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ALMOST CONTRACTIVE RETRACTIONS IN ORLICZ SPACES

GRZEGORZ LEWICKI AND GIULIO TROMBETTA

Let Bk denote the Euclidean unit ball in R* equipped with the A:-dimensional
Lebesgue measure and let <f> : K+ -* R+ be a convex function satisfying 0(0)
= 0, <j)(t) > 0 for some t > 0. Denote by E* = E^{Bk) the Orlicz space of
finite elements (see (1.6)) generated by <fi. The aim of this paper is to show that
there exists a retraction of the closed unit ball in E^, onto the unit sphere in E$
being a (2 + e ^ - s e t contraction (Theorem 3.6), which generalises [9, Corollary
6] proved for the case of L p [ - l , l ] , 1 ^ p < oo. Here 74, denote the Hausdorff
measure of noncompactness. This theorem is proved both for the Amemiya and
the Luxemburg norms. Also some related results concerning the case of s-convex
(0 < s ^ 1) functions are presented.

1. INTRODUCTION

Let X be a Banach space with the closed unit ball B and the unit sphere 5 . A
continuous mapping R : B —> 5 is called a retraction if Rx — x for any x € 5 . Let
ip be a measure of noncompactness denned of X. A mapping T : X D D(T) -4 X is
called a ip k-set contraction if there exists k ^ 0 such that

rl>(T(A))

for any bounded set A C D(T). Set

(1.1) fci(X) = inf{fc ^ 1 : there exists a A;-Lipschizian retraction R: B —» S}.

and
(1.2)

k^,(X) = inf{fc ^ 1 : there exists a (ip) k-set contractive retraction R : B —>• S } .

By [2] and [6] for any infinite-dimensional Banach space X, ki,(X) < oo. By [3],
fctPO ^ 3 for any Banach space X. Also it is easy to see that k^(X) ^ k^X), where
7 denotes the Hausdorff measure of noncompactness, that is,

( k

(1.3) 7(A) = inf i r > 0 : i c U B ( X J , r) , xu ... , xk e .
*• t = i
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354 G. Lewicki and G. Trombetta [2]

where A is a bounded subset of X and B(xi, r) denote the closed ball with a centre Xi

and radius r. For more complete information about measures of noncompactness and
(ip) k-sets contractions the reader is referred to [1, 3 , 7, 8, 10]. Moreover, it has been
shown in [10] that &7(CR[0,1]) ^ 1 and in [9, Corollary 6] that Jfc7(Lp[-l, 1]) < 2.

The aim of this paper is to generalise the above mentionned results to the case

of Orlicz spaces (see Theorem 3.6). We consider both the Luxemburg and Amemiya

norms (see (1.7) and (1.8)).

Also we prove some results for Orlicz spaces generated by s -convex functions. In

particular, in s-convex case, we introduce a kind of measure of non-compactness w£

and ix>% A (see Definition 2.8) which is an analogue of the measure of noncompactness

wp considered in [9]. We show that in the convex case (s = 1)

«4 /2 < 7 * ^ u\ and u\tA/2 ^ -y\tA < W},A>

where 7^ ( 7 ^ , respectively) is the Hausdorff measure of noncompactness associated

with the Luxemburg norm (with the Amemiya norm, respectively), which generalises

the classical result concerning Lp-spaces (see for example, [4]). Also we show that

ku<> (E4) ^ 1 (Theorem 3.3) and Ku» A(E<t>) < 1, (Theorem 3.4), which generalises [9,

Theorem 5].

Now we present some basic facts concerning Orlicz spaces. Let <f> : R + —• E + be
continuous, s-convex function such that </>(0) = 0 and 4>{t) > 0 for some t > 0. Recall
that a function <f>: R + —> R + is called s-convex for some 0 < s < 1, if

</>(ax + by) < as<j>{x) + V$(y)

for x, y € R + , a , 6 ^ 0 as + b' = 1. Observe that for s = 1, we get the class of convex
functions. Let (fi, E, fi) be a measure space. Denote by M = M(Cl, R) the set of all
real-valued /i-measurable functions defined on fi. For / € M set

(1-4)

By L<p — L<),(Q., E,/x) we denote the Orlicz space generated by (j>, that is,

(1.5) L+ = {/ € M : lim p+(\f) = 0}.

