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Abstract

The goal of much observational research is to identify risk factors that have a causal effect on
health and social outcomes. However, observational data are subject to biases from confound-
ing, selection and measurement, which can result in an underestimate or overestimate of the
effect of interest. Various advanced statistical approaches exist that offer certain advantages in
terms of addressing these potential biases. However, although these statistical approaches have
different underlying statistical assumptions, in practice they cannot always completely remove
key sources of bias; therefore, using design-based approaches to improve causal inference is
also important. Here it is the design of the study that addresses the problem of potential
bias – either by ensuring it is not present (under certain assumptions) or by comparing results
across methods with different sources and direction of potential bias. The distinction between
statistical and design-based approaches is not an absolute one, but it provides a framework for
triangulation – the thoughtful application of multiple approaches (e.g. statistical and design
based), each with their own strengths and weaknesses, and in particular sources and directions
of bias. It is unlikely that any single method can provide a definite answer to a causal question,
but the triangulation of evidence provided by different approaches can provide a stronger
basis for causal inference. Triangulation can be considered part of wider efforts to improve
the transparency and robustness of scientific research, and the wider scientific infrastructure
and system of incentives.

What is a causal effect?

The goal of much observational research is to establish causal effects and quantify their mag-
nitude in the context of risk factors and their impact on health and social outcomes. To estab-
lish whether a specific exposure has a causal effect on an outcome of interest we need to know
what would happen if a person were exposed, and what would happen if they were not
exposed. If these outcomes differ, then we can conclude that the exposure is causally related
to the outcome. However, individual causal effects cannot be identified with confidence in
observational data because we can only observe the outcome that occurred for a certain indi-
vidual under one possible value of the exposure (Hernan, 2004). In a statistical model using
observational data, we can only compare the risk of the outcome in those exposed, to the
risk of the outcome in those unexposed (two subsets of the population determined by an indi-
viduals’ actual exposure value); however, inferring causation implies a comparison of the risk
of the outcome if all individuals were exposed and if all were unexposed (the same population
under two different exposure values) (Hernán & Robins, 2020). Inferring population causal
effects from observed associations between variables can therefore be viewed as a missing
data problem, where several untestable assumptions need to be made regarding bias due to
confounding, selection and measurement (Edwards, Cole, & Westreich, 2015).

The findings of observational research can therefore be inconsistent, or consistent but
unlikely to reflect true cause and effect relationships. For example, observational studies
have shown that those who drink no alcohol show worse outcomes on a range of measures
than those who drink a small amount (Corrao, Rubbiati, Bagnardi, Zambon, & Poikolainen,
2000; Howard, Arnsten, & Gourevitch, 2004; Koppes, Dekker, Hendriks, Bouter, & Heine,
2005; Reynolds et al., 2003; Ruitenberg et al., 2002). This pattern of findings could be due
to confounding (e.g. by socio-economic status), selection bias (e.g. healthier or more resilient
drinkers may be more likely to take part in research), reverse causality (e.g. some of those who
abstain from alcohol do so because of pre-existing ill-health which leads them to stop drink-
ing) (Chikritzhs, Naimi, & Stockwell, 2017; Liang & Chikritzhs, 2013; Naimi et al., 2017), or a
combination of all of these. However, the difficulty in establishing generalizable causal claims
is not simply restricted to observational studies. No single study or method, no matter the
degree of excellence, can provide a definite answer to a causal question.
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Approaches to causal inference may be broadly divided into two
kinds – those that use statistical adjustment to control confounding
and arrive at a causal estimate, and those that use design-based
methods to do so. The former approaches rely on the assumption
that there is no remaining unmeasured confounding and no meas-
urement error after the application of statistical methods, while the
latter does not. Effective statistical adjustment for confounding
requires knowing what to measure – and measuring it accurately
– whereas many design-based approaches [for example, randomized
controlled trials (RCTs)] do not have that requirement. Approaches
that rely on statistical adjustment are likely to have similar (or at least
related) sources of bias, whereas those that rely on design-based
methods are more likely to have different sources of bias.
Although the distinction between statistical and design-based
approaches is not absolute (all approaches require the application
of statistical methods, for example), it nevertheless provides a frame-
work for triangulation. That is, ‘The practice of strengthening causal
inferences by integrating results from several different approaches,
where each approach has different (and assumed to be largely unre-
lated) key sources of potential bias’ (Munafo & Davey Smith, 2018).
No single approach can provide a definitive answer to a causal ques-
tion, but the thoughtful application of multiple approaches (e.g. stat-
istical and design based), each with their own strengths and
weaknesses, and in particular sources and directions of bias, can
provide a stronger basis for causal inference.

Although the concept of triangulation is not new, the specific,
explicit application of this framework in the mental health litera-
ture is relatively limited and recent. Here we describe threats to
causal inference, focusing on different sources of potential bias,
and review methods that use statistical adjustment and design
to control confounding and support the causal inference. We con-
clude with a review of how these different approaches, within and
between statistical and design-based methods, can be integrated
within a triangulation framework. We illustrate this with examples
of studies that explicitly use a triangulation framework, drawn
from the relevant mental health literature.

Statistical approaches to causal inference

Three types of bias can arise in observational data: (i) confounding
bias (which includes reverse causality), (ii) selection bias (inappro-
priate selection of participants through stratifying, adjusting or
selecting) and (iii) measurement bias (poor measurement of vari-
ables in analysis). A glossary of italic terms is shown in Box 1.

These biases can all result from opening, or failing to close, a
backdoor pathway between the exposure and outcome.
Confounding bias is addressed by identifying and adjusting for
variables that can block a backdoor pathway between the exposure
and outcome, or alternatively, identifying a population in which
the confounder does not operate. Selection bias is addressed by
not conditioning on colliders (or a consequence of a collider),
and therefore opening a backdoor pathway, or removing potential
bias when conditioning cannot be prevented. Measurement bias is
addressed by careful assessment of variables in analysis and,
where possible, collecting repeated measures or using multiple
sources of data. In Box 2 we outline each of these biases in
more detail using causal diagrams – accessible introductions to
causal diagrams are available elsewhere (Elwert & Winship,
2014; Greenland, Pearl, & Robins, 1999; Rohrer, 2018) – together
with examples from the mental health literature.

Various statistical approaches exist that aim to minimize biases
in observational data and can increase confidence to a certain

degree. This section focuses on a few key approaches that are
either frequently used or particularly relevant for research ques-
tions in mental health epidemiology. In Box 3 we discuss the
importance of mechanisms, and the use of counterfactual medi-
ation in the mental health literature.

In Table 1, we outline the assumptions and limitations for the
main statistical approaches highlighted in this review and provide
examples of each using mental health research.

