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ALMOST CONTRACTIVE RETRACTIONS IN ORLICZ SPACES

GRZEGORZ LEWICKI AND GIULIO TROMBETTA

Let Bi denote the Euclidean unit ball in R* equipped with the k-dimensional
Lebesgue measure and let ¢ : Rt — R* be a convex function satisfying ¢(0)
= 0, ¢(t) > 0 for some ¢t > 0. Denote by E4 = Ey(By) the Orlicz space of
finite elements (see (1.6)) generated by ¢. The aim of this paper is to show that
there exists a retraction of the closed unit ball in E4 onto the unit sphere in E,
being a (2 + £)vs-set contraction (Theorem 3.6), which generalises [9, Corollary
6] proved for the case of L,[—1,1], 1 € p < co. Here 7, denote the Hausdorff
measure of noncompactness. This theorem is proved both for the Amemiya and
the Luxemburg norms. Also some related results concerning the case of s-convex
(0 < s £ 1) functions are presented.

1. INTRODUCTION

Let X be a Banach space with the closed unit ball B and the unit sphere S. A
continuous mapping R : B — S is called a retraction if Rz = z for any z € S. Let
1 be a measure of noncompactness defined of X. A mapping 7: X D D(T) — X is
called a 9 k-set contraction if there exists k > 0 such that

¥(T(A)) < ky(A)
for any bounded set A C D(T'). Set
(1.1) kr(X) = inf{k > 1: there exists a k-Lipschizian retraction R : B — S}.

and
(1.2)
ky(X) =inf{k > 1: there exists a (%) k-set contractive retraction R: B — S}.

By (2] and [6] for any infinite-dimensional Banach space X, kr(X) < oo. By [3],
kr(X) > 3 for any Banach space X . Also it is easy to see that k,(X) < kr(X), where
v denotes the Hausdorff measure of noncompactness, that is,

k
(1.3) 'y(A)=inf{r>0:AC UB(xi,r),zl,...,zkeX},

i=1
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where A is a bounded subset of X and B(z;,r) denote the closed ball with a centre z;
and radius r. For more complete information about measures of noncompactness and
(%) k-sets contractions the reader is referred to [1, 3, 7, 8, 10]. Moreover, it has been
shown in [10] that k,(Cg[0,1]) < 1 and in [9, Corollary 6] that k,(L,[-1,1]) <2

The aim of this paper is to generalise the above mentionned results to the case
of Orlicz spaces (see Theorem 3.6). We consider both the Luxemburg and Amemiya
norms (see (1.7) and (1.8)).

Also we prove some results for Orlicz spaces generated by s-convex functions. In
particular, in s-convex case, we introduce a kind of measure of non-compactness wg
and wj 4 (see Definition 2.8) which is an analogue of the measure of noncompactness
wp considered in [9]. We show that in the convex case (s = 1)

wg/2 € 75 < wy and wy,4/2 < 75 6.4 S Wy, 4

where ’y(}, (’yqlsy 4 respectively) is the Hausdorff measure of noncompactness associated
with the Luxemburg norm (with the Amemiya norm, respectively), which generalises
the classical result concerning L,-spaces (see for example, [4]). Also we show that
kw; (Ey) € 1 (Theorem 3.3) and K“';,A (Eg) <1, (Theorem 3.4), which generalises [9,
Theorem 5].

Now we present some basic facts concerning Orlicz spaces. Let ¢ : Rt — Rt be
continuous, s-convex function such that ¢(0) = 0 and ¢(¢) > 0 for some t > 0. Recall
that a function ¢ : R, — R is called s-convex for some 0 < s <1, if

#(az + by) < a’d(z) + b°¢(y)

for z,y € R*, a,b> 0 a®+b° = 1. Observe that for s = 1, we get the class of convex
functions. Let (£2,%, 1) be a measure space. Denote by M = M(Q,R) the set of all
real-valued p-measurable functions defined on 2. For f € M set

(1.4) pol1) = [ 6(170)]) auto)
9}
By Ly = L4(2,Z, ) we denote the Orlicz space generated by ¢, that is,
(1.5) Ly ={f € M: lim ps(Af) = 0}
By E, we denote the space of finite elements, that is,
(1.6) Eg = {f € M:py(Af) < oo for any A > 0}.

