are uniformly integrable as
u → ∞ if X has a finite positive mean (see Lemma 5.2), are derived as by-products.

The results relating to the stability of τu are given in Section 2. In contrast, in Section 3 we
consider the large-time conditional stability of τu when P(τu < ∞) → 0 as u → ∞. This is
the usual setup in the Lévy insurance risk model, for which we refer the reader to, e.g. [1], [3],
[15], and [28] for background and references. Section 4 contains some concluding remarks and
references. All proofs are given in Sections 5 and 6, and Appendix A.

2. Stability

This section contains results relating to the stability of τu as u → L, where L = ∞ or
L = 0. For stability to make sense when L = ∞, we need, at a minimum, to assume that
P(τu < ∞) → 1 as u → ∞. This is equivalent to lim supt→∞ Xt = +∞ a.s., in which case
τu < ∞ a.s. for all u > 0 and τu → ∞ a.s. as u → ∞. The natural analogue of this condition
when L = 0 is that P(τu < ∞) → 1 and τu → 0 a.s. as u ↓ 0. This is equivalent to 0
being regular for (0, ∞); see [8] for an analytic equivalence. Thus, the overriding assumptions
throughout this section are:

• lim supt→∞ Xt = +∞ a.s. when L = ∞,

• 0 is regular for (0, ∞) when L = 0.

Let �X and �
±
X denote the tails of �X. Thus, for x > 0,

�
+
X(x) = �X{(x, ∞)}, �

−
X(x) = �X{(−∞, −x)},

and �X(x) = �
+
X(x) + �

−
X(x),
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and define a kind of truncated mean

A(x) := γ + �
+
X(1) − �

−
X(1) +

∫ x

1
(�

+
X(y) − �

−
X(y)) dy

= γ + x(�
+
X(x) − �

−
X(x)) +

∫
1<|y|≤x

y�X(dy), x > 0. (2.1)

The first theorem concerns the stability in probability of τu. Consider first the stability for
large times, as u → ∞, i.e. the property τu/u

p−→ 1/c as u → ∞ for some c ∈ (0, ∞). This
is equivalent to the relative stability in probability of the process X itself, i.e. to Xt/t

p−→ c

as t → ∞. We prove it via an equivalence of the stability of τu with that of X, namely,
Xt/t

p−→ c as t → ∞, a trivial relationship. We then show that the latter holds if and only
if X is relatively stable, which is not entirely obvious, but follows from similar (large-time)
random walk working of [27], where the stability of the passage time of a random walk above a
constant level is considered for general norming sequences. The stability of τu is connected to
the bivariate Laplace exponent in (2.3) below, which is a new relationship, derived via Theorem
1.1, and the list of equivalences for this case is completed by that of (2.5) and (2.6), below,
which is given in Theorem 3.1 of [16].

This list, for the case u → ∞, c ∈ (0, ∞), then sets the pattern we work from for the case
u ↓ 0, c ∈ (0, ∞), and later results. Theorem 2.1 also includes the cases c = 0 and c = ∞ for
completeness, though these strictly speaking do not give rise to stability conditions.

Theorem 2.1. (Stability in probability of the exit time.) (a) Fix a constant c ∈ (0, ∞), and let
L = 0 or ∞ (1/L = ∞ or 0). Then the following statements are equivalent:

τu

u

p−→ 1

c
as u → L, (2.2)

lim
x→1/L

κ(x, 0)

κ(x, ξx)
= 1

1 + ξc
for each ξ > 0, (2.3)

Xt

t

p−→ c as t → L, (2.4)

Xt

t

p−→ c as t → L. (2.5)

In the case L = ∞, (2.2)–(2.5) are equivalent to

x�X(x) → 0 and A(x) → c as x → ∞. (2.6)

In the case L = 0, (2.2)–(2.5) are equivalent to

σ 2 = 0, x�X(x) → 0, and A(x) → c, as x ↓ 0. (2.7)

(b) Suppose that c = 0. If L = ∞ then (2.2)–(2.6) remain equivalent. If L = 0 then (2.2)–(2.4)
remain equivalent, as do (2.5) and (2.7). However, while (2.5) implies (2.2)–(2.4), the converse
does not hold when L = 0.

(c) Suppose that c = ∞. Then (2.2)–(2.4) remain equivalent for L = 0 or ∞ in the following
sense:

τu

u

p−→ 0 as u → L ⇐⇒ lim
x→1/L

κ(x, 0)

κ(x, ξx)
= 0 for each ξ > 0

⇐⇒ Xt

t

p−→ ∞ as t → L. (2.8)

Again, while (2.5) implies (2.2)–(2.4), it is not equivalent in either case, L = 0 or ∞.

https://doi.org/10.1239/aap/1316792667 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792667


716 P. S. GRIFFIN AND R. A. MALLER

Remark 2.1. As mentioned above, the equivalence of (2.5) and (2.6) when L = ∞ is given in
[16], while the equivalence of (2.5) and (2.7) when L = 0 is given in Theorem 3.1 of [16]. Both
of these results hold for all c ∈ (−∞, ∞). We include them in the statement of Theorem 2.1
for completeness and for the convenience of the reader.

The next theorem concerns the almost-sure stability of τu. We follow the pattern set by
Theorem 2.1. The connection with the bivariate Laplace exponent is transmuted in this case
to requiring finite first moments of the ladder processes H and L−1. Almost-sure stability for
large times requires a finite positive mean for X (for large times), and bounded variation with
positive drift of X (for small times). Recall that when X is of bounded variation, we may write
the Lévy–Khintchine exponent in the form

�(θ) = iθdX +
∫

R

(eiθx − 1)�X(dx),

where dX = γ − ∫
x1{|x|≤1}�X(dx) is called the drift of X.

Theorem 2.2. (Almost-sure stability of the exit time.) (a) Fix c ∈ [0, ∞).

(i) We have τu/u → 1/c a.s. as u → ∞ if and only if E |X1| < ∞ and E X1 = c ≥ 0.

(ii) We have τu/u → 1/c a.s. as u → 0 if and only if X is of bounded variation with drift
dX = c ≥ 0.

(b) Fix c ∈ (0, ∞). Then (i) holds if and only if E H1 < ∞ and E L−1
1 < ∞, in which case

c = E H1/ E L−1
1 , while (ii) holds if and only if σ 2 = 0, dL−1 > 0, and dH > 0, in which case

c = dH /dL−1 .