Confounding and reverse causality

The most common approach to address confounding bias is to
include any confounders in a regression model for the effect of
the exposure on the outcome. Alternative methods to address
either time-invariant confounding (e.g. propensity scores) or time-
varying confounding (e.g. marginal structural models) are increas-
ingly being used in the field of mental health (Bray, Dziak,
Patrick, & Lanza, 2019; Howe, Cole, Mehta, & Kirk, 2012; Itani
et al., 2019; Li, Evans, & Hser, 2010; Slade et al., 2008; Taylor
et al., 2020). However, these approaches all rely on all potential
confounders being measured and no confounders being measured
with error. These are typically unrealistic assumptions when using
observational data, resulting in the likelihood of residual con-
founding (Phillips & Smith, 1992). Ohlsson and Kendler provide
a more in-depth review of the use of these methods in psychiatric
epidemiology (Ohlsson & Kendler, 2020).

Another approach to address confounding is fixed-effects regres-
sion; for a more recent extension to this method, see (Curran,
Howard, Bainter, Lane, & McGinley, 2014). Fixed-effects regression
models use repeated measures of an exposure and an outcome to
account for the possibility of an association between the exposure
and the unexplained variability in the outcome (representing
unmeasured confounding) (Judge, Griffiths, Hill, & Lee, 1980).
These models adjusted for all time-invariant confounders, including
unobserved confounders, and can incorporate observed time-
varying confounders. This method has been described in detail else-
where – see (Fergusson & Horwood, 2000; Fergusson,
Swain-Campbell, & Horwood, 2002) – and fixed-effects regression
models have been used to address various mental health questions,
including the relationship between alcohol use and crime (Fergusson
& Horwood, 2000), cigarette smoking and depression (Boden,
Fergusson, & Horwood, 2010), and cultural engagement and depres-
sion (Fancourt & Steptoe, 2019).

Selection bias

One of the most common types of selection bias present in obser-
vational data is from selective non-response and attrition.
Conventional approaches to address this potential bias (and loss
of power) include multiple imputation, full information max-
imum likelihood estimation, inverse probability weighting, and
covariate adjustment. Comprehensive descriptions of these meth-
ods are available (Enders, 2011; Seaman & White, 2013; Sterne
et al., 2009; White, Royston, & Wood, 2011). In general, these
approaches assume that data are missing at random (MAR); how-
ever, missing data relating to mental health are likely to be missing
not at random (MNAR). In other words, the probability of Z
being missing still depends on unobserved values of Z even
after allowing for dependence on observed values of Z and
other observed variables. Introductory texts on missing data
mechanisms are available (Graham, 2009; Schafer & Graham,
2002). An exception to this is using complete case analysis,
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with covariate adjustment which can be unbiased when data are
MNAR as long as the chance of being a complete case does not
depend on the outcome after adjusting for covariates (Hughes,
Heron, Sterne, & Tilling, 2019). Additionally, extensions to stand-
ard multiple imputation exist that allow for MNAR mechanisms
using sensitivity parameters (Leacy, Floyd, Yates, & White,
2017; Tompsett, Leacy, Moreno-Betancur, Heron, & White,
2018).

Further approaches to address potential MNAR mechanisms
include linkage to external data (Cornish, Macleod, Carpenter, &
Tilling, 2017; Cornish, Tilling, Boyd, Macleod, & Van Staa,
2015), MNAR analysis models for longitudinal data (Enders,
2011; Muthen, Asparouhov, Hunter, & Leuchter, 2011) and sensi-
tivity analyses (Leacy et al., 2017; Moreno-Betancur & Chavance,
2016). Linkage to routinely collected health data is starting to be
used in the context of mental health (Christensen, Ekholm, Gray,
Glumer, & Juel, 2015; Cornish et al., 2015; Gorman et al., 2014;
Gray et al., 2013; Mars et al., 2016) to examine the extent of biases
from selective non-response by providing data on those that did
and did not respond to assessments within population cohorts or
health surveys. In addition to using linked data to detect potential
non-response bias, it can also be used as a proxy for the missing
study outcome in multiple imputation or deriving weights to adjust
for potential bias and make the assumption of MAR more plausible
(Cornish et al., 2015, 2017; Gorman et al., 2017; Gray et al., 2013).

Measurement bias

Conventional approaches to address measurement error include
using latent variables. Here, when we use the term measurement

error, we are specifically referring to variability in a measure that
is not due to the construct that we are interested in. Using a latent
variable holds several advantages over using an observed measure
that represents a sum of the relevant items, for example, allowing
each item to contribute differently to the underlying construct
(via factor loadings) and reducing measurement error (Muthen
& Asparouhov, 2015). However, if the source of measurement
error is shared across all the indicators (for example, when
using multiple self-report questions), the measurement error
may not be removed from the construct of interest. Various exten-
sions to latent variable methods have been developed to specific-
ally address measurement bias from using self-report
questionnaires. For example, using items assessed with multiple
methods, each with different sources of bias (such as self-report
and objective measures), means that variability due to bias shared
across particular items can be removed from the latent variable
representing the construct of interest. For an example using cigar-
ette smoking see Palmer and colleagues (Palmer, Graham, Taylor,
& Tatterson, 2002). Alternative approaches to address measure-
ment error in a covariate exist, but will not be discussed further
here, including regression calibration (Hardin, Schmiediche, &
Carroll, 2003; Rosner, Spiegelman, & Willett, 1990) and the simu-
lation extrapolation method (Cook & Stefanski, 1994; Hardin
et al., 2003; Stefanski & Cook, 1995).

Conclusions

Various advanced statistical approaches exist that bring certain
advantages in terms of addressing biases present in observational
data. These approaches are easily accessible and are starting to be

Box 1. Glossary of terms

Backdoor pathway. A non-causal path from the exposure to the outcome in a causal diagram that remains after removing all arrows pointing from the
exposure to other variables
Causal diagram. A graphical description that requires us to set down our assumptions about causal relationships between variables
Collider. A common effect of two variables
Collider bias. Conditioning (i.e. stratifying, adjusting or selecting) on a common effect of two variables which induces a spurious association between them
within strata of the variable that was conditioned on (the collider)
Confounding bias. Failure to condition on a third variable that influences both the exposure and the outcome, causing a spurious association between them
Counterfactual mediation. The counterfactual approach to mediation is based on conceptualizing ‘potential outcomes’ for each individual [Y(x)] that would
have been observed if particular conditions were met (i.e. had the exposure X been set to the value x through some intervention) – regardless of the
conditions that were in fact met for each individual
Exclusion restriction criterion. In MR, the assumption that the genetic variants only affect the outcome through their effect on the exposure
Latent variable. A source of variance not directly measured but estimated from the covariation between a set of strongly related observed variables
Marginal structural models. A class of statistical models used for causal inference with observational data that use inverse probability weighting to control
for the effects of time-varying confounders that are also a consequence of a time-varying exposure
Measurement bias. Errors in assessment of the variables in the analysis due to imprecise data collection methods
Missing data mechanism. The process by which data are missing; MCAR means that the probability of variable Z being missing is not related to observed
variables or true value of Z (i.e. cases with missing values can be regarded as a random sample); MAR means that the probability of Z being missing is not
related to unobserved values of Z but may be related to observed Z and other observed variables; MNAR means that the probability of Z being missing still
depends on unobserved values of Z even after allowing for dependence on observed values of Z and other observed variables
Overcontrol bias. Conditioning on a variable on the causal pathway between the exposure and the outcome
Pleiotropy. Genetic variants influence multiple traits; horizontal (or biological) pleiotropy occurs when a genetic variant directly and independently
influences two or more traits, and is a threat to Mendelian randomization (MR), whereas vertical (or mediated) pleiotropy occurs when an effect on a
downstream trait is mediated by an influence on an upstream trait, and is not a threat to MR
Population stratification. Where systematic differences in both allele frequencies and traits of interest can give rise to spurious genetic associations
Propensity scores. A score that is used to control for time-invariant confounding, calculated by estimating the probability that an individual is exposed, given
the values of their observed baseline confounders
Regression discontinuity design. In a situation where an intervention is provided to those who fall above (or below) a certain threshold on a specific measure,
the outcome can be compared across individuals that fall just above and just below the threshold
Selection bias. When the process used to select subjects into the study or analysis results in the association between the exposure and outcome in those
selected differing from the association in the whole population
Triangulation. The practice of strengthening causal inferences by integrating results from several different approaches, where each approach has different
(and assumed to be largely unrelated) key sources of potential bias
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Box 2. Threats to causal inference.