It is well-known that Ey is a closed subspace of Ly. Moreover, Ly = Ey4 if and only if
the appropriate A, condition holds true (see for example, {5, Theorem 8.14, p. 53]). If
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¢ is an s-convex function, we can equip Ly with an s-convex norm (norm if s = 1),
given by

(1.7) I£1I5 = inf{u >0: pg(f/u'l?) <1}

named the Luxemburg s-norm (norm if s =1).

Observe that, if ¢(t) = ¥ where 1 < p < oo, then Ly = E4 = L, and ||ff|}
=||fllp- f 0 <p <1, then ¢ is a p-convex function and ||f||} = fnlf(t)lpdu(t).

It is also well-known, (see for example, [5,Theorem 1.10, p. 6]) that in s-convex
case, we can consider in L, the other s-norm (norm if s = 1), called the Amemiya
s-norm defined by

(1.8) 1715 = inf{ (1 + p¢(u1/"f))/u cu> o}.

For more detailed information about Orlicz spaces see for example, [5].

2. TECHNICAL LEMMAS

DEFINITION 2.1: Let B denote the unit Euclidean ball in R*. For = € R* denote
by ||z||e the Euclidean norm of z. Let 34 be the set of all Borel subsets of By equipped
with the Lebesgue measure pi. Define for f € Ly = Lg(Bk, Lk, px) ||fIl3 < 1,

‘ 2 1+ 171l5
—_— if ||t||e € ———=
f(1+”f”§, ) 1 ” “e 2

0 if [Itle >

Q1) (t) =
(@) 1+ 1£115
2

Analogously, for f € Ly, |f|3 <1, set

2

(2 L+Ifly
1+17T;

2

1+ 713
2

f ) iflelle <
(Q‘;,Af) )=

0 if ”t”e >

LEMMA 2.2. Forany A>0, f € Ly with ||f]l3 <1

k
1+ £113
(2.1) ps(AQ5(f)) = iT‘iipes(/\f)-

Moreover, for any b > 1,

(1+1715)°

(2.2) ps(BAQ5(F) > b

py(Af)-

https://doi.org/10.1017/5S0004972700037771 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700037771

356 G. Lewicki and G. Trombetta (4]

The same results hold true for the Amemiya s-norm | - [3.

ProoF: Observe that for any A > 0

S0 FY) — 2
s (AQ5(f)) —Atues(unfn;)/z¢(/\|f(—_—1+|If||gt)|) dpx(t).

Set g(t) = (2/(1 + ||f||;))t Note that by changing variables from t to g(t)

o003 = (S8 [, o0l (i) Joes Ol
- (F8) [ (st = (Z518) s,

which proves our claim. The same reasoning applies to.the operator Q;, 4 and any
function f € Lg, |fl} <
Now fix b > 1. Then ¢(b.1:) b*¢(z) for any z € RT. Hence

po(A@3() = [ s(f (s f”¢t) ) i) > #u(@500)

By the previous part of the proof,

1+ 1 £1I5\ *
Sd i N

b0e(Q3(1)) = b°(

which shows (2.2).
Reasoning in the same way, we can show that

(1+1713)"

Ps(DAQ5 4(S)) > b"——zk——-l):p(/\f)-

LEMMA 2.3. Forany fe Ly, |Ifll3 <1

(ZE0708Y*) 1y < gl <

The same result holds true for |- |3 and Q3 ,.
PrOOF: Take any u > ||f||5. By (1.7) and Lemma 2.2 applied to A = 1/u'/*, we

get
po(@nrare) = (KM ) < (BEMG)* o,
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Hence [|Q3(f)[[} < IIf113-
Now take any f € Ly, |f|3 < 1. By Lemma 2.2 and (1.8) one can easily show that

Q5,45 < If15-

K
Now we prove the second inequality. Let u = d((l + ||f]|;)/2) |fll3 for some d
€ (0,1). Then by Lemma 2.2, and s-convexity of ¢,

Po (Qi(f)/u‘/s) =Py ((m) k/sQ;(f)/(d“f";’) 1/8)
> () e (@30 @1713)™")
= ps(£/(@lf13) ") > 1.

Since d can be an arbitrary number from (0,1),

Il > (<18)*) s,

as required.