Remark 2.2. Note that, respectively under (2.6) and (2.7),

lim
x→∞ A(x) = γ +

∫
|y|>1

y�X(dy) and lim
x↓0

A(x) = γ −
∫

0<|y|≤1
y�X(dy). (2.9)

Here existence of the limits is equivalent to conditional convergence of the integrals. Under
the conditions of Theorem 2.2(a)(i) and (a)(ii), these integrals converge absolutely and the
limits are then given by E X1 and dX, respectively, thus confirming that the expressions for c

in Theorems 2.1 and 2.2 agree. The difference between (2.6) and (2.7) and Theorem 2.2(i) and
(ii) is essentially whether the integrals in (2.9) converge conditionally or absolutely.

In the next theorem we examine the convergence of E τu/u as u → ∞ and as u ↓ 0. Recall
that E τu < ∞ for some, hence all, u ≥ 0 if and only if X drifts to +∞ a.s., if and only if
E L−1

1 < ∞ (see, e.g. Theorem 1 of [18]).

Theorem 2.3. (Stability of the expected exit time.) (a) Fix c ∈ (0, ∞). Then the following
statements hold.

(i) E τu < ∞ for each u > 0 and limu→∞ E τu/u = 1/c if and only if 0 < E X1 ≤ E |X1| <

∞. In this situation, E H1 < ∞, E L−1
1 < ∞, and c = E X1 = E H1/ E L−1

1 .

(ii) E τu < ∞ for each u > 0 and limu↓0 E τu/u = 1/c if and only if E L−1
1 < ∞ and

dH > 0, and then c = dH / E L−1
1 .
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(b) Consider the case c = 0.

(i) In part (a)(i) of the theorem, the case c = 0 cannot arise; when E τu < ∞ for each
u > 0, limu→∞ E τu/u exists and is in [0, ∞).

(ii) We have E τu < ∞ for each u > 0 and limu↓0 E τu/u = ∞ if and only if E L−1
1 < ∞

and dH = 0.

(c) Consider the case c = ∞.

(i) We have E τu < ∞ for each u > 0 and limu→∞ E τu/u = 0 if and only if E L−1
1 < ∞

and E H1 = ∞.

(ii) In part (a)(ii) of the theorem, the case c = ∞ cannot arise; when E τu < ∞ for each
u > 0, we always have lim infu↓0 E τu/u > 0.

Remark 2.3. (i) It is curious that the formula for c in Theorem 2.3(a)(ii) does not agree with
the corresponding versions in Theorem 2.1 or Theorem 2.2. We give an example to illustrate
how the difference can arise. Let

Xt = at − Nt,

where Nt is a rate-one Poisson process and a > 1. Thus, limt→∞ Xt = ∞ a.s. Since τu = ua−1

for sufficiently small u, it trivially follows that

lim
u↓0

τu

u
= 1

a
a.s.

We claim that
E τu

u
→ 1 + E τ1

a
. (2.10)

This is because if ξ is the time of the first jump of N then

E τu = E(τu; Nua−1 = 0) + E(τu; Nua−1 ≥ 1)

= ua−1e−ua−1 +
∫ ua−1

0
E(τu | ξ = t) P(ξ ∈ dt)

= ua−1e−ua−1 +
∫ ua−1

0
(t + E τ1−at+u)e

−tdt.

Since τ1+x
p−→ τ1 as x ↓ 0, (2.10) now follows after dividing by u and taking the limit.

We now check that this agrees with Theorem 2.3(a)(ii). For the normalization of L, the local
time at the maximum, we take

Lt =
∫ t

0
1{Xs=Xs } ds.

Then the ladder height process is linear drift, Ht = at . Hence, dH = a. By construction,

L−1
t = t +

Nt∑
1

Ri,

where again Nt is a rate-one Poisson process and Ri are independent and identically dis-
tributed (i.i.d.) random variables independent of N , with distribution the same as that of τ1.
Hence, dL−1 = 1 and

E L−1
1 = 1 + E τ1,
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so the c in Theorem 2.3(a)(ii) is dH / E L−1
1 = a/(1 + E τ1), giving agreement with (2.10). On

the other hand, the c in Theorem 2.2(a)(ii) is dX = dH /dL−1 = a.

We now turn to the stability of the time of the last maximum before ruin. As may be expected,
this is a more difficult object to study than τu. We consider the three modes of convergence
investigated in Theorems 2.1–2.3.

Theorem 2.4. (Stability of the last maximum before ruin.) Let L = 0 or ∞ (1/L = ∞ or
0).

(a) Fix c ∈ (0, ∞). We have
Gτu−

u

p−→ 1

c
as u → L, (2.11)

if and only if

lim
x→1/L

κ(0, x)

κ(ξx, x)
= c

c + ξ
for each ξ > 0. (2.12)

(b) Fix c ∈ [0, ∞).

(i) Gτu−/u → 1/c a.s. as u → ∞ if and only if E |X1| < ∞ and E X1 = c ≥ 0.

(ii) Gτu−/u → 1/c a.s. as u → 0 if and only if X is of bounded variation with drift
dX = c ≥ 0.

(c) If 0 < E X1 < ∞ then limu→∞ E Gτu−/u = 1/ E X1.

Remark 2.4. It is not clear how the conditions of Theorem 2.1 relate to the stability in
probability of Gτu−. We can show that (2.2)–(2.6) imply (2.11) and (2.12), but it is not clear
whether or not the converse holds. For almost-sure convergence, the results for Gτu− parallel
those for τu. For convergence in mean, the situation remains largely unresolved.

The final result, Theorem 2.5, belongs in the present section since it holds in the case when
limt→∞ Xt = +∞ a.s., but we apply it in the next section, in the case when limt→∞ Xt = −∞
a.s., to obtain results in the Lévy insurance risk model.

Theorem 2.5. (Convergence of expected exit times with overshoot.) Assume that 0 < E X1 ≤
E |X1| < ∞, and that X is not compound Poisson, or is compound Poisson with a nonlattice
jump distribution. Then, for all ρ > 0,

lim
u→∞ E

(
Gτu−

u
e−ρ(Xτu−u)

)
= lim

u→∞ E

(
τu

u
e−ρ(Xτu−u)

)
= 1

E X1
E e−ρY ,

where Y is a random variable having the limiting distribution of the overshoot Xτu − u, and
has density �H (h) dh/ E H1 on (0, ∞) and mass dH / E H1 at 0.