Confounding and reverse causality. A confounder is a third variable (C ) that influences both the exposure (X ) and the outcome (Y ), causing a spurious
association between them. Traditionally, a confounder was defined on the basis of three criteria, namely that it should be: (i) associated with X; (ii)
associated with Y, conditional on X and (iii) not on the causal pathway between X and Y. For example, Fig. 1A shows the association between smoking (X )
and educational attainment (Y ), which is partly confounded by behavioural problems (C ). Reverse causality is a specific case of confounding where
pre-existing symptoms of the outcome can cause the exposure and result in the observed association between the exposure and outcome. Reverse
causality is often addressed by adjusting for a baseline measure of the outcome (Y1) when examining the association between the exposure (X ) and the
outcome at follow-up (Y2). However, because X and Y1 are assessed simultaneously, it is possible that Y1 is on the causal pathway between X and Y2
(Fig. 1B) resulting in overcontrol bias. A second example of inappropriate adjustment for confounding follows directly from the traditional definition of a
confounder. Figure 1C shows an example of a third variable (L) which is associated with the exposure (X ) due to an unmeasured confounder (U2), and
associated with outcome (Y ) due to an unmeasured confounder (U1), and not on the causal pathway between X and Y. According to the traditional
definition, L should be adjusted for in the analyses. However, as shown in Fig. 1D, conditioning on L (represented by a square drawn around L) induces an
association between U1 and U2 (represented by a dashed line) which introduces unmeasured confounding for the association between X and Y. This is an
example of collider bias, which is discussed in more detail below. A more recent definition of a confounder that prevents this potential bias occurring is a
variable that can be used to block a backdoor path between the exposure and outcome (Hernan & Robins, 2020).
Selection bias. Selection bias is an overarching term for many different biases including differential loss to follow-up, non-response bias, volunteer bias,
healthy worker bias, and inappropriate selection of controls in case−control studies (Hernan, 2004). It is present when the process used to select subjects
into the study or analysis results in the association between the exposure and outcome in those selected subjects differing from the association in the
whole population (Hernan, Hernandez-Diaz, & Robins, 2004). This bias is (usually) a consequence of conditioning (i.e. stratifying, adjusting or selecting) on a
common effect of an exposure and an outcome (or a common effect of a cause of the exposure and a cause of the outcome), known as collider bias (Elwert
& Winship, 2014; Hernan et al., 2004). Figures 1E and F show how bias can result from selective non-response or attrition in longitudinal studies. Figure 1E
represents a longitudinal study examining the association between maternal smoking in pregnancy (X ) and child autism (Y ). Those with a mother who
smoked in pregnancy (X ) and males (U ) are less likely to participate in the follow-up (R). If a male participant provides follow-up data, then it is less likely
that the alternative cause of drop-out (maternal smoking in pregnancy) will be present. This results in a negative association between X (maternal smoking)
and U (male gender) in those with complete outcome data. Male gender (U ) is positively associated with child autism (Y ), therefore, restricting to those with
complete outcome data will result in the positive association between X (maternal smoking in pregnancy) and Y (child autism) being underestimated; see
(Hernan et al., 2004) for an alternative example. Non-response or attrition results in bias when conditioning on response introduces a spurious path
between the exposure and outcome (Elwert & Winship, 2014). Further examples of selection bias, including attrition, are described in detail elsewhere
(Daniel, Kenward, Cousens, & De Stavola, 2012; Elwert & Winship, 2014; Hernan et al., 2004).
Measurement bias. Measurement bias results from errors in assessment of the variables in the analysis due to imprecise data collection methods (for
example, self-report measures of socially undesirable behaviours such as smoking can often be underreported). Measurement error can be either
differential (e.g. measurement error in the exposure is related to the outcome or vice versa) or non-differential. With a few exceptions (e.g. non-differential
measurement error in a continuous outcome) both non-differential and differential measurement error will result in bias (Hernan & Cole, 2009; Jiang &
VanderWeele, 2015; VanderWeele, 2016). Figure 1G shows an example of non-differential measurement error in a mediator. M refers to the true mediator, M*
refers to the measured mediator, and UM refers to the measurement error for M (Hernan & Cole, 2009). Reducing measurement error is especially important
in the context of a mediation model, because measurement error in the mediator often leads to an underestimated indirect effect and an overestimated
direct effect (Blakely, McKenzie, & Carter, 2013; VanderWeele, 2016). Figure 1H shows an example of differential measurement error. Measurement error in
the exposure X (parent smoking in pregnancy assessed retrospectively) is influenced by the outcome Y (child behavioural problems) resulting in bias in the
exposure-outcome association. When there is measurement error in both the exposure and the outcome, it can be dependent (when the errors are
associated, for example, due to measurement using a common instrument) or independent. Both differential measurement error and dependent
measurement error can open a backdoor pathway between the exposure and outcome (Hernan & Cole, 2009).

Figure 1. Causal diagrams representing confounding, selection bias and measurement bias
Note: in the causal diagrams above, we assume that: (i) all observed and unobserved common causes in the process under investigation are displayed, (ii) there is
no chance variation (i.e. we are working with the entire population), and (iii) the absence of an arrow represents no causal effect between variables. Additionally, to
demonstrate selection bias, we also show diagrams with non-causal paths, where associations have been induced by conditioning on a common effect (or collider).
Explanations of how biases due to confounding, selection and measurement can be described using potential outcomes are available elsewhere (Edwards et al.,
2015; Hernan, 2004)
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used in the field of mental health. Most commonly, these
approaches are applied in isolation, or sequentially to account for
a combination of bias due to confounding, selection and measure-
ment. However, other methods also exist that use models to simul-
taneously address all three types of bias – van Smeden and
colleagues (van Smeden, Penning de Vries, Nab, & Groenwold,
2020) provide a review on these types of biases. The first step in
causal inference with observational data is to identify and measure
the important confounders and include them correctly in the stat-
istical model. This process can be facilitated using causal diagrams
(Box 2). However, even when studies have measured potential con-
founders extensively, there could still be some bias from residual
confounding because of measurement error. In practice, these stat-
istical approaches cannot always completely remove key sources of
bias; therefore, using design-based approaches to improve causal
inference (outlined below) is also important.