Finally, we consider the case of |- |3. Take any u > 0. Observe that by Lemma
2.2,

k
L+ pp(w/oQ3a (1) _ L+ ((1+1713)/2) pa(w)

u u

S (1+2|f|;)k(1+p¢(u1/af)) 5 (1+|f|¢) 1115,

u

Hence taking infimum over u > 0, we get

1+ |fl3

Q54005 > (—572) 1113,

which completes the proof. 0

LEMMA 2.4. Let (f.) be a sequence of functions from Ey4 (see (1.6)) and let
f€Es, |fally <1 forany n € N and ||f||g < 1. If for any A >0,

p¢(’\(fn - f)) -0,

then

ps(M@3(a) = Q3(N)) =0
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for any A > 0. Analogously, if |fal3 <1 for any n € N and |f[|} < 1, then

po(M(@3.4(fn) - @3.4(1)) - 0

for any A > 0.
Proor: Note that by [5, Theorem 6, p. 3],

ps(A(fn = 1)) =0,
if and only if || fn — fll5 — 0 and
pe(M(@5(fn) - Q3(N)) ~ 0
if and only if [|Q5(fa) — Q5( f)||; — 0. Observe that
1Q4(f2) = Q4(Dlly < 1Q5(fn) = Qon(DNlly + Q3. (F) = QFANIL

where

1+ || fall
Hrt) il < 0008

s _ 1+ “fn"¢ 2
(@n1)0 = 1+ |1 £alg
0 if |Jtlle > —2—""’

By Lemma 2.2, for any A > 0,

o (A(@37) - @3n(1) = (28, (012 - 1),

Hence HQ;( fn) — Q% n( f)||; — 0. To end the proof, it is sufficient to show that
1Q5,.(F) = Q3(£)]l, — 0. To do this, fix € > 0. Since f € Ey, there exists a
continuous function g : By — R, such that ||g||3 = {|f|l; and [lg - f||3 < &. Observe
that

1Q54(F) = Q35 < 1Q3,n(f) — Q5.5
+[|@5.n(9) = Q3 @)l + [1Q3(9) — @55

Note that by Lemma 2.2, for any A > 0 and n € N,

(R0 a1 - o).

ps(M@3.n(1) - Q5 n(9)))

Hence, by (1.7),
1Q3.n(F) = Q4 n(a, < IIf —gll} <e
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Analogously, since || f||l3 = lgll3,

10305 - Q3@ < I - glls <

Now we show that

1Q5.n(9) = @3@)||;, — 0.

Let ||g]lco denote the supremum norm of g. Fix A > 0 and set

1+ {|fall2
< itlle < #}.

L+ [I£115
b {re 5, L

If || fall3 > Il f|l3, then by Lemma 2.2,
[ #(3(@50@) - (@50) ®)])disnt®
By
2
= /..t”esit";l% ¢(*'g(1 AT

_g(mt)‘)duk(t)+/Dn¢(/\ly(W2ﬂl”$t)d#k(t)D

< (LEldlay: / k ¢<A‘g(%t) -g(t)Ddﬂk(t) + e (Dn)é(Mlgllo).

(2.3)

Analogously, if || fall3 < [If]|3, then
e [ 6(4(@3n0) - @30)0)] (0

< (I—“L”—f—"ﬂi)k / k¢(A‘g(M )- g(t)l)dnk(t)+uk(cn)¢(xllgllw),

2 L+ 1fllg
where . .
Co={te s, Ml 221G
Set for n € N
1+ 1£1l3

$(o () -o0)) Ul > 1

|
o (o 1*;':{;]:':@) ~5)) s <713

ha(t) =
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Note that by the continuity of g, h,(t) — 0 for any t € Bx. Moreover, |hn(t)|
< ¢(2)ligllco) for any ¢ € By. Since pi(Bk) < 0o, by the Lebesgue dominated conver-
gence theorem

(2.5) /B b (2) i (£) = 0.
Since, ux(Cr) — 0 and px(Dy) = 0, by (2.3) - (2.5), for any A > 0,
po(M@5(9) - Q3(9))) ~ 0

and consequently ||Q;,n(g) - Q‘;’(g)”; —0.
Reasoning in the same way, we can show that for any A > 0,

po(M@5,a(f) - Q54() ) = 0.