3. Stability in the insurance risk model

The aim of this section is to illustrate that stability questions are also of interest when
Xt → −∞ a.s. as t → ∞. We phrase the discussion in terms of an insurance risk model. In
this case X represents the excess in claims over premium of an insurance company. The classical
model in this context is the Cramér–Lundberg model in which X is the sum of a compound
Poisson process with positive jumps, representing claims, and a negative drift, representing
premium inflow. The results in the present section will be given for a general Lévy insurance
risk model where no such restrictions are placed on X.
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The over-riding assumption throughout this section is the Cramér condition, namely, that

E eν0X1 = 1 for some ν0 > 0. (3.1)

It is well known that, under (3.1), E X1 is well defined, with E X+
1 < ∞, E X−

1 ∈ (0, ∞], and
E X1 ∈ [−∞, 0), and so limt→∞ Xt = −∞ a.s. Furthermore, E(X1eνX1) is finite and positive
for all ν in a left neighbourhood of ν0, and

µ∗ := E(X1eν0X1) > 0 (possibly µ∗ = +∞). (3.2)

Since limt→∞ Xt = −∞ a.s., we are in the situation that P(τu < ∞) < 1 for all u > 0,
and limu→∞ P(τu < ∞) = 0. In an insurance risk context, we are interested in forecasting the
ruin time τu in a worst case scenario, i.e. conditional on τu < ∞ (‘ruin occurs’). Asymptotic
properties of τu and associated variables, conditional on τu < ∞, often provide surprisingly
good approximations of corresponding finite-level distributions; cf, e.g. [20, Appendix]. In
the present context we look at the stability of τu, Gτu−, and Xτu , showing that they are
asymptotically linear under mild conditions.

We need some more infrastructure. Let (X∗
t )t≥0 denote the Esscher transform of X defined

by

P((X∗
s , 0 ≤ s ≤ t) ∈ B, X∗

t ∈ dx) = eν0x P((Xs, 0 ≤ s ≤ t) ∈ B, Xt ∈ dx)

for any Borel subset B of R
[0,t]. Equivalently, X∗ may be introduced by means of exponential

tilting; that is, define a new probability P∗, given on Ft by

dP∗

dP
= eν0Xt .

Then X under P∗ has the same distribution as X∗ under P. It easily follows that

E f (X∗
t ) = E∗ f (Xt ) = E(f (Xt )e

ν0Xt )

for any Borel function f for which the expectations are finite. Here X∗ is itself a Lévy process
with exponent �(θ − iν0) and E∗ X1 = µ∗. Since µ∗ > 0 by (3.2), X∗

t drifts to +∞ a.s., and,
hence, (H ∗

t )t≥0, the increasing ladder height process associated with (X∗
t )t≥0, is proper.

Our setup is that of Bertoin and Doney [9]. The main result in [9], which we give in the
form proved in Theorem 7.6 of [29] (see also Section XIII.5 of [4]), is as follows.

Theorem 3.1. ([9].) Suppose that (3.1) holds and that the support of �X is nonlattice in the
case that X is compound Poisson. Then

lim
u→∞ eν0u P(τu < ∞) = C ∈ [0, ∞), (3.3)

where C := E∗ e−ν0Y > 0 if and only if µ∗ < ∞. Here Y is a random variable having the
limiting distribution of the overshoot Xτu − u under P∗.

To state the stability result for the general Lévy insurance risk model under (3.1), introduce the
probability measure P(u)(·) = P(· | τu < ∞), and denote convergence in probability condit-

ional on τu <∞ by ‘
p(u)−−→’.
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Theorem 3.2. Assume that (3.1) holds and that µ∗ < ∞ (so that 0 < µ∗ < ∞). Then, as
u → ∞,

Xτu

u

p(u)−−→ 1,
Gτu−

u

p(u)−−→ 1

µ∗ , and
τu

u

p(u)−−→ 1

µ∗ . (3.4)

Assume in addition that the support of �X is nonlattice in the case that X is compound Poisson.
Then

lim
u→∞

E(u) Xτu

u
= 1, lim

u→∞
E(u) Gτu−

u
= 1

µ∗ , and lim
u→∞

E(u) τu

u
= 1

µ∗ . (3.5)

Parts of our Theorem 3.2 are well known for the Cramér–Lundberg model, and their extension
to the general Lévy insurance risk model is straightforward. Others appear to be new.

4. Concluding remarks

There is of course a very large literature on (large-time) renewal theorems for random walks,
and, more recently, some similar results have been proved for Lévy processes. Regarding the
ruin time, most results so far concern the infinite horizon ruin probability, P(τu < ∞), or,
equivalently, the distribution of the overall maximum of the random walk or Lévy process, and
we do not attempt to summarise them here (other than the references mentioned in Sections 1–3).
A web search turns up many such papers and books.

The finite horizon ruin probability, P(τu < T ), is less studied, but important results are
obtained in, e.g. [2], [5], [6], [12], [25], [26] (see also their references), and especially in
the insurance/actuarial literature (usually from a more applied point of view). These results
of course give information on the long-run distribution of the ruin time, conditional on ruin
occurring. A more recent result along these lines is given in [21], assuming, like [12] and
[25], convolution equivalent conditions on the tails of the process or its Lévy measure. These
authors are interested in the asymptotic distribution of τu, rather than in its stability per se; as
mentioned earlier, results on stability such as we give are more akin to classical (large-time)
renewal theory than to these, and small-time versions, which make sense for Lévy processes
but not for random walks, have previously been neglected, in the main.

We turn now to the proofs.

5. Proofs for Section 2

We assume throughout this section that lim supt→∞ Xt = +∞ a.s. when L = ∞, and 0
is regular for (0, ∞) when L = 0. In the former case, τu < ∞ a.s. for all u > 0, while
P(τu < ∞) → 1 as u → 0 in the latter case.

Proof of Theorem 2.1. We first prove parts (a) and (b). Let c ∈ [0, ∞) until further notice,
with the obvious interpretations when c = 0. Assume that (2.2) holds with u → L. From (1.2)
we have, for u > 0 and θ > 0,

µ

∫
u≥0

e−µu E(e−θτu; τu < ∞) du = 1 − κ(θ, 0)

κ(θ, µ)
. (5.1)

Take y > 0, and replace µ by µ/y, u by uy, and θ by θ/y in (5.1) to get

µ

∫
u≥0

e−µu E(e−θτuy/y; τuy < ∞) du = 1 − κ(θ/y, 0)

κ(θ/y, µ/y)
. (5.2)
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By hypothesis, τuy/y
p−→ u/c as y → L for each u > 0, so letting y → L in (5.2) gives, by

dominated convergence,

lim
y→L

κ(θ/y, 0)

κ(θ/y, µ/y)
= 1 − µ

∫
u≥0

e−µue−θu/cdu = θ

θ + µc
.

Replacing y by x = θ/y → 1/L and µ/θ by ξ gives (2.3) with x → 1/L.
Conversely, assume that (2.3) holds with x → 1/L. Then from (5.2) we see that, for θ > 0,

lim
y→L

µ

∫
u≥0

e−µu E(e−θτuy/y; τuy < ∞) du = µc

θ + µc
.