Design-based approaches to causal inference

A fundamentally different approach to causal inference is to use
design-based approaches, rather than statistical approaches that
attempt to minimize or remove sources of bias (e.g. by adjustment
for potential confounders). Here it is the design of the study that
addresses the problem of potential bias – either by ensuring it is
not present (under certain assumptions), or by comparing results
across methods with different sources and direction of potential
bias (Richmond, Al-Amin, Davey Smith, & Relton, 2014). This
final point will be returned to when we discuss triangulation of
results. In Table 1, we outline the assumptions and limitations of
each design-based approach, and provide specific examples
drawn from the mental health literature. For further examples of
the use of natural experiments in psychiatric epidemiology see
the review by Ohlsson and Kendler (Ohlsson & Kendler, 2020).

Randomized controlled trials

The RCT is typically regarded as the most robust basis for causal
inference and represents the most common approach that uses
study design to support the causal inference. Nevertheless, RCTs
rest on the critical assumption that the groups are similar except

with respect to the intervention. If this assumption is met, the
exposed and unexposed groups are considered exchangeable,
which is equivalent to observing the outcome that would occur
if a person were exposed, and what would occur if they were not
exposed. An RCT is also still prone to potential bias, such as
lack of concealment of the random allocation, failure to maintain
randomization, and differential loss to follow-up between groups.
These sources of bias are typically addressed through the applica-
tion of robust randomization and other study procedures. Further
limitations include that RCTs are not always feasible, and often
recruit highly selected samples (e.g. for safety considerations, or
to ensure high levels of compliance), so the generalizability of
results from RCTs can be an important limitation.

Natural experiments

Where RCTs are not practical or ethical, natural experiments can
provide an alternative. These compare populations before and
after a ‘natural’ exposure, leading to ‘quasi-random’ exposure
(e.g. using regression discontinuity analysis). The key assumption
is that the populations compared are comparable (e.g. with respect
to the underlying confounding structure) except for the naturally
occurring exposure. Potential sources of bias include differences
in characteristics that may confound any observed association
or misclassification of the exposure that relates to the naturally
occurring exposure. This approach also relies on the occurrence
of appropriate natural experiments that manipulate the exposure
of interest (e.g. policy changes that mandate longer compulsory
schooling, resulting in an increase in years of education from
one cohort to another) (Davies, Dickson, Davey Smith, van den
Berg, & Windmeijer, 2018a).

Instrumental variables

In the absence of an appropriate natural experiment, an alterna-
tive is to identify an instrumental variable that can be used as a
proxy for the exposure of interest. An instrumental variable is a
variable that is robustly associated with an exposure of interest
but is not a confounder of the exposure and outcome. For
example, the tendency of physicians to prefer prescribing one

Box 3. Mechanisms

Mechanistic evidence can strengthen causal inference; indeed, some argue that causality cannot be established until a mechanism is identified (Glennan,
1996; Russo & Williamson, 2007). However, the causal role of certain exposures (for example, smoking in lung cancer) was largely accepted even before the
underlying mechanisms were understood. Mediation analyses can be used to assess the relative magnitude of different pathways by which an exposure may
affect an outcome. Traditional approaches to mediation, including the product-of-coefficients method (MacKinnon, Lockwood, Hoffman, West, & Sheets,
2002), are frequently used to examine mechanisms that may explain associations between an exposure and outcome in mental health research. More
recently, counterfactual mediation (VanderWeele, 2015) is being increasingly used within the mental health literature (Aitken et al., 2018; Froyland, Bakken, &
von Soest, 2020; Hammerton et al., 2020; Loret de Mola et al., 2020; Nguyen, Webb-Vargas, Koning, & Stuart, 2016). Although performing mediation analyses
in a counterfactual framework is still subject to all the same threats to causal inference as traditional approaches to mediation analyses (including poorly
measured or unmeasured confounding), it holds several advantages over traditional methods. First, the presence of an interaction between the exposure
and mediator on the outcome can be tested. Second, binary mediators and outcomes can be included with effect estimates that are easily interpretable.
Third, the counterfactual framework makes the assumptions regarding confounding much more explicit. Finally, it encourages the use of sensitivity
analyses to examine the potential impact on conclusions of unmeasured confounding and measurement bias. VanderWeeele provides a methodological
description (VanderWeele, 2015) and Krishna Rao and colleagues (Krishna Rao et al., 2015) provide an applied example using substance use.
A further source of mechanistic evidence, which can provide support for causal claims within a triangulation framework, is so-called ‘incommensurable
evidence’ – insights into plausible biological mechanisms that could explain a causal pathway between an exposure and an outcome. This can include
evidence from model systems (e.g. rodent studies and human laboratory studies). In many cases, such evidence may be too far removed to allow direct
comparison with evidence from epidemiological studies (and there are dangers associated with selecting evidence of this kind post hoc). However, in
principle it may be powerful additional source of evidence, particularly if conceived prospectively.
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Table 1. Assumptions and limitations of statistical and design-based approaches to causal inference

Statistical approaches Description Assumptions Limitations Example

Confounding

Multivariable regression Potential confounders are included in
the regression model for the effect of
the exposure on the outcome

No residual confounding (all
confounders are accurately measured,
and correctly included in the statistical
model); for multivariable regression, the
outcome is modelled correctly given the
exposure and confounders, for
propensity score methods the exposure
is modelled correctly given the
confounders

Assumptions difficult to meet with full
confidence resulting in bias from residual
confounding; although propensity scores
carry some advantages over
multivariable regression (e.g. statistical
efficiency and flexibility), the different
methods to incorporate a propensity
score into the analysis model (e.g.
stratifying, matching, adjusting,
weighting) each have their own
limitations – see Haukoos and Lewis
(Haukoos & Lewis, 2015) for an overview

Harrison and colleagues (Harrison et al.,
2020) performed a multivariable logistic
regression between smoking behaviours
and suicidal ideation and attempts,
adjusting for potential confounders
including age, sex and socio-economic
position

Propensity scores Propensity scores are used to control
for time-invariant confounding,
calculated by estimating the
probability that an individual is
exposed, given the values of their
observed baseline confounders; can
be extended to address time-varying
confounding via marginal structural
models

Bray and colleagues (Bray et al., 2019)
used a propensity score to adjust for
confounding when examining the
association between reasons for alcohol
use latent class membership during the
year after high school and problem
alcohol use at age of 35 years