By Etf, we denote the space of finite elements, that is,

(1.6) E4 = {/ G M : p+iXf) < 00 for any A > 0} .

It is well-known that Ej, is a closed subspace of L$. Moreover, L^ = E# if and only if
the appropriate A2 condition holds true (see for example, [5, Theorem 8.14, p. 53]). If
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$ is an s-convex function, we can equip L<p with an s-convex norm (norm if s = 1),
given by

(1-7) II/HJ - inf{u > 0 : P<t>{f/ul'°) < l } .

named the Luxemburg s-norm (norm if s = 1).

Observe that, if tf>{t) = t" where 1 ^ p < oo, then L^, = E,p = Lp and J

= H/llp. If 0 < p < 1, then 0 is a p-convex function and | | / | |£ = /n | /(«) |prf/ i(() .

It is also well-known, (see for example, [5,Theorem 1.10, p. 6]) that in s-convex
case, we can consider in L^, the other s-norm (norm if s = 1), called the Amemiya
s-norm defined by

(1.8)

For more detailed information about Orlicz spaces see for example, [5].

2. TECHNICAL LEMMAS

DEFINITION 2.1: Let Bk denote the unit Euclidean ball in Rfc. For i e R f c denote
by ||a;||e the Euclidean norm of x. Let E^ be the set of all Borel subsets of Bk equipped
with the Lebesgue measure

Analogously, for / e Lj,, | / | J ^ 1, set

o i,nt|U>I±J
LEMMA 2 . 2 . For any A > 0, / € L^ with ||/||J ^ 1

+(2-1) P#(AQJ(/)) = ^

Moreover, for any b > 1,

(2.2) _
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The same results hold true for the Amemiya s-norm | • |£.

PROOF: Observe that for any A > 0

Set g(t) = ^2 / (1 + | | / | | j ) ) t . Note that by changing variables from t to g(t)

J
which proves our claim. The same reasoning applies to the operator Q^ A and any
function / € L 0 , | / |J ^ 1.

Now fix b ^ 1. Then 4>{bx) ^ ba4>(x) for any x G R+. Hence

By the previous part of the proof,

which shows (2.2).
Reasoning in the same way, we can show that

ba^l+' *' P<t>(Xf).
1 D

LEMMA 2 . 3 . For any f e L+, ||/||J < 1,

The same result holds true for \ • |£ and Q^^ •

PROOF: Take any u > | | / | |£. By (1.7) and Lemma 2.2 applied to A = \/ux/a, we
get
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[5] Orlicz spaces 357

Hence ||Q
Now take any / € L#, |/ |£ ^ 1. By Lemma 2.2 and (1.8) one can easily show that

IQJ,A(/)I;<I/IJ-
Now we prove the second inequality. Let u = d((l 4- H/ | | i ) /2J | | / | | i for some d

£ (0,1). Then by Lemma 2.2, and s-convexity of 4>,

= P*(f/(d\\f\\i)x/')>l.

Since d can be an arbitrary number from (0,1),

' ' ^ I I / I I J .

as required.
Finally, we consider the case of | • |£. Take any u > 0. Observe that by Lemma

2.2,

u u

Hence taking infimum over u > 0, we get

which completes the proof. D

LEMMA 2 . 4 . Let (/„) be a sequence of functions from E^ (see (1.6)) and let

/ G £*, ||/n||J ^ 1 for any n e N and ||/||* ^ 1. If for any X > 0,

then
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for any A > 0. Analogously, if | / n | £ < 1 for any n e N and | / |£ ^ 1, then

for any A > 0.