For each y > 0 and θ > 0, the function fy(u, θ) := E(e−θτuy/y; τuy < ∞) is monotone
decreasing in u and bounded by 1. Given any sequence yk → L, we can, by Helly’s theorem,
find a subsequence ỹk → L, possibly depending on θ but not on u, such that fỹk

(u, θ) →
f̃ (u, θ) for some function f̃ (u, θ) ∈ [0, 1]. Then by dominated convergence we have

µ

∫
u≥0

e−µuf̃ (u, θ) du = µc

θ + µc
= µ

∫
u≥0

e−µue−θu/cdu,

and from the uniqueness of Laplace transforms we deduce that f̃ (u, θ) = e−θu/c, not dependent
on the choice of subsequence. Hence (taking u = 1 now),

lim
y→L

E(e−θτy/y; τy < ∞) = e−θ/c, θ > 0,

proving (2.2) with u → L.
Since

{τu > t} ⊆ {Xt ≤ u} ⊆ {τu ≥ t}, t > 0, u > 0, (5.3)

we easily see that (2.2) is equivalent to (2.4) in either case, L = ∞ or L = 0, for c ≥ 0.
Next we show that (2.5) implies (2.4). First consider the case L = ∞. By Theorem 3.1 of

[16], (2.5) with t → ∞ is equivalent to (2.6), and the first relation in (2.6) implies that

lim
x→∞

V (x)

x
= 0, (5.4)

where

V (x) := σ 2 +
∫

|y|≤x

y2�X(dy).

To deduce (2.4) from (2.6) and (5.4) in the case L = ∞, decompose X into small and large
jump components as in Lemma 6.1 of [16] to get

Xs = sν(t) + σBs + X(1)
s + X(2)

s , 0 ≤ s ≤ t,

where

ν(x) := γ +
∫

1<|y|≤x

y�X(dy), x > 0,

σBs + X
(1)
s is a mean 0 martingale with jumps bounded in modulus by t and all moments finite,

and
X(2)

s =
∑

0<r≤s

Xr1{|Xr |>t}.
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By Doob’s inequality, for ε > 0,

P
(

sup
0≤s≤t

|σBs + X(1)
s | > εt

)
≤ 1

(εt)2 E(σBt + X
(1)
t )2 = 1

ε2t
V (t),

and this tends to 0 as t → ∞ by (5.4). Also,

P
(

sup
0≤s≤t

|X(2)
s | = 0

)
≥ P(no jumps with |Xs | > t occur by time t) = exp(−t�X(t)) → 1

as t → ∞, while
ν(t) = A(t) − t�

+
(t) + t�

−
(t) → c,

both by (2.6). Thus, we have P(sup0≤s≤t |Xs − cs| > εt) → 0 as t → ∞, which implies (2.4)
with L = ∞ and c ≥ 0.

Now we deal with the implication (2.5)⇒(2.4) in the case L = 0. Note that, by Theorem
2.1 of [16], (2.5) with t ↓ 0 is equivalent to (2.7), and the first and second relations in (2.7)
imply that

V (x)

x
= 2

x

∫ x

0
y�X(y) dy + x�X(x) = 2

x

∫ x

0
o(1) dy + o(1) = o(1) as x ↓ 0.

This takes the place of (5.4) in the L = 0 case, and the rest of the proof that (2.5) implies (2.4)
with L = 0 is virtually the same as for the case with t → ∞.

We have left to show that (2.4) implies (2.5) except when c = L = 0. This is obvious if
c = 0 and L = ∞, so suppose that c > 0. Note that, for t > 0,

X2t = Xt ∨
(

sup
t<s≤2t

Xs

)
= Xt ∨

(
Xt + sup

t<s≤2t

(Xs − Xt)
)

= Xt ∨ (Xt + X
′
t ),

where X
′
t is an independent copy of Xt . Consequently, for ε ∈ (0, c/3), as t → L,

o(1) = P(X2t ≤ (c − ε)2t)

= P(Xt ∨ (Xt + X
′
t ) ≤ (c − ε)2t)

≥ P(Xt ≤ (c − ε)2t, Xt + (c + ε)t ≤ (c − ε)2t, |X′
t − ct | ≤ εt)

= P

(
Xt

t
≤ 2(c − ε),

Xt

t
≤ c − 3ε

)
P

(∣∣∣∣Xt

t
− c

∣∣∣∣ ≤ ε

)

≥
(

P

(
Xt

t
≤ c − 3ε

)
− P

(
Xt

t
> 2(c − ε)

))
(1 + o(1))

=
(

P

(
Xt

t
≤ c − 3ε

)
− o(1)

)
(1 + o(1)).

This shows that P(Xt > (c − 3ε)t) → 1, and since also

P

(
Xt

t
≤ c + ε

)
≥ P

(
Xt

t
≤ c + ε

)
→ 1,

we have Xt/t
p−→ c. Hence, (2.4) implies (2.5) for L = 0 or L = ∞.
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Now we turn to the proof of part (c). The equivalences in (2.8) follow by the same methods
as used in part (a), and, clearly, (2.5) in the case c = ∞ implies (2.4) in the case c = ∞.

All that remains is to give counterexamples showing that (2.4) does not imply (2.5) when
c = L = 0 or when c = ∞ and L = 0 or ∞, which we do in Lemma 5.1 below, thus completing
the proof of Theorem 2.1.

Lemma 5.1. There is a Lévy process for which 0 is regular for (0, ∞) and with

Xt

t

p−→ 0 as t ↓ 0, but with
Xt

t

p−→ −1 as t ↓ 0. (5.5)

There is also a Lévy process with

Xt

t

p−→ ∞ as t → L, but with
Xt

t

p−→ −∞ as t → L, (5.6)

for L = 0 or L = ∞.

Proof. See Appendix A.

Proof of Theorem 2.2. By a simple pathwise argument using (5.3), it easily follows that, for
L = ∞ or L = 0, and c ∈ [0, ∞], we have limu→L τu/u = 1/c a.s. if and only if

lim
t→L

Xt

t
= c a.s. (5.7)

(a)(i) If E |X1| < ∞ and c = E X1 ≥ 0, then (5.7) with L = ∞ holds by the strong law.
Conversely, by Theorem 15 of [14], (5.7) implies that at least one of E X+

1 or E X−
1 is finite or

else Xt → −∞. Since lim supt→∞ Xt = ∞, the latter possibility is ruled out and so is the
possibility that E X−

1 = ∞. Since c ∈ [0, ∞), the strong law and (5.7) then force E |X1| < ∞
and c = E X1 ≥ 0.

(a)(ii) If X is of bounded variation with dX ≥ 0 then Xt/t → dX a.s. as t ↓ 0 by Theorem 39
of [14]. Hence, (5.7) holds with c = dX. Conversely, by the same result, (5.7) implies that X

is of bounded variation and necessarily dX ≥ 0 since 0 is regular for (0, ∞). It then follows
that c = dX ≥ 0.