Fixed-effects regression This approach uses repeated
measures of an exposure and an
outcome to account for the possibility
of an association between the
exposure and the unexplained
variability in the outcome
(representing unmeasured
confounding); can adjust for all
time-invariant confounders, including
unobserved confounders, and can
incorporate observed time-varying
confounders

Potential time-varying confounders are
measured accurately and correctly
included in the statistical model

Requires repeated assessments of
exposure and outcome; model cannot
control for unobserved fixed confounding
factors whose effects vary with age, or
that combine interactively with the
exposure to influence the outcome, or
unobserved time-varying confounders

Fergusson and Horwood (Fergusson &
Horwood, 2000) used fixed-effects
regression to assess the influence of
deviant peer affiliations on substance
use and crime across adolescence and
young adulthood, taking into account
unobserved fixed confounding factors
and observed time-varying factors

Selection bias

Complete case analysis
with covariate adjustment

Analyses are performed on those with
complete data on all variables, but
covariates are included in the model
that are associated with missingness

Data are MAR or MCAR; results can be
unbiased when data are MNAR as long as
the chance of being a complete case
does not depend on the outcome after
adjusting for covariates

Cannot address lack of power due to
missing data; results biased when
outcome MNAR; must be aware of and
measure predictors of missingness;
cannot include information from
variables not included in main analysis
that are associated with missingness

Hughes and colleagues (Hughes et al.,
2019) use a hypothetical example
examining the relationship between
cannabis use at 15 years with depression
symptoms and self-harm at age 21 years
to describe missing mechanisms using
causal diagrams and provide situations
where complete case analysis and
multiple imputation will or will not result
in bias

Approaches based on
the MAR assumption, e.g.
multiple imputation

Multiple imputation is a two-stage
process, where first, multiple imputed
data sets are created with each
missing value replaced by imputed
values using models fitted to the
observed data, and second, each
imputed data set is analysed, and
results are combined in an
appropriate way; can address both
lack of power and bias (with
extensions that exist to allow for
MNAR mechanisms using sensitivity
parameters)

Data are MAR or MCAR; imputation
model is compatible with analysis
model; imputation is performed multiple
times and performed ‘properly;’ final
analysis combines appropriately over the
multiple data sets (e.g. using Rubin’s
rules); for a more in-depth discussion of
potential pitfalls in multiple imputation
see the review by Sterne and colleagues
(Sterne et al., 2009)

If exposure is MNAR, multiple imputation
can cause more bias than using complete
case analysis; requires information to be
collected on auxiliary variables, closely
associated with variables to be imputed;
all aspects of the analysis model must be
included in the imputation model,
therefore if changes are made at a later
date (e.g. testing an interaction), the
imputation model needs to be redone;
computationally intensive therefore can
result in computational problems
(particularly with small sample sizes)
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Approaches based on
the MNAR assumption,
e.g. using linkage to
external routinely
collected health records

Routinely collected health data can be
used to examine biases from selective
non-response by providing data on
those that did and did not respond to
assessments within population
cohorts or surveys; it can also be used
as a proxy for the missing study
outcome in multiple imputation or
deriving weights to adjust for
potential bias and make the MAR
assumption more plausible

High correlation between study outcome
and linked proxy; if the outcome is not
MNAR but missingness depends on the
proxy, inclusion of the proxy in a
multiple imputation model would
increase bias – see Cornish and
colleagues (Cornish et al., 2017) for an
example)

Requires access to closely related
routinely collected data; not all
participants may consent to linkage
which could introduce bias if differences
between non-consenters and
non-responders; linkage to external
datasets can be costly and complicated;
use of a proxy in multiple imputation can
increase bias depending on missing data
mechanism

Gorman and colleagues (Gorman et al.,
2017) found that the use of routinely
collected health data on alcohol-related
harm in a multiple imputation model
resulted in higher alcohol consumption
estimates among Scottish men

Measurement bias

Latent variables using
multiple sources of data

A latent variable is a source of
variance not directly measured but
estimated from the covariation
between a set of strongly related
observed variables; if these observed
variables are assessed using multiple
methods, each with different sources
of bias, variability due to bias shared
across items can be removed from the
latent variable

Latent variable indicators all measure
same underlying construct and
responses on the indicators are a result
of an individual’s position on the latent
variable; latent variable variance is
independent from measurement residual
variance; indicators assessed using
different methods have different sources
of bias; for a description of all
assumptions in latent variable modelling
see Kline (Kline, 2015)

Requires at least four strongly correlated
measures assessed using different
methods each with different sources of
bias; important that items included make
theoretical sense given underlying
construct; important to think carefully
about the meaning of the latent variable

Palmer and colleagues (Palmer et al.,
2002) describe a method using two
self-report and two biochemical
measures of smoking (carbon monoxide
and cotinine), to remove variability due
to self-report bias (e.g. recall or social
desirability bias) and biological bias (e.g.
second-hand smoke) and create a latent
variable representing cigarette smoking

Mechanisms

Counterfactual
mediation

Mediation approach based on
conceptualizing ‘potential outcomes’
for each individual [Y(x)] that would
have been observed if particular
conditions were met (i.e. had the
exposure X been set to the value x
through some intervention) –
regardless of the conditions that were
in fact met for each individual; allows
the presence of an interaction
between the exposure and mediator
to be tested, inclusion of binary
mediators and outcomes, and
sensitivity analyses to examine
potential impact on conclusions of
unmeasured confounding and
measurement bias

Main assumptions include conditional
exchangeability, no interference and
consistency; see de Stavola and
colleagues (De Stavola, Daniel, Ploubidis,
& Micali, 2015) for an accessible
description of these assumptions and a
comparison to assumptions made when
estimating mediation within an SEM
framework

Still subject to the same threats to
causality as traditional approaches to
mediation analyses (including poorly
measured or unmeasured confounding
and measurement error); challenging to
extend to examine individual paths via
multiple mediators; each specific
counterfactual mediation method subject
to its own limitations – see VanderWeele
(VanderWeele, 2015)

Using a sequential counterfactual
mediation approach, Aitken and
colleagues (Aitken, Simpson, Gurrin,
Bentley, & Kavanagh, 2018) showed that
behavioural factors (including smoking
and alcohol consumption) explained a
further 5% of the association between
disability acquisition and poor mental
health in adults after accounting for
material and psychosocial factors. The
authors also performed a bias analysis
which showed that the indirect effects
were unlikely to be explained by
unmeasured mediator-outcome
confounding

Design-based approaches

RCTs In an RCT, participants are randomly
assigned to a treatment or control
group, and the outcome is compared
across groups; when performed well,
RCTs can account for both known and
unknown confounders and are
therefore considered to be the gold
standard for estimating causal effects

Assignment to treatment and control
groups is random, and so groups are
similar except with respect to the
intervention

Prone to potential bias, such as lack of
concealment of the random allocation,
failure to maintain randomization, lack of
blinding to which group participants have
been randomized, non-adherence, and
differential loss to follow-up between
groups; often recruit highly selected
samples which are not representative of
the population of interest, threatening
the generalizability of results; can be

Ford and colleagues (Ford et al., 2019)
performed a cluster RCT to examine the
effectiveness and cost-effectiveness of
the Incredible Years Teacher Classroom
Management programme as a universal
intervention in primary school children;
the intervention reduced the total
difficulties score on the Strength and
Difficulties Questionnaire at 9 months
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Table 1. (Continued.)