The proof is complete. ]
By Lemma 2.4 and [5, Theorem 6, p. 3] one can easily deduce

COROLLARY 2.5. Let fu,f € Ey, ||fall3 <1 forany n €N and ||f|l < 1. If
|fn — fllz — O then

1Q3(f2) — Q4(N)l, = 0.
Analogously if, |ful3 <1 for any n € N, |f|3 < 1 and |fn — f|3 — 0 then

Q3 aF2) — Q4R = .
DEFINITION 2.6: Let f € Ly(Bg) N Li(Bg). Set for v > 0, Bg(r) = {t € R* :
[Ithe < r} . For any h > 0, by fr we denote the Steklov function of f, that is

o= ([, sadun()) e (B0

REMARK 2.7. Observe that if f € L1(By), then f, is well-defined and continuous for
any h > 0. Hence f, € E4(Bk). Moreover, if ¢ is a convex function then L4(By)
C L1(Bk), (as a subset) since ux(Bx) < co. Hence in this case fn € Ey for any h > 0

and f € L¢ .
DEFINITION 2.8: Let ¢ be an s-convex function and let B C Ly(Bx)NLy(By) be
a bounded set with respect to the Luxemburg s-convex norm || - ||3. Set

wi(B) = lim(sup su — full® ),
¢( ) 550 fEBO<h26“f ”4>,Rk
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where || - . denotes the s-convex Luxemburg norm associated with a modular

1A
posr($) = [ (170 dunto
In the case of the Amemiya s-norm |- |3 (see (1.8)) we put

w B) = hm sup su
p.a(B) = (fegkhpalf fh|¢Rk)

PROPOSITION 2.9. Let ¢ be an s-convex function such that

(2.6) ¢ (v) = sup(uv — $(u))

u>0

is finite for any v > 0. Let 3 (73 4 respectively) denote the Hausdorff measure
of noncompactness in Ly(Bg, Lk, px) with respect to the Luxemburg s-norm (to the
Amemiya s-norm respectively). Let B C Ey (see (1.6)) be a bounded set. Then

’Y¢(B) qu(B)

and
Y$,4(B) < wg 4(B).

Moreover, if s =1, that is, ¢ is a convex function, then

wy(B)
74(B) > %,

and . B)
w

74.4(B) > ~22—.

PROOF: First we consider the case of the Luxemburg s-norm. Since ¢*(v) < +00,
for any v > 0, by (2.6),

O/ < o(| £ /M) +6* (D),

for any f € Ly, t € By and u > ||f]|}. By integrating the above inequality, and (1.4)
we easily get that f € Li(Bg). Hence by Remark 2.7, wg(B) is well-defined for any
bounded set B C Ey(Bx) (see Definition 2.8).

Now fix b > wj(B) and take ¢ € (0, (b — w5(B)) /2). Then there exists § > 0

sup (|| f —fh”s ) <b-—¢
5 B(" ¢,R )
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Fix!0 < h < § and let S, = {fn : f € B}. Observe that by (2.6), for any k¥ € N and

u>0,

u < $(u)/k+ ¢*(k)/k.
Since ¢*(k) < +oo for any k € N, reasoning as in [5, Theorem 9.11, p. 61], we can
show that Sj is a conditionaly compact set in Ey. Hence there exist g1,... ,gn() € Eg

such that for any f € B, ||fa — gill§ < € for some i € {1,...,n(e)}. Hence by the
triangle inequality for any f € B there exists i € {1,... ,n(¢)} such that

Nf —gills < IIf = fallg + lIfn — g:llg < 0.

Hence v3(B) < b and consequently, 73(B) < wj(B), as required.

"The same reasoning applies to the case of the Amemiya norm.

To prove the second part, assume that ¢ is a convex function. By [5,Theorem
9.10, p. 61] for any f € L4(Bx), and h > 0, '

(2.7) 1l e < AL g = IS

Fix b > v}(B) and take ¢ € (0, (- 'yql,(B))/Z). Then we can find gi,...,gn)

€ E4(Bx) such that for any f € B, ||f —gilly < b—¢, for some i € {1,... ,n(b)}.
Since B C Ey4, we can assume that g; are continuous functions. Since Bj is a compact
set, there exists d > 0 such that for any h < d and i =1,... ,n(b)

(2.8) llg: = (@)ally g < &
Hence, by (2.7) and (2.8), forany f € B and 0 < h <4
(1F = alll o) /2 < (IF = 9l o + 1150 = (@idnlly e + s = 99)all e ) /2

<If = il ++(llos - @nllyge) /2 <B—e+e/2<b.