(b)(i) When 0 < E X1 ≤ E |X1| < ∞, we have E L−1
1 < ∞ (see, e.g. Theorem 1 of [18]).

Thus, letting t → ∞ in
X

L−1
t

L−1
t

= Ht

L−1
t

= Ht

t

t

L−1
t

, (5.8)

and using the strong law, we obtain Ht/t → E X1 E L−1
1 as t → ∞. This implies that E H1 <

∞ and E X1 = E H1/ E L−1
1 . Conversely, E H1 < ∞ implies that 0 ≤ E X1 ≤ E |X1| < ∞

by Theorem 8 of [17], and E L−1
1 < ∞ implies that X drifts to +∞ a.s. by Theorem 1 of [18],

so in fact 0 < E X1 ≤ E |X1| < ∞.
(b)(ii) When X is of bounded variation, then σ 2 = 0, and by taking limits as t ↓ 0 in (5.8),

we obtain
dL−1dX = dH . (5.9)

When dX > 0, Xt/t → dX > 0 and τu/u → 1/dX < ∞ a.s. (by (a)(ii)). Thus,

Xτu

u
= Xτu

τu

τu

u
→ 1 a.s. as u ↓ 0.
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This implies that dH > 0 by Theorem 4 of [17]. Hence, by (5.9), dL−1 > 0 also, and so
c = dX = dH /dL−1 .

Conversely, assume that dH > 0, dL−1 > 0, and σ 2 = 0. We show that limu↓0 τu/u =
dL−1/dH a.s. Let Tu := inf{t > 0 : Ht > u}, u > 0. Then τu = L−1

Tu
. Hence, by (5.8),

Xτu

u

u

τu

= HTu

Tu

Tu

L−1
Tu

→ dH

d−1
L

.

Since limu→0 Xτu/u = 1 a.s. when dH > 0 by Theorem 4 of [17], the result follows.

Proof of Theorem 2.3. We begin by recalling that, from Theorem 1 of [18], E τu < ∞ for
some, hence all, u ≥ 0, if and only if X drifts to +∞ a.s., if and only if E L−1

1 < ∞.
Use identity (8) of [7, p. 174] to write

E τu = lim
λ↓0

κ(λ, 0)

λ
VH (u) = E L−1

1 VH (u), u > 0, (5.10)

where VH (u) = ∫ ∞
0 P(Ht ≤ u) dt is the renewal function associated with H . Now fix c ∈

(0, ∞).
(a)(i) For u → ∞, by the elementary renewal theorem (see [29, Corollary 5.3, p. 114]; note

that there is no nonlattice restriction on the support of �X, and the case E H1 = ∞ is covered,
e.g. in [23, Theorem 4.1, p. 51]) we have

lim
u→∞

VH (u)

u
= 1

E H1
∈ [0, ∞), (5.11)

so we see that limu→∞ E τu/u = 1/c for some c ∈ (0, ∞) if and only if E H1 < ∞ and
E L−1

1 < ∞, and then c = E H1/ E L−1
1 . Since E H1 < ∞ is equivalent to 0 < E X1 ≤

E |X1| < ∞ when Xt → ∞ a.s. by Theorem 8 of [17], we have only to observe that, by Wald’s
equation for Lévy processes [24], E H1/ E L−1

1 = E X1.
(a)(ii) For u ↓ 0, assume that E L−1

1 < ∞ and dH > 0. Since Ht ≥ dH t, t ≥ 0, it follows
easily that

VH (u) :=
∫ ∞

0
P(Ht ≤ u) dt

=
∫ u/dH

0
P(Ht ≤ u) dt

≤ equ/dH

∫ u/dH

0
e−qt P(Ht ≤ u) dt

= equ/dH VH (u),

while, trivially, VH (u) ≤ VH (u). Thus, by Theorem III.5 of [7], which applies to proper
subordinators, we have

lim
u↓0

VH (u)

u
= 1

dH

, (5.12)

and so limu↓0 E τu/u = E L−1
1 /dH by (5.10). Conversely, limu↓0 E τu/u = 1/c implies by
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(5.10) that (5.12) holds with dH replaced by c E L−1
1 > 0. By Lemma 4 of [14, p. 52] we have

VH (u)

u
� 1

dH + ∫ u

0 �H (y) dy + uq
for all u > 0. (5.13)

Hence, dH > 0, since dH = 0 would imply that limu↓0 VH (u)/u = ∞, a contradiction.
(b) In the case c = 0, we see from (5.10) and (5.11) that limu→∞ E τu/u exists and is in

[0, ∞) when E τu < ∞ for all u > 0. When limu→0 E τu/u = ∞, (5.10) and (5.13) show that
dH = 0, and conversely.

(c) For the case c = ∞, supposing that E τu < ∞ for each u > 0, (5.10) and (5.11) show
that limu→∞ E τu/u = 0 if and only if E L−1

1 < ∞ and E H1 = ∞, while, for u ↓ 0, the case
c = ∞ cannot arise; lim infu→0 E τu/u > 0 follows from (5.10) and (5.13).

The following lemma, which is a Lévy process version of a result of [30] for the random
walk, is needed in the proofs of Theorems 2.4 and 2.5.

Lemma 5.2. (Uniform integrability of τu.) Suppose that X is a Lévy process with 0 < E X1 ≤
E |X1| < ∞ and τu = inf{t > 0 : Xt > u}, u > 0. Then τu/u, u > 0, are uniformly
integrable as u → ∞, i.e.

lim
x→∞ lim sup

u→∞
E

(
τu

u
1{τu/u>x}

)
= 0. (5.14)

Proof. The random walk result of [30] can be transferred using a stochastic bound due to
Doney [13]. First consider the case when � ≡ 0. Then Xt = tγ +σBt , where γ = E X1 > 0,
σ ≥ 0, and (Bt )t≥0 is a standard Brownian motion. In this case τu has an inverse Gaussian
distribution and E τ 2

u = uσ 2/γ 3, which immediately implies the uniform integrability of τu/u.
So, assume that � is not identically 0. Then �(x0) > 0 for some x0 > 0, and by rescaling

if necessary we can assume that c1 := �(1) > 0. As in [18], let σ0 = 0 and let σn, n =
1, 2, . . . , be the successive times at which X takes a jump of absolute value greater than 1.
Then the ei := σi − σi−1 are i.i.d. exponential random variables with E(e1) = 1/c1. Define
Sn := Xσn, n = 1, 2, . . ., and τS

u = min{n ≥ 1 : Sn > u}, u > 0. Then Sn is a random walk
with step distribution Yi := Xσi