P R O O F : Note that by [5, Theorem 6, p. 3],

if and only if ||/B - / | | J -> 0 and

if and only if | |QJ(/n) - QJ(/)| |* -> 0. Observe that

\\QUfn) - g j

where

o if

By Lemma 2.2, for any A > 0,

Hence \\Q%(fn) - QJ,n(/) | |^ -> 0. To end the proof, it is sufficient to show that

\\Q%,M) ~ <3J(/)||0 -* °- T o d o t h i s ' fix e > 0. Since / G £^, there exists a
continuous function g : Bk -> K, such that ||^||J = H/||J and ||p - /| |^ < e. Observe
that

\\Q%,nU) - Q l ;

+ ||«J,n(5) - Q'MZ + \\QUa) -

Note that by Lemma 2.2, for any A > 0 and n € N,

Hence, by (1.7),
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Analogously, since ||/| |J = \\g\\^,

Now we show that

Let HffHoo denote the supremum norm of g. Fix A > 0 and set

1+Dn = [t G Sk :

If | | /n| |J> H/HJ, then by Lemma 2.2,

L

i+JLU,j_

i+ll/lll

(2.3)

Analogously, if ||/n||« < | | / | |J, then

(2.4)

where

Set for n €

MO =
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Note tha t by the continuity of g, hn(t) -> 0 for any t € Bk. Moreover, | / i n (0 |
^ 0(2A||g||oo) for any t 6 Bk. Since Hk(Bk) < oo, by the Lebesgue dominated conver-
gence theorem

(2.5) f M*)d/*fc(*)->0.
JBk

Since, fJ.k(Cn) -> 0 and fJ.k(Dn) -> 0, by (2.3) - (2.5), for any A > 0,

and consequently \\Q%,n{g) - <3£(s)||J, -+ 0.

Reasoning in the same way, we can show that for any A > 0,

The proof is complete. D

By Lemma 2.4 and [5, Theorem 6, p. 3] one can easily deduce

COROLLARY 2 . 5 . Let / „ , / € E+, | | /n | |J ^ 1 for any n e N and H/ll• ^ 1. If

ll/n - f\\% -> 0 then

Anaiogousiy if, | /n |J ^ 1 for any n € N, |/|J ^ 1 and \fn - / | J -> 0 then

DEFINITION 2.6: Let / € L^{Bk) n Lx{Bk). Set for r > 0, Bfe(r) = | t e

^ r [ • For any h > 0, by //* we denote the Steklov function of / , that is

=( fhit)

REMARK 2.7. Observe that if f € Li(Bk), then /& is well-defined and continuous for
any h > 0. Hence //, 6 E^(Bk)- Moreover, if 0 is a convex function then L^(Bk)
c L i ( B t ) , ( a s a subset) since /ifc(Bjt) < oo. Hence in this case fh € E$ for any h > 0
and. / € X-0.

DEFINITION 2.8: Let <£ be an s-convex function and let B C L^(Bk)C\Li(Bk) be
a bounded set with respect to the Luxemburg s-convex norm || • ||J. Set

u4(B) = limYsup sup | | / - M | ; R f c ) ,
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where || • ||iRfc denotes the s-convex Luxemburg norm associated with a modular

P***(f) = f 4>(\f{t)\) dl*k(t).

In the case of the Amemiya s-norm | • |J, (see (1.8)) we put

= lim(sup sup | / - / f c | J R * ) .

PROPOSITION 2 . 9 . Let <j> bean s-convex function such that

(2.6) <p*(v) = sup(uu - </>(u))
u>0

is finite for any v ^ 0. Let 7^ (-y^A respectively) denote the Hausdorff measure

of noncompactness in L,j)(Bk,'Ek, f*k) with respect to the Luxemburg s-norm (to the

Amemiya s-norm respectively). Let B C Ej, (see (1.6)) be a bounded set. Then

and

Moreover, if s = 1, that is, </> is a convex function, then

and

PROOF: First we consider the case of the Luxemburg s-norm. Since (f>*(v) < +00,
for any v ^ 0, by (2.6),

for any / G L^, t 6 Bk and u > | | / | |J. By integrating the above inequality, and (1.4)
we easily get that / G Li(Bk). Hence by Remark 2.7, wB^(B) is well-defined for any
bounded set B c E^Bk) (see Definition 2.8).