Statistical approaches Description Assumptions Limitations Example

expensive and time-consuming and not
always feasible or ethical, particularly in
mental health research

compared to teaching as usual, but this
did not persist at 18 or 30 months

Natural experiments Populations are compared before and
after (or with and without exposure
to) a ‘natural’ exposure at a specific
time point, with the assumption that
potential biases (such as
confounding) are similar between
them; exposure may occur naturally
(e.g. famine), or be quasi-random (e.g.
introduction of policies)

Populations compared are comparable
(e.g. with respect to the underlying
confounding structure) except for the
naturally occurring (or
quasi-randomized) exposure

Potential sources of bias include
differences on characteristics that may
confound any observed association, or
misclassification of outcome that relates
to the naturally occurring exposure; relies
on the occurrence of appropriate natural
experiments that manipulate exposure of
interest; selection bias can be present as
exposure is not manipulated by
researcher

Davies and colleagues (Davies et al.,
2018a) used the raising of the school
leaving age from 15 to 16 years as a
natural experiment for testing whether
remaining in school at 15 years of age
affected later health outcomes
(including depression diagnosis, alcohol
use and smoking)

Instrumental variables An instrumental variable is a variable
that is robustly associated with an
exposure of interest, but not
confounders of the exposure and
outcome. MR is an extension of this
approach where a genetic variant is
used as a proxy for the exposure

The instrument is associated with the
exposure (relevance assumption); the
instrument is not associated with
confounders of the exposure-outcome
association (exchangeability
assumption); the instrument is not
associated with the outcome other than
via its association with the exposure
(exclusion restriction assumption)

Weak instrument bias can result from a
weak association between the instrument
and the exposure; another source of bias
is the exclusion restriction criterion being
violated – this is the main source of bias
in MR (due to horizontal pleiotropy), and
therefore a number of extensions have
been developed which are robust to
horizontal pleiotropy; population
stratification is also a source of bias in
MR, which may require focusing on an
ethnically homogeneous population, or
adjusting for genetic principal
components that reflect different
population sub-groups

Taylor and colleagues (Taylor et al.,
2020) used the tendency of physicians to
prefer prescribing one medication over
another as an instrumental variable in
testing the association between
varenicline (v. nicotine replacement
therapy) with smoking cessation and
mental health

Different confounding
structures

Multiple samples with different
confounding structures are used, for
example, comparing multiple control
groups within a case−control design,
or multiple populations with different
confounding structures

The bias introduced by confounding is
different across samples so that
congruent results are more likely to
reflect causal effects; different results
across samples are due to different
confounding structures and not true
differences in causal effect; no other
sources of bias that could explain results
being the same or different across
samples

Assessment and quality of measures
must be similar across samples;
misclassification of exposure or outcome
(or other unknown sources of bias) can
produce misleading results; strong a
priori hypotheses required about
confounding structures across samples

Sellers and colleagues (Sellers et al.,
2020) compared the association between
maternal smoking in pregnancy and
offspring birth weight, cognition and
hyperactivity in two national UK cohorts
born in 1958 and 2000/2001 with
different confounding structures

Positive and negative
controls

This approach allows a test of
whether an exposure or outcome is
behaving as expected (a positive
control), or not as expected (a
negative control); a positive control is
known to be causally related to the
outcome (or exposure), whereas a
negative control is not plausibly
causally related to outcome (or
exposure)

The real exposure (or outcome) and
negative control exposure (or outcome)
have the same sources of bias; the
negative control exposure is not causally
related to the outcome (and vice versa
for negative control outcome); the
positive control exposure is causally
related to the outcome (and vice versa
for positive control outcome)

Important to consider assortative mating
in the prenatal negative control design,
and mutually adjust for maternal and
paternal exposures [see Madley-Dowd
and colleagues (Madley-Dowd et al.,
2020b)]; appropriate negative control
variables can be difficult to identify (e.g.
where an exposure may have diverse
effects on a range of outcomes)

Caramaschi and colleagues (Caramaschi
et al., 2018) used paternal smoking
during pregnancy as a negative control
exposure to investigate whether the
association between maternal smoking
during pregnancy and offspring autism is
likely to be causal, on the assumption
that any biological effect of paternal
smoking on offspring autism will be
negligible, but that confounding
structures will be similar to maternal
smoking
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medication over another (e.g. nicotine replacement therapy
v. varenicline for smoking cessation) has been used as an instru-
ment in pharmacoepidemiological studies (Itani et al., 2019;
Taylor et al., 2020). The key assumption is that the instrument
is not associated with the outcome other than that via its associ-
ation with the exposure (the exclusion restriction assumption).
Other assumptions include the relevance assumption (that the
instrument has a causal effect on the exposure), and the exchange-
ability assumption (that the instrument is not associated with
potential confounders of the exposure–outcome relationship).
Potential sources of bias include the instrument not truly being
associated with the exposure, or the exclusion restriction criterion
being violated. If the association of the instrument with the expos-
ure is weak this may lead to so-called weak instrument bias
(Davies, Holmes, & Davey Smith, 2018b), which may, for
example, amplify biases due to violations of other assumptions
(Labrecque & Swanson, 2018). This can be a particular problem
in genetically informed approaches such as Mendelian random-
ization (MR) (see below), where genetic variants typically only
predict a small proportion of variance in the exposure of interest.
A key challenge with this approach is testing the assumption that
the instrument is not associated with the outcome via other path-
ways, which may not always be possible. More detailed descrip-
tions of the instrumental variable approach, including the
underlying assumptions and potential pitfalls, are available else-
where (Labrecque & Swanson, 2018; Lousdal, 2018).

Different confounding structures

If it is not possible to use design-based approaches that (in prin-
ciple) are protected from confounding, an alternative is to use
multiple samples with different confounding structures. For
example, multiple control groups within a case−control design,
where bias for the control groups is in different directions, can
be used under the assumption that if the sources of bias in the dif-
ferent groups are indeed different, this would produce different
associations, whereas a causal effect would produce the same
observed association. A related approach is the use of cross-
context comparisons, where results across multiple populations
with different confounding structures are compared, again on
the assumption that the bias introduced by confounding will be
different across contexts so that congruent results are more likely
to reflect causal effects. For example, Sellers and colleagues
(Sellers et al., 2020) compared the association between maternal
smoking in pregnancy and offspring birthweight, cognition and
hyperactivity in two national UK cohorts born in 1958 and
2000/2001 with different confounding structures.