− Xσi−1

d= Xe1 . By Wald’s equation, E Y1 = E X1/c1 > 0.
Thus, by [30], the τS

u /u are uniformly integrable.
Now we can use similar calculations as in [18, p. 287] to bound the expression on the left-

hand side of (5.14) in terms of a similar expression involving τS
u . For any Z ≥ 0 and any a > 0,

E(Z; Z > a) =
∫

z>a

P(Z > z) dz + a P(Z > a). (5.15)

Taking u > 0, x > 0, and c > 1/c1, we obtain

E

(
τu

uc
1{τu/uc>x}

)
= u−1

∫
y>xu

P(τu > yc) dy + x P(τu > xuc). (5.16)

By Theorem 2.1 we have τu/u
p−→ 1/ E X1 as u → ∞. So the second term on the right-hand

side of (5.16) tends to 0 as u → ∞ once xc > 1/ E X1. As in [18, p. 287], we have

P(σj ≤ τu < σj+1) = P(m̃0 ≤ u, τS
u−m̃0

= j), j ≥ 1,

where m̃0 is a finite random variable independent of (Sn)n=1,2,.... The first term on the right-hand
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side of (5.16) is bounded by
u−1

∑
n≥�xu�

P(τu > nc),

and now we argue as follows:

u−1
∑

n≥�xu�
P(τu > nc) ≤ u−1

∑
n≥�xu�

P(τu ≥ σn) + u−1
∑

n≥�xu�
P(σn > nc)

≤ u−1
∑

j≥�xu�
(j − �xu� + 1) P(σj ≤ τu < σj+1)

+ u−1
∑
n≥1

P

( n∑
i=1

ei > nc

)
. (5.17)

Since the ei are i.i.d. with a finite exponential moment and E ei = 1/c1 < c, the sum in the
second term on the right-hand side of (5.17) is convergent, and, hence, this term is o(1) as
u → ∞. The first term on the right-hand side of (5.17) is

u−1
∑

j≥�xu�
(j − �xu� + 1) P(m̃0 ≤ u, τS

u−m̃0
= j)

= u−1
∑

j≥�xu�
(j − �xu� + 1)

∫ u

0
P(τS

u−y = j) P(m̃0 ∈ dy)

= u−1
∑

n≥�xu�

∫ u

0
P(τS

u−y ≥ n) P(m̃0 ∈ dy)

≤ u−1
∑

n≥�xu�
P(τS

u ≥ n)

≤ u−1
∫

y>�xu�−1
P(τS

u > y) dy

≤ E

(
τS
u

u
1{τS

u /u>x/2}
)

,

if xu ≥ 4, where the last inequality comes from (5.15). Since the τS
u /u are uniformly integrable

by Lai’s result, we get (5.14).

Remark 5.1. Lemma 5.2 could be used to give an alternative proof of Theorem 2.3(a)(i) from
Theorem 2.2. This approach however would not work for Theorem 2.3(a)(ii), since the τu/u

are not uniformly integrable as u ↓ 0. This is because the almost-sure limit in Theorem 2.2
does not agree with the limit in mean in Theorem 2.3 as u ↓ 0.

Proof of Theorem 2.4. (a) We first observe that (2.12) is equivalent to

lim
x→1/L

κ(0, x) − κ(0, 0)

κ(ξx, x)
= c

c + ξ
for each ξ > 0. (5.18)

When L = ∞, (5.18) holds because κ(0, 0) = q = 0 by our assumption that lim supt→∞ Xt =
∞. When L = 0, we have, by (1.1), κ(ξx, x) → ∞ as x → 1/L for each ξ > 0 unless
dH = dL−1 = 0 and �L−1,H is a finite measure. But this is impossible since 0 is regular for
(0, ∞), so (5.18) is equivalent when L = 0 also.
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From (1.2) we have, for u > 0 and ν > 0,

µ

∫
u≥0

e−µu E(e−νGτu−; τu < ∞) du = κ(0, µ) − κ(0, 0)

κ(ν, µ)
.

Take y > 0, and replace µ by µ/y, u by uy, and ν by ν/y in this equation to get

µ

∫
u≥0

e−µu E(e−νGτuy−/y; τuy < ∞) du = κ(0, µ/y) − κ(0, 0)

κ(ν/y, µ/y)
. (5.19)

Equation (2.11) implies that Gτuy−/y
p−→ u/c as y → L for each u > 0. So the left-hand side

of (5.19) tends to c/(c+ν/µ) as y → L, and then (2.12) follows from (5.18) and the right-hand
side of (5.19). The proof that (2.12) implies (2.11) is analogous to that in Theorem 2.1.

(b) By the strong law when L = ∞ and by Theorem 39 of [14] when L = 0, it suffices to
prove that, for c ∈ [0, ∞),

lim
t→L

Xt

t
= c a.s., (5.20)

if and only if

lim
u→L

Gτu−
u

= 1

c
a.s. (5.21)

A simple pathwise argument shows that (5.20) implies (5.21) when c > 0, but the case c = 0
is a little trickier. Since the following argument works whenever c ∈ [0, ∞), we prove it under
that assumption. So assume that (5.20) holds with c ∈ [0, ∞). Then Xt/t → c a.s. as t → L.
If (5.21) fails then

lim inf
u→L

Gτu−
u

<
1

c
a.s.,

since under (5.20), Gτu−/u ≤ τu/u → 1/c a.s. as u → L, by Theorem 2.2. Now consider the
random level Zu = Xτu−, and observe that

τZu = τu, XGτu− = Xτu− = Zu.

Writing
XGτu−
Gτu−

= Zu

u

u

Gτu−
,

it then follows that

lim inf
u→L

Zu

u
< 1 a.s.

Thus,

lim sup
u→L

XτZu

Zu

= lim sup
u→L

Xτu

Zu

≥ lim sup
u→L

u

Zu

> 1 a.s.

In particular, it is not the case that limv→L Xτv/v = 1 a.s. This implies that E |X| = ∞ when
L = ∞, by Theorem 8 of [17], and X is not of bounded variation when L = 0, by Theorem 4
of [17]. In either case (5.20) fails to hold, which is a contradiction.

Conversely, assume that (5.21) holds for some c ∈ [0, ∞). Then, for any a > c, Gτu− >

ua−1 eventually. Hence, Xua−1 ≤ u eventually. This implies that

lim sup
t→L

Xt

t
≤ c a.s. (5.22)
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If L = ∞ then arguing as in the proof of Theorem 2.2(a)(i), (5.22) implies that 0 ≤ E X1 ≤
E |X1| < ∞ and so (5.20) holds with c = E X1 ≥ 0. Since (5.20) implies (5.21), the constant
c for which (5.21) was assumed to hold must also have been c = E X1, completing the proof
of (i). If L = 0 then (5.22) forces X to have bounded variation with dX ≥ 0 since 0 is regular
for (0, ∞). In that case (5.20) holds with c = dX, and so again since (5.20) implies (5.21), the
constant c for which (5.21) was assumed to hold must also have been c = dX, completing the
proof of (ii).