Consequently
wg(B)
14(B) > 5
as required. The same reasoning applies to the case of the Amemiya norm. 0

PROPOSITION 2.10. For any s-convex function ¢, satisfying the assumptions
of Proposition 2.9, A € R and bounded subsets C,D C E, the following conditions are

satisfied:
(2.9) wg(C) = 0 implies C' is conditionally compact ;
(2.10) wi(cl® (C)) = wi(C),
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where

K
cl? (C) = Cl(C"\3 ={f € E¢ . f = iajfj : fj € C,al,... 1 P O,Za; = 1});
j=1 j=1
(2.11) wg(C U D) = max{wj(C),wj(D)};
(2.12) wg(C + D) € wi(C) + wg(D);
(2.13) w3 (AC) = [A*wi(C).

Moreover, if ¢ is convex, then wé(C) = 0 for any conditionally compact set C. The
same properties holds true for Wy A-

PROOF: Suppose that wg(C) = 0. Then by Proposition 2.9, 73(C) = 0 and
consequently ¢l (C) is a compact set. If ¢ is convex, then again by Proposition 2.9
wy(C) = 0 for any conditionally compact set C.

To prove (2.10), first we show that for any fixed h > 0, if ||f,.||“;,,m,c — 0, then
|(fn) h”;,Rk — 0. Suppose, this is not true. Without loss of generality, we can assume
||fn||;’Rk — 0, and ”(fn)h”:,,Rk 2 d > 0. By our assumptions, reasoning as in [5,
Theorem 9.11, p. 61}, we can show that the sequence {(f,),} contains a subsequence
(we denote it again by (fn), ), tending uniformly on R¥ to a function g continuous on
Bi(1 + h) and equal 0 outside this set. By our assumptions on {(fn),}, g(t) #0 for
some t € Bg(1 + h). Observe that

i (Cn = {5 € Bi(h) i | fals + ) - ()] > J9(®)]/2}) = 0.
Consequently, pg(Br(h)\ Cn) = ux(Bpr). Note that
Bu(h)\Ca C {5 € R* : | fuls +1)] > |o(t)]/2}.

Hence {f,} does not converge to 0 in measure. By [5, Lemma 9.2, p. 56], ||f,,||;Rk
does not converge to 0, a contradiction.
By the previous part of the proof, we get immediately for any bounded set C C E

wi(cl® (C)) = wj(C).

Now takeany f € C°,f = ) a;f;, wherefor j=1,...,n f; € C,a; 20, 3 af=1.
Observe that for any h > 0,

n

Nf = fully ge < Zai-llfj - (fj)h":s,kk < j=r{1fj’.‘,n"fi - (fj)huz,,kk‘

=1
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Consequently,
w;(cl (C?) =wi(C?) < wg(C).

Since the opposite inequality is obvious, (2.10) is proved. The other properties follow
immediately from Definition 2.8.
The same proof applies to the case of We A - 1]

LEMMA 2.11. For any f € Lg(Bx) N L1(Bk), IIfll = ||f||;kk < 1, (we put
f@®) =0 for ||t||le >1), A, h>0

L (2(1@00-@0,01) @) = (F372)" [ (3107 - o) 01) et

where a = ((1 + ||f||§,)/2) . The same result holds true for any f € Ly(B), |f]5 <1

and Q} 4 with a = ((1+ |f|;)/2)

PrOOF: Fix f € Ly, [|f|l3 <1 and A > 0. Set for any t € R*, u(t) =t/a. Then
after changing variables from ¢ to u, we get

/R (M@ ® - (@), 1] due()) = o /]R _9(M(Q55)(aw) - (@51),, (au)| duus(w))
—a [ 8(A1 - (@31) 0u)due(a).