Now fix b > u^(B) and take e € (0, (b - wJ(B))/2). Then there exists 5 > 0

such that 0 < h < 6,
sup (||/ - /h | |;Rfc) <b-e.
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FixO < h< 8 and let Sh = {fh : f G B}. Observe that by (2.6), for any k G N and
u> 0,

Since <j>*{k) < -t-oo for any k G N, reasoning as in [5, Theorem 9.11, p. 61], we can

show that Sh is a conditionaly compact set in E,p. Hence there exist gi,... , gn(e) G E<j,

such that for any / G B, \\fh~ gi\\^ ^ e for some i € { l , . . . ,n(e)}. Hence by the

triangle inequality for any / G B there exists i € { l , . . . , n(e)} such that

Hence 7^(5) ^ 6 and consequently, ^(B) < w^(fi), as required.
The same reasoning applies to the case of the Amemiya norm.
To prove the second part, assume that (f> is a convex function. By [5,Theorem

9.10, p. 61] for any / 6 L^Bk), and h > 0,

(2-7) | |M|i ) R* < ||/|£iRfc = II/HJ

Fix 6 > 7 J ( B ) and take e G (o, (b - 7 ^ ( S ) ) / 2 ) . Then we can find glt... ,gn{b)

E E^Bk) such that for any / G B, \\f - g^ ^ b-e, for some i G { l , . . . ,n(b)} .

Since B c £ ^ , w e can assume that ^ are continuous functions. Since Bk is a compact
set, there exists 6 > 0 such that for any h < 5 and i — 1 , . . . , n(b)

(2-8) Ik* - G7i)/Jli,R* «* £-

Hence, by (2.7) and (2.8), for any / G B and 0 < h< 8

(ii/ - MiijiO/a < (11/ - ftiiu+ii/" - (ft)*n U + H * - fa

Consequently

as required. The same reasoning applies to the case of the Amemiya norm. D

PROPOSITION 2 . 1 0 . For any s-convex function <j>, satisfying the assumptions
of Proposition 2.9, A G K and bounded subsets C,D C E<j, the following conditions are
satisfied:

(2.9) W$(C) = 0 implies C is conditionally compact;

(2.10) WJ(cl'(C)) =«$((?),
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where

cls (C) = cl(cs = { / eE*:f = Y,ajfj : /,- € C,alt... ;ak

^ *• j=i

(2.11) wJ(Cu£>) =

(2.12) wJ(C + Z?)<

(2.13) uJ(AC) =

0,f>? = l});

Moreover, if 0 is convex, then w^(C) = 0 for any conditionally compact set C. The
same properties holds true for w£>i4.

PROOF: Suppose that w£(C) = 0. Then by Proposition 2.9, 7 | (C) = 0 and

consequently cl(C) is a compact set. If <f> is convex, then again by Proposition 2.9

u)^(C) = 0 for any conditionally compact set C.

To prove (2.10), first we show that for any fixed h > 0, if | |/n| |iRfc -»• 0, then

||(/n)fc||lRfc -> 0. Suppose, this is not true. Without loss of generality,, we can assume

ll/nll^jn* -> ° . a n d l|(/n)h||^Rfc ^ d > 0. By our assumptions, reasoning as in [5,

Theorem 9.11, p. 61], we can show that the sequence {{fn)h} contains a subsequence

(we denote it again by {fn)h), tending uniformly on Rfc to a function g continuous on

Bfc(l + h) and equal 0 outside this set. By our assumptions on { ( / n ) h } , g(t) # 0 for

some t e Bk(l + h). Observe that

tik(cn = {s G Bk{h) : \fn{s + t) -g(t)\ > \g(t)\/2}) -> 0.

Consequently, fik(Bk{h) \ Cn) -*• fJ,k(Bh)- Note that

Bk(h) \ Cn C {s € Mfc : \fn(s + t)\> \g(t)\/2}.

Hence {/„} does not converge to 0 in measure. By [5, Lemma 9.2, p. 56], ||/n||lRfc
does not converge to 0, a contradiction.

By the previous part of the proof, we get immediately for any bounded set C C E$

n n

Now take any / € Ca,f — Yl ajfj > where for j — 1 , . . . , n /,• € C, a,-^ 0, J2 a] = 1.

Observe that for any h > 0,

,_ j
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Consequently,

Since the opposite inequality is obvious, (2.10) is proved. The other properties follow
immediately from Definition 2.8.