(c) Finally, suppose that 0 < E X1 ≤ E |X1| < ∞. Then (5.21) holds with c = E X1
and, further, the Gτu−/u are uniformly integrable as u → ∞ by Lemma 5.2. Thus, we get
limu→∞ E(Gτu−/u) = 1/ E X1.

Proof of Theorem 2.5. Since 0 < E X1 ≤ E |X1| < ∞, we have, by Theorems 2.2 and 2.4,

lim
u→∞

Gτu−
u

= lim
u→∞

τu

u
= 1

E X1
a.s.

The assumptions on X imply that H does not have a lattice jump distribution, and, hence, it
follows from [10] that

Xτu − u
d−→ Y as u → ∞,

where Y is the random variable defined in the statement of Theorem 2.5. Since τu/u, and,
consequently, Gτu−/u also, are uniformly integrable as u → ∞, by Lemma 5.2, the result
follows.

6. Proofs for Section 3

We assume throughout this section the setup of Section 3. Let Fτu be the σ -algebra generated
by X up to time τu. By Corollary 3.11 of [29], for any Zu which is nonnegative and measurable
with respect to Fτu , we have

E(Zu; τu < ∞) = E∗(Zue−ν0Xτu ). (6.1)

This immediately yields the following lemma, which can be found in Theorem IV.7.1 of [3] for
compound Poisson processes with negative drift. Our proof is analogous to that in [3].

Lemma 6.1. Suppose that µ∗ < ∞ and that, for u > 0, Yu are Fτu -measurable random

variables such that Yu
p∗−→ 0 as u → ∞. Then Yu

p(u)−−→ 0.

Proof. For ε > 0, by (6.1),

P(u)(|Yu| > ε) = P(|Yu| > ε, τu < ∞)

P(τu < ∞)
= E∗(e−ν0(Xτu−u); |Yu| > ε)

eν0u P(τu < ∞)
.

Since µ∗ < ∞, by (3.3) the denominator here is bounded away from 0, hence the result.

Proof of Theorem 3.2. Since X is a Lévy process under P∗ with E∗ X1 = µ∗ ∈ (0, ∞), it
follows easily from the strong law that

Xτu

u
→ 1,

Gτu−
u

→ 1

µ∗ , and
τu

u
→ 1

µ∗ , P∗ -a.s. as u → ∞. (6.2)

Equation (3.4) is then immediate from Lemma 6.1.
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For (3.5), use Theorem 2.5, (3.3), and (6.1) to deduce that, as u → ∞,

E(u) τu

u
= E(τu; τu < ∞)

u P(τu < ∞)
= E∗(τue−ν0(Xτu−u))

ueν0u P(τu < ∞)
→ 1

Cµ∗ E∗ e−ν0Y = 1

µ∗ .

The limit involving Gτu− is similar. For the final limit in (3.5), first observe that

E(u) Xτu

u
= E(Xτu; τu < ∞)

u P(τu < ∞)
∼ E∗(Xτue−ν0(Xτu−u))

Cu
.

Now let Ou := Xτu − u, u > 0. Then (Xτu/u)e−ν0Ou is uniformly integrable because, for
x > 1 and c0 := supy≥0(ye−ν0y) = (eν0)

−1, we have

E∗
(

Xτu

u
e−ν0Ou1{Xτu/u>x}

)
= E∗

(
Ou

u
e−ν0Ou1{Ou>(x−1)u}

)
+ E∗(e−ν0Ou1{Ou>(x−1)u})

≤ c0

u
+ e−ν0(x−1)u.

Letting u → ∞ then x → ∞ shows the uniform integrability. Since Xτu − u
d∗−→ Y and

Xτu/u
p∗−→ 1 by (6.2), we have

E(u) Xτu

u
∼ C−1 E∗

(
Xτu

u
e−ν0Ou

)
→ C−1 E∗ e−ν0Y = 1,

completing the proof.

Appendix A

Proof of Lemma 5.1. We first construct a Lévy process satisfying (5.5). For the character-
istics of X, we take γ = −2, σ = 0, and the Lévy measure given by

�
+
X(x) = 1

x| ln x| , �
−
X(x) = �

+
X(x) + ln 2

x(ln x)2 , 0 < x < 1
2

�
+
X(x) = �

−
X(x) = 0, x ≥ 1

2 .

Then X is not of bounded variation since∫
(|x| ∧ 1)�(dx) = ∞,

and, consequently, 0 is regular for (0, ∞). Furthermore, one can easily check that (2.7) holds
with c = −1, and so

Xt

t

p−→ −1 as t ↓ 0

by Theorem 2.1 of [16]. Also, the argument given in Theorem 2.1 that (2.5) implies (2.4) when
L = 0 shows that, under (2.7),

P
(

sup
0≤s≤t

|Xs + s| > εt
)

→ 0 as t ↓ 0.

From this we conclude that
Xt

t

p−→ 0 as t ↓ 0,

completing the example.
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We now construct a Lévy process satisfying (5.6). This is based on Example 3.5 of [27],
which constructs a random walk Sn = ∑n

i=1 Yi with i.i.d. summands Yi which satisfy

Sn

n

p−→ − ∞ and
Sn

n
= max1≤j≤n Sj

n

p−→∞. (A.1)

This is done by finding a random walk which is negatively relatively stable (NRS) as n → ∞,
i.e. with

Sn

D(n)

p−→ − 1 (n → ∞)

for a norming sequence D(n) > 0 with D(n)/n → ∞ satisfying

lim
n→∞

n∑
j=�(n)

P(S1 > xD(j)) = ∞,

where �(n) is the inverse to D(n). The sequences D(n) and �(n) are strictly increasing to ∞ as
n → ∞ and satisfy D(n) = −nA(D(n)) (where A(·) is defined in (2.1)) and �(n) = −n/A(n).
The function −A(x) is positive for large enough x, slowly varying as x → ∞, and tends to ∞
as x → ∞.

(i) Consider first the case L = ∞. Let (Nt )t≥0 be a Poisson process of rate 1 independent of
the Yi , and set Xt := SNt , t ≥ 0, where Sn is as in (A.1). Then the compound Poisson process
Xt satisfies (5.6) with L = ∞. This is fairly straightforward to check and we omit the details.

(ii) Now consider the case L = 0. For this, we have to modify Example 3.5 of [27] to work
as t ↓ 0. Details are as follows.