To end the proof of the lemma, we show that (Q:}J f)h(au) = fn/a(u). Observe that

@4 = ([ fle/aden, (oa)dins)) /(B

u+ By (h)

where xp, denotes the characteristic function of Bx. Set z(s) = s/a. After changing
variables from s to z we get

(Q;f)h(au) =a* (/u+B (h/a)

-(/ o F@xa @) /i (Bu(h/0) = () ).

F@xe,()an2)) /s (Bu(H)

The same reasoning applies to the Amemiya s-norm. The proof is complete. 0

Applying Lemma 2.11 and the definitions of the Luxemburg and the Amemiya
s-norms one can easily get
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COROLLARY 2.12. Forany f € LgNL1(Bx), Ifllg = [Ifl3gx <1,

1Q5() — (@31l zr SIS = Fasallypr-

If |fl3 < 1, then
|Q§,,A(f) - (Q;,Af)hm,Rk <|If- .fh/a.l;,Rk-

THEOREM 2.13. For any set B C {f € Ly N L1(Bg) : [Ifll5 < 1},
wg (Q4(B)) < wj(B)
and for any set B C {f € Lg N L1(Bx) : |fI3 < 1},
wg,4(Q3,4(B)) < wj, 4(B).

PRrOOF: Follows immediately from Definition 2.8 and Corollary 2.12. 0

3. MAIN RESULTS.

Let By (Bg,a respectively) denote the unit ball in Ey = FE4(Bx, Xk, ux) (see
(1.6)) with respect to the Luxemburg s-norm (with respect to the Amemiya s-norm
respectively). For any « > 0 define Py, : By = Ey by

(3.1) (Py.uf)(t) = max{0, u(2ltlle - I1£15 - 1) }.
Analogously, for any u > 0 define Py, 4 : By 4 — Ey by

(3.2) (Py.u,a0)(t) = max{0,u(2ltlle - 1£15 - 1) }.
Set

(3.3) Tyu(f) = Q) + Ponlf)

and

(3.4) Ty alf) = Q3 a() + Poua(f),

where Q3 and Q , are given by Definition 2.1. Observe that (Q; f) (t) = 0 if and

only if [itlle > (1+ |If]|5)/2 and for any u > 0 (Pg’u)(t) = 0 if and only if [|¢]|.
< (1+1£1l5)/2- Hence for any u,A >0 and f € By

pe(MQ3SF)) < ps(A(Tpuf)).
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Consequently, for any u > 0, f € By

(3.5) 1QfIIg < IITs, ufllg-

Analogously, for any u > 0, f € By 4

(3.6) 1Q3,4f |3 < Tp,u,afl3-

Observe that for any v > 0, f € By and 2,t € By,
|Po,uf(t) = Ppuf(2)| < 2ullt - 2|

Consequently for any € > 0 there exist 6 > 0 such that for any f € B, and 0 < h < 4,
1Pt = Pouflall = sup (1Pouf ) = (Ponf)u(®)]) <
te By

This implies immediately that for any B C Eg N L1(Bx), wj (P4,u(B)) = 0. Hence by
Proposition 2.10 and Theorem 2.13, for any B C By N L1(By)

(3.7) wg(T4,u(B)) < wy (Q4(B)) + wi(Pyu(B)) < wh(B).
Analogously, for any B C By 4 N Li(By),
(3.8) wg, 4 (Tou,4(B)) < wy 4(Q 4(B)) + wj 4 (Pyu,a(B)) < wh 4(B).

LEMMA 3.1. For any € > 0 there esists u, > 0 such that for any f € By,
”T¢ Ug ”¢ 1—e.
PROOF: Fix € > 0. Choose § > 0 such that
(1-46)(2-4"
2k
If || flI3 > 1 -4, then by Lemma 2.3 and (3.5), for any u >0

>1-e¢.

k
(39)  ITsuflly > 1Q315 > I715((1+ 1) /2) " > L2222 5y

Now suppose ||f||; < 1-46. Since supp (Q;f) M supp (P;,uf) =0 for any u > 0,
Po(Tpuf) = pe(Q3F) + ps(Pypuf)
> A 2||tlle — & — 1) )dux(t
po(@)+ [ (el - M 1)) )

> ps(Q3f) + 1x(Br \ Be(1- 5/4))¢(U(2 -6/2-(1-6)— 1))
= ps(Q3S) + pr(Br \ B(1 - 8/4))$(ud/2).
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Hence, we can find u. > 0 such that for any f € By, ||fll3 <1-46, pg(Ts,uf) > 1 and
consequently,
[(Touf)llg > 1>1-

which completes the proof. 1]
LEMMA 3.2. For any € > 0 there exists ue > 0 such that for any f € By 4,
Touc.aly 21 —€.
ProoF: Fix € > 0. Choose & > 0 such that

(1-95)(2-68)"

ok >1-e¢.