The same proof applies to the case of w£ A. D

LEMMA 2 . 1 1 . For any f € L+(Bk) n L^B*), | | / | | J = | | / | |«R f c ^ 1, (we put

f(t) = 0 for \\t\\e> 1), A , / i > 0

where a = ((l + \\f\\s
4>)/2) . The same result holds true for any f G L^(Sfc), |/|*

PROOF: Fix / e L 0 ) ||/| |J < 1 and A > 0. Set for any t € Rk, u(t) = t/a. Then
after changing variables from i to u, we get

To end the proof of the lemma, we show that (<2£/J (aw) = fh/a{
u) • Observe that

{Q%f)h{au) =(( f(8/a)xBk{s/a)dnk(s))/nk(Bk(h)),

\Jau+Bk(h) / '

(
au+Bk(h)

where XBk denotes the characteristic function of Bk- Set z(s) — s/a. After changing
variables from s to z we get

f
u+Bk(h/a)

[
u+Bk(h/a)

f(z)xBk(z)dnk(z))/nk{Bk(h))

The same reasoning applies to the Amemiya s-norm. The proof is complete. D

Applying Lemma 2.11 and the definitions of the Luxemburg and the Amemiya

s -norms one can easily get
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COROLLARY 2 . 1 2 . For any feL+n Lx(Bk), | | / | | J - | | / | | ;R f c ^ l ,

If | / | ; < 1 , then

\Q%Af)~ (Q*,Af)

THEOREM 2 . 1 3 . For any set B C {/ € L^DLi(5f c ) : | |/ | |£ < l } ,

and for any set B c { / e L ^ n ii(Bjt) : |/|£ ^ 1},

PROOF: Follows immediately from Definition 2.8 and Corollary 2.12. D

3. MAIN RESULTS.

Let B,p {BQ^A respectively) denote the unit ball in E,p = E^Bk^k^k) (see

(1.6)) with respect to the Luxemburg s-norm (with respect to the Amemiya s-norm

respectively). For any u > 0 define P^tU : BQ -> E^ by

(3.1) ( iWXO = max{0,«(2||t||e - ||/||J - l)}.

Analogoiisly, for any u > 0 define P^,,U,A '• B<t>,A -* Ej, by

(3-2) (P*,u.Af)(t) = max{0,«(2||t||e - | / |J - l )} .

Set

(3-3) T+,M) = QW) + P+M

and

(3-4) T*,u,A(f) = Q%tA{f) + P*,uAf)>

where Qs. and Qt A are given by Definition 2.1. Observe that [Q^fMt) — 0 if and

only if ||t||e > (1 + ||/||J)/2 and for any u > 0 (P / > 1 4 )W - 0 if and only if ||t||e

^ (1 + ll/llj)/2- Hence for any u,A > 0 and / € B^
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Consequently, for any u > 0, / e B$

(3.5) \\Q%f\\% < Hr^/ii;.

Analogously, for any u > 0, / G .B^A

(3-6) \0%,Af\% < I^,«,^/|J.

Observe that for any u > 0, f € B<j, and z,t e Bk,

\P*,uf(t) - P+,uf(z)\ ^ 2u\\t - z\\e.

Consequently for any e > 0 there exist J > 0 such that for any f € Bj, and 0 < h < S,

)A|L = sup (\P^f(t) - {P*,uf)h(t)\) ^ e.

This implies immediately that for any B c ^ f l Li(Bk), w£(P0,u(.B)) = 0. Hence by
Proposition 2.10 and Theorem 2.13, for any B C B$ n Li(Bk)

(3.7) " J

Analogously, for any B C -B^^ n

(3.8) wJiA(r0

LEMMA 3 . 1 . For any e > 0 there esists ue > 0 such that for any / € B^,

, » . | | j ^ i - e .

PROOF: Fix £ > 0. Choose <J > 0 such that

(l-5)(2-S)k

2fc >! e-

I f II/IIJ ^ 1 - 5 , then by Lemma 2.3 and (3.5), for any u > 0

(3-9) II2WHJ ^ HQJ/IIJ ^ ||/||j((l + ||/||0)/2) ^ ( 1^2
(
f c

2"^ ) > 1 - e.