Positive and negative controls

The use of positive and negative controls – common in fields such
as preclinical experimental research – can be applied to both expo-
sures and outcomes in observational epidemiology. This allows us
to test whether an exposure or outcome is behaving as we would
expect (a positive control), and as we would not expect (a negative
control). A positive control exposure is one that is known to be
causally related to the outcome and can be used to ensure the
population sampled generates credible associations that would be
expected (i.e. is not unduly biased), and vice versa for a positive
control outcome. A negative control exposure is one that is not
plausibly causally related to the outcome, and again vice versa for
a negative control outcome. For example, smoking is associated
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with suicide, which is plausibly causal but is also equally strongly
associated with homicide, which is not. The latter casts doubt on
a causal interpretation of the former (Davey Smith, Phillips, &
Neaton, 1992). Brand and colleagues (Brand et al., 2019) used
paternal smoking during pregnancy as a negative control exposure
to investigate whether the association between maternal smoking
during pregnancy and foetal growth is likely be causal, on the
assumption that any biological effects of paternal smoking on foetal
growth will be negligible, but that confounding structures will be
similar to maternal smoking. Overall, negative controls provide a
powerful means by which the assumptions underlying a particular
approach (e.g. that confounding has been adequately dealt with)
can be tested, although in some cases identifying an appropriate
negative control can be challenging (e.g. where exposure may
have diverse effects on a range of outcomes). Lipsitch and collea-
gues (Lipsitch, Tchetgen Tchetgen, & Cohen, 2010) described
their use as a means whereby we can ‘detect both suspected and
unsuspected sources of spurious causal inference’. In particular,
negative controls can be used in conjunction with most of the
methodologies we discuss here – for example, negative controls
can be used to test some of the assumptions of an instrumental
variable or genetically informed approaches. For example, there is
evidence that genetic variants associated with smoking may also
be associated with outcomes at age 7, prior to exposure to smoking,
which provides reasons to be cautious when using these variants as
proxies for smoking initiation in MR (see below) (Khouja,
Wootton, Taylor, Davey Smith, & Munafo, 2020). Madley-Dowd
and colleagues (Madley-Dowd, Rai, Zammit, & Heron, 2020b) pro-
vide an accessible introduction to the prenatal negative control
design and the importance of considering assortative mating,
explained using causal diagrams, whereas Lipsitch and colleagues
(Lipsitch et al., 2010) provide a more general review of the use of
negative controls in epidemiology.

Discordant siblings

Family-based study designs can provide a degree of control over
family-level confounding. For example, two siblings born to a
mother who smoked during one pregnancy, but not the other, pro-
vide information on the intrauterine effects of tobacco exposure
while controlling for observed and unobserved familial confound-
ing (both genetic and environmental), including shared confoun-
ders and 50% of genetic confounding. This approach assumes
that any misclassification of the exposure or the outcome is similar
across siblings, and there is little or no individual-level confound-
ing, an assumption that is often not met (e.g. in the plausible scen-
ario where a mother is both older and less likely to be smoking for
the second pregnancy). An extension of this approach is the use of
identical twins within a discordant-sibling design, which controls
for 100% of genetic confounding (Keyes, Davey Smith, & Susser,
2013). An advantage of this approach is that does not require the
direct measurement of genotype, but it depends on the availability
of suitable samples. This can mean that the sample size may be lim-
ited. Pingault and colleagues (Pingault et al., 2018) describe a range
of genetically informed approaches in more detail, including
family-based designs such as the use of sibling and twin designs.

Genetically informed approaches

MR is a now a widely used genetically informed design-based
method for causal inference, which is often implemented through
an instrumental variable analysis (Richmond & Davey Smith,

2020). MR is generally implemented through the use of genetic
variants as proxies for the exposure of interest (Davey Smith &
Ebrahim, 2003; Davies et al., 2018b). For example, Harrison
and colleagues (Harrison, Munafo, Davey Smith, & Wootton,
2020) used genetic variants associated with a range of smoking
behaviours as proxies to examine the effects of smoking on sui-
cidal ideation and suicide attempts. Violation of the exclusion
restriction criterion due to horizontal (or biological) pleiotropy
is the main likely source of bias, and for this reason, a number
of extensions to the foundational method have been developed
that are robust to horizontal pleiotropy (Hekselman &
Yeger-Lotem, 2020; Hemani, Bowden, & Davey Smith, 2018).
Population stratification is another potential source of bias,
which may require focusing on an ethnically homogeneous popu-
lation, or adjusting for genetic principal components that reflect
different population sub-groups. Weak instrument bias (see
above) is also a common problem in MR (although often under-
appreciated), given that genetic variants often only account for a
small proportion of variance in the exposure of interest. Diemer
and colleagues (Diemer, Labrecque, Neumann, Tiemeier, &
Swanson, 2020) describe the reporting of methodological limita-
tions of MR studies in the context of prenatal exposure research
and find that weak instrument bias is reported less often as a
potential limitation than pleiotropy or population stratification.
MR approaches can be extended to include comparisons across
context, the use of positive and negative controls, and the use
of family-based designs (including discordant siblings). More
detailed reviews of a range of genetically informed approaches,
including MR, are available elsewhere (Davies et al., 2019;
Pingault et al., 2018).

Conclusions

A variety of design-based approaches to causal inference exist that
should be considered complementary to statistical approaches. In
particular, several of these approaches (e.g. analyses across groups
with different confounding structures, and the use of positive and
negative controls) can be implemented using the range of statis-
tical methods described above. These are again increasingly
being used in the field of mental health. However, despite their
strengths, it is unlikely that any single method (whether statistical
or design-based) can provide a definite answer to a causal
question.

Triangulation and causal inference

One reason to include design-based approaches is that these may
be less likely to suffer from similar sources and directions of bias
compared with statistical approaches, particularly when these are
conducted within the same data set (Lawlor, Tilling, & Davey
Smith, 2016). Ideally, we would identify different sources of evi-
dence that we could apply to a research question and understand
the likely sources and directions of bias operating within each so
that we could ensure that these are different. This means that tri-
angulation should be a prospective approach, rather than simply
selecting sources of evidence that support a particular conclusion
post hoc.