If |f|3 > 16, then reasoning as in Lemma 3.1, we get [Ty u,4l3 > 1—¢ for any u > 0.
So assume [f|3 <1—46. Fix k> 0. If k<1, then

1+ pg (kl/sTd,,u,Af)
k

>1/k>1

for any u > 0. If £ > 1, then by s-convexity of ¢,

1+ g (K°Tpu,af)  po(K/°Tpu,af)
% Z %

2 pe(Tpu,af)

By the proof of Lemma 3.1, pg(Tgu,af) 2 #(ud/2). Hence there exists ue > 0 such
that for any k >0, f € By, |fl3 <1-46

1+ pg(k/*Tyu,af)
k

>1

and consequently, [Ty, afls>1—¢. 1

THEOREM 3.3. Let Sy denote the unit sphere in E4 with respect to the Lux-
emburg s-convex norm || - ||3. For any € > 0 there exists a retraction Ry : By — Sy,
such that for any B C By N L1(Bg)

w}(Ry(B)) < (1+ €)wj(B).

In particular, kw; (By) <1

ProOF: Fix € > 0. Choose £, > 0 such that (1/(1—¢;))° <1+e€. Let uy >0
be a positive number corresponding to €; by Lemma 3.1. Set for f € By

T¢»u1 f

Rof = _
T (e rty)”
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Observe that [|[Rsf||3 = 1 for any f € By. Moreover, by (3.1) and (3.3), Ryf = f
for any f € Si. By Corollary 2.5 and (3.3), Ry is a continuous mapping. Now fix
B C By N Ly(By). By the choice of u; and Lemma 3.1, for any f € B and h > 0,

1Bof = RNl = (ITs0f ~ Toma DAllS) /(10 713)
< (”T¢,u1f - (T¢,u1f)h”;)/(1 —€1).

Consequently, by (3.7),

wg(Ry(B)) < wi(Tf’u_l (::)) = _151),w;(T¢,u1 (B))

< (1 + e)wy (Tow, (B)) < (1+€)w(B).

The proof is complete. 0
Replacing Lemma 3.1 by Lemma 3.2 and reasoning as in Theorem 3.3, one can
show
THEOREM 3.4. Let Sy 4 denote the unit sphere in E4 with respect to the

Amemiya s-convex norm |- 3. For any € > 0 there exists a retraction Ry 4 : By a
— Sy, 4, such that for any B C By 4 N Ly(By)

wj a(Rg(B)) < (1 +€)wj 4(B)-
In particular, ku; A(E¢) < 1.

REMARK 3.5. If ¢ is a convex function, then, by Remark 2.7, Theorem 3.3 (Theorem
3.4 respectively) holds true for any B C By (B C By 4 respectively). If in the definition
of wj for any r > 1, we replace I - ”;,IR" by || - ||$,Bk(r)v where || - ||;’Bk(r), is the
Luxemburg s-norm associated with a modular py g, (r)(f) = ka(r)¢(|f(t)|) dpx(t)
Theorem 3.3 remains true. In the case of the Amemiya norm the same applies to
Theorem 3.4.

If ¢ is a convex function, by Remark 2.7, Proposition 2.9, Theorems 3.3 and 3.4,
we easily get.

THEOREM 3.6. Let ¢ be a convex function such that ¢*(v) (see (2.6)) is finite
for any v > 0. Then for any € > 0 there exists a retraction Ry : By — Sy such that
for any B C By

75(Ro(B)) < 2+ €)14(B)-
In particular, k‘vé (Ep) < 2. The same result holds true in the case of the Amemiya
norm.
REMARK 3.7. In the caseof ¢(t) =t? (1 < p< oo) and k =1, thatis, By = L,[-1,1],
Theorem 3.6 has been proven in [9, Corollary 6].
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