Now suppose ||/||^ < 1 - S. Since supp (Q^fj PI supp (•?£„/) = 0 for any u > 0,

+ / *(«(2ii«iie - II/II; -1) W o
JBk\Bkll-6/4) V y

<V4))<£(u(2 - «/2 " (1 - S) ~ 1))

- 6/4))4>{u5/2).
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Hence, we can find ue > 0 such that for any / G B^, ||/||£ < 1 -S, p^T^f) > 1 and
consequently,

which completes the proof. D

LEMMA 3 . 2 . For any e > 0 there exists ue > 0 such that for any f G -B^.A ,

|T«.u , ,A|J>l-e.

PROOF: Fix e > 0. Choose 5 > 0 such that

2fe > i e.

If I/IJ. ̂  1 — <J. then reasoning as in Lemma 3.1, we get I T ^ A I ^ > 1 - e for any u > 0.
So assume | / |£ < 1 - 5. Fix k > 0. If k < 1, then

for any u > 0. If k > 1, then by s -convexity of <j>,

P<t>(-L<t>,u,AJ)

By the proof of Lemma 3.1, p<j,{T^iUiAf) ^ (j>{u5/2). Hence there exists ue > 0 such
that for any k > 0, / G 5 0 , | / |£ < 1 - 5

and consequently, | IV ] U £ I A/ |^ > 1 - e. Q

THEOREM 3 . 3 . Let Ŝ , denote the unit sphere in E$ with respect to the Lux-

emburg s-convex norm || • ||^. For any e > 0 there exists a retraction R^ : B^^> Sj,,

such that for any B C B^n Lr{Bk)

In particular, ku* {EA,) ^ 1.

PROOF: Fix e > 0. Choose ex > 0 such that ( l / ( l - ei))° < 1 + e. Let ut > 0

be a positive number corresponding to £i by Lemma 3.1. Set for / € B$
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Observe that | |i2^/| |J = 1 for any / 6 B f Moreover, by (3.1) and (3.3), R^f = f

for any f € S^. By Corollary 2.5 and (3.3), Jfy is a continuous mapping. Now fix
B c F ^ n Li(Bk) . By the choice of t*i and Lemma 3.1, for any / € B and h > 0,

Consequently, by (3.7),

( 1+ £ ) $

The proof is complete. D

Replacing Lemma 3.1 by Lemma 3.2 and reasoning as in Theorem 3.3, one can

show

THEOREM 3 . 4 . Let S^tA denote the unit sphere in E^ with respect to the

Amemiya s-convex norm | • | J . For any e > 0 there exists a retraction R^^A '• B^^A

-» S<t>,A, such that for any B C B^A f~l L\{Bk)

In particular, ku* ^ (#,/>) ^ 1.

REMARK 3.5. If <f> is a convex function, then, by Remark 2.7, Theorem 3.3 (Theorem

3.4 respectively) holds true for any B C B$ ( B e -Efy.A respectively). If in the definition

of ul for any r > 1, we replace || • ||«Rfc by || • | |£iBfc(r ), where || • | |£iBfc( r ) , is the

Luxemburg s-norm associated with a modular p^,,sfc(r)(/) = / B (r) 0 ( | / ( O | ) M̂fcCO

Theorem 3.3 remains true. In the case of the Amemiya norm the same applies to

Theorem 3.4.

If 0 is a convex function, by Remark 2.7, Proposition 2.9, Theorems 3.3 and 3.4,

we easily get.

THEOREM 3 . 6 . Let <f> be a convex function such that <f>*{v) (see (2.6)j is finite

for any v > 0. Then for any e > 0 there exists a retraction Rj, : B^, -+ 5^ such that

for any B C B$

In particular, k i {E$) ^ 2. The same result holds true in the case of the Amemiya
t

k i
<

norm.

REMARK 3.7. In the case of 4>{t) = tp (1 ^ p < oo) and k = 1, that is, Ej, = Lp[-1,1],

Theorem 3.6 has been proven in [9, Corollary 6].
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