We construct a Lévy process Xt which is NRS as t ↓ 0, i.e. is such that

Xt

b(t)

p−→ − 1 as t ↓ 0 (A.2)

for a nonstochastic function b(t) > 0, with b(t) ↓ 0 and b(t)/t → ∞ as t ↓ 0. To do this, it
will be useful to summarize here some properties concerning (negative) relative stability at 0 of
Xt ; for reference, see [16] (and replace X by −X). We assume that �X(x) > 0 for all x > 0.
We then have Xt ∈ NRS if and only if σ = 0 and the function A(x) defined in (2.1) is strictly
negative for all small enough x, x ≤ x0, say, and satisfies

lim
x↓0

A(x)

x�X(x)
= −∞. (A.3)

When A(x) < 0 for x ≤ x0, there is an x1 ≤ x0 so that the function

D(x) := sup

{
y ≥ x0 : −A(y)

y
≥ 1

x

}
, 0 < x ≤ x1, (A.4)

is strictly positive and finite, and satisfies

D(x) = −xA(D(x))

for all x ≤ x1. It is easily seen to be strictly increasing on x ≤ x1 (by the continuity of
y �→ −A(y)/y) with D(0) = 0. Thus, for small enough y, we can define the inverse function

�(y) = sup{x : D(x) ≤ y} = inf{x : D(x) > y}.
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When (A.3) holds, −A(x) is slowly varying as x ↓ 0, and, as a consequence, D(x) and �(x)

are both regularly varying with index 1 as x ↓ 0 (see [11, Theorem 1.5.12]). Also, when (A.3)
holds, it is easy to check that −A(y)/y is strictly decreasing for small enough y, so �(y) is
continuous and strictly increasing, with �(0) = 0, and

�(y) = y

−A(y)

for small enough y. Finally, we can take b(t) = D(t) in (A.2) to get negative relative stability
of X in the form:

Xt

D(t)

p−→ − 1 as t ↓ 0. (A.5)

To construct the process required in the lemma, we will specify a Lévy measure �X for X

such that
D(t)

t
→ ∞ as t ↓ 0; (A.6)

consequently, �(t)/t → 0, and∫ t

�(t)

�
+
X(xD(s)) ds → ∞ as t ↓ 0 (A.7)

for all x > 0. Equation (A.5) then implies that Xt/t
p−→ − ∞ as t ↓ 0. We claim that in addition

(A.5)–(A.7) imply that
Xt

t

p−→∞ as t ↓ 0. (A.8)

To prove (A.8) from (A.5)–(A.7), fix t > 0 and x > 1, and write

P(Xt > xt) = lim
n→∞ P

(
max

1≤j≤nt
X(j/n) > xD(�(t))

)

≥ lim inf
n→∞

∑
n�(t)≤j≤nt

P

(
X((j − 1)/n) > −xD(j/n),

max
j+1≤k≤nt

(k/n)

D(k/n)
≤ 2x <

(j/n)

D(j/n)

)
,

where
(k/n) := X(k/n) − X((k − 1)/n), k = 1, 2, . . . ,

are i.i.d. with distribution the same as that of X(1/n). Given ε ∈ (0, 1), by (A.5), there is a
t0 > 0 such that P(X((j − 1)/n) > −xD(j/n)) > 1 − ε when j/n ≤ t ≤ t0. Thus, keeping
t ≤ t0,

P(Xt > xt) ≥ (1 − ε) lim inf
n→∞

∑
n�(t)≤j≤nt

P

(
max

j+1≤k≤nt

(k/n)

D(k/n)
≤ 2x <

(j/n)

D(j/n)

)
.

Here the sum equals

P((j/n) > 2xD(j/n) for some j ∈ [n�(t), nt])
= 1 −

∏
n�(t)≤j≤nt

P(X(1/n) ≤ 2xD(j/n))

≥ 1 − exp

(
−

∑
n�(t)≤j≤nt

P(X(1/n) > 2xD(j/n))

)
.
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Noting that

n

∫ t+1/n

�(t)

P(X(1/n) > 2xD(s)) ds ≤ n
∑

n�(t)≤j≤nt

∫ (j+1)/n

j/n

P(X(1/n) > 2xD(s)) ds

≤
∑

n�(t)≤j≤nt

P(X(1/n) > 2xD(j/n)) ds,

and employing the fact that limn→∞ n P(X(1/n) > a) = �
+
X(a) for all a > 0 (cf. [7, p. 39]),

we get

P(Xt > xt) ≥ (1 − ε) lim inf
n→∞

(
1 − exp

(
−n

∫ t+1/n

�(t)

P(X(1/n) > 2xD(s)) ds

))

= (1 − ε)

(
1 − exp

(
−

∫ t

�(t)

�
+
X(2xD(s)) ds

))
.

The last expression tends to 1 as t ↓ 0 then ε ↓ 0, provided that (A.7) holds. Thus, (A.8) will
follow from (A.5)–(A.7), as claimed.

It remains to give an example where (A.5)–(A.7) hold. Define

L(x) = e(− log x)β , 0 < x < e−1,

and keep 1
2 < β < 1. Choose a Lévy measure �X which satisfies

�
+
X(x) = −2L′(x) = 2β(− log x)β−1L(x)

x

and

�
−
X(x) = −L′(x) = 1

2�
+
X(x)

for small enough x, x ≤ x0, say. (Note that �
+
X(x) and �

−
X(x) are infinite at 0 and decrease to

0 as x → ∞.) A straightforward calculation using (2.1) gives, for x > 0,

A(x) = γ + �
+
X(1) − �

−
X(1) + 1 − L(x).

Thus, A(x) → −∞ as x ↓ 0, and

−A(x)

x�X(x)
∼ L(x)

−3L′(x)
∼ (− log x)1−β

3β
→ ∞ as x ↓ 0.

Thus, by (A.3), X is NRS at 0 and (A.5) holds with D(t) as in (A.4). We have D(t) = −tA(D(t))

and �(t) = −t/A(t) for small enough t > 0. Since −A(x) → ∞ as x ↓ 0, (A.6) also holds.
Now L(x) is slowly varying as x ↓ 0, so �

+
X(x) is regularly varying with index −1 as x ↓ 0.

It therefore suffices to check (A.7) with x = 1. Note also that log(D(t)) ∼ log t as t ↓ 0,
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because A(·) is slowly varying at 0. Hence, for some constant c2 > 0, as t ↓ 0,

∫ t

�(t)

�
+
X(D(s)) ds =

∫ t

�(t)

D(s)�
+
X(D(s))

−sA(D(s))
ds

∼ 3β

∫ t

�(t)

(− log D(s))β−1

s
ds

≥ 3β(− log D(t))β−1(log t − log �(t))

≥ c2(− log t)2β−1

→ ∞
(because β > 1

2 ). Thus, (A.7) holds too.
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