A range of examples of studies that explicitly use triangulation
to support stronger causal inference in the context of substance
use and mental health is presented in Table 2. Although this is
not an exhaustive list of studies that have used triangulation in
mental health research, we identified several studies by searching
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Table 2. Studies using triangulation to address a research question in mental health epidemiology

Study Exposure Outcome Approach used Description Comments

Brand et al. (2019) Maternal smoking in
pregnancy

Longitudinal foetal
growth from 12–16 to 40
weeks gestation

Linear
regression

Multilevel fractional polynomial models of
estimated foetal weight, and multivariable linear
regression between maternal smoking in pregnancy
and foetal weight, adjusting for potential
confounders

The study states that findings were
triangulated from three approaches with
differing sources of bias to improve causal
inference; evidence was consistent with a
causal effect for maternal smoking in
pregnancy on foetal growth (i.e. results from
all three methods were consistent with a
causal effect)

MR MR of smoking quantity and ease of quitting on
estimated foetal weight using individual-level data

Negative
control
exposure

Partner’s smoking was used as a negative control
for intrauterine exposure

Thapar et al.
(2009)

Maternal smoking in
pregnancy

Child Attention Deficit/
Hyperactivity Disorder
(ADHD) and birth weight

Natural
experiment

Natural experiment comparing offspring conceived
via in vitro fertilization, who were either genetically
related (fertilized eggs implanted in the biological
mother) or genetically unrelated (fertilized eggs
implanted in a surrogate mother) to the woman
who underwent the pregnancy

Study does not specifically refer to
triangulation; evidence was consistent with a
causal effect for maternal smoking in
pregnancy on lower birth weight but not
ADHD symptoms (i.e. consistent results were
found for unrelated and related mother–
offspring pairs for birth weight but not ADHD)

Sellers et al.
(2020)

Maternal smoking in
pregnancy

Child conduct and
hyperactivity, cognition
and birth weight

Cross-cohort
design

Two national UK cohorts born in 1958 and 2000/
2001 with different confounding structures were
compared

The study highlights the utility of cross-cohort
designs in helping triangulate conclusions
about the role of putative causal risk factors
in observational epidemiology; evidence was
consistent with a causal effect for maternal
smoking in pregnancy on lower birth weight
but not the other child outcomes (i.e.
consistent results were found across cohorts
for birth weight but not conduct problems,
hyperactivity and reading)

Caramaschi et al.
(2018)

Maternal smoking in
pregnancy

Autism spectrum
disorder (ASD)

Logistic and
linear
regression

Multivariable regression using self-report smoking
and an epigenetic score as the exposure and ASD
diagnosis or traits as the outcome, adjusted for
potential confounders

Study states that the integration of evidence
from several different epidemiological
approaches that have differing and unrelated
sources of bias was used, but does not
specifically refer to triangulation; evidence
was not consistent with a causal effect for
maternal smoking in pregnancy on autism or
related traits (i.e. all three methods showed
weak or no evidence for a causal effect)

Negative
control
exposure

Partner’s smoking was used as a negative control
for intrauterine exposure

MR MR between heaviness of smoking and ASD or
autistic traits using individual-level data

Gage et al. (2020) Smoking Education attainment
and cognitive ability

Linear
regression

Multivariable linear regression between smoking
heaviness and education attainment and cognitive
ability, adjusting for potential confounders and
earlier measures of the outcome

Study highlights that the triangulation of
results across different methods, each with
their own strengths, limitations and sources
of bias is a strength; evidence was consistent
with a causal effect for smoking on lower
educational attainment, but results were less
consistent for cognitive ability (i.e. results
from both methods were consistent with a
causal effect for education and cognition,
however cognition results were less robust to
various sensitivity analyses)

MR Two-sample MR of two smoking phenotypes
(smoking initiation and lifetime smoking) on
cognitive ability and educational attainment

(Continued )
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Table 2. (Continued.)

Study Exposure Outcome Approach used Description Comments

Harrison et al.
(2020)

Smoking behaviours
(initiation, smoking
status, heaviness,
lifetime smoking)

Suicidal ideation and
attempts

Logistic
regression

Multivariable logistic regression between smoking
behaviours and suicidal ideation and attempts,
adjusting for potential confounders

Study states that they triangulated across
multiple methods, multiple smoking
behaviours and multiple suicidal behaviours
to improve causal inference; evidence was not
consistent with a causal effect for smoking on
suicidal ideation and attempts (i.e. an
association was found in observational
analyses but not MR)

MR Two-sample MR of smoking initiation on suicide
attempt using five different MR methods; MR of
lifetime smoking behaviour on suicidal ideation and
attempt using individual-level data

Itani et al. (2019) Prescription of
varenicline v. Nicotine
replacement therapy
(NRT)

Smoking cessation at
2-years

Logistic
regression

Multivariable logistic regression between varenicline
prescription and smoking cessation, adjusting for
potential confounders both in those with and those
without a neuro-developmental disorder

Study highlights that triangulating three
different analytical methods to address
confounding is a strength; evidence was
consistent with a causal effect for varenicline
on smoking cessation (i.e. results from all
three methods were consistent with a causal
effect)

Propensity
score matching

Participants were matched based on the
association between their exposure and all baseline
characteristics

Instrumental
variable
analysis

Physicians’ previously recorded prescribing
preferences for varenicline v. NRT was used as the
instrument

Taylor et al.
(2020)

Prescription of
varenicline v. NRT

Smoking cessation and
mental health

Logistic
regression

Multivariable logistic regression between varenicline
prescription and smoking cessation and mental
health outcomes adjusting for potential
confounders both in those with and those without a
mental disorder

Study states that results were triangulated
from three analytical techniques; evidence
was consistent with a causal effect for
varenicline on smoking cessation (i.e. results
from all three methods were consistent with a
causal effect); this study is not independent
from Itani et al. (2019) abovePropensity

score matching
Participants were matched based on the
association between their exposure and all baseline
characteristics

Instrumental
variable
analysis

Physicians’ previously recorded prescribing
preferences for varenicline v. NRT was used as the
instrument

Davies et al.
(2018a)

Remaining in school Various health
outcomes including
depression diagnosis,
alcohol use and
smoking

Natural
experiment

The raising of the school leaving age from 15 to 16
years was used as a natural experiment for testing
whether remaining in school at 15 years of age
affected later outcomes; data analysed using a
regression discontinuity design, instrumental
variable analysis and difference-in-difference
analysis

Study does not refer to triangulation;
evidence was consistent with a causal effect
for remaining in school on reduced diabetes
and mortality (i.e. results from all three
methods were consistent with a causal effect)

Sanderson, Davey
Smith, Bowden, &
Munafo (2019)

Educational
attainment

Smoking behaviour
(current smoking,
smoking initiation and
smoking cessation)

Logistic
regression

Multivariable logistic regression between
educational attainment and smoking behaviours,
adjusting for general cognitive ability and potential
confounders

Study states that results were compared
within a triangulation framework; evidence
was consistent with a causal effect for more
years of education on smoking behaviour (i.e.
results from both methods were consistent
with a causal effect)MR Multivariable MR of educational attainment and

general cognitive ability on smoking behaviour
using individual-level data; univariable and
multivariable two-sample MR of educational
attainment and general cognitive ability on smoking
initiation and cessation
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(i) for studies that cited a review on triangulation in aetiological
epidemiology from 2017 (Lawlor et al., 2016), (ii) two databases
(PubMed and Web of Science) in March 2020 using the search
terms ‘triangulat*’ and ‘mental health’ for papers published
since 2017 and (iii) the reference list of another recent review
on triangulation of evidence in genetically informed designs
(Munafo, Higgins, & Davey Smith, 2020). For a description of
two additional studies in psychiatric epidemiology that have
used a triangulation framework see the review by Ohlsson and
Kendler (Ohlsson & Kendler, 2020). These studies use a range
of statistical and design-based approaches. For example,
Caramaschi and colleagues (Caramaschi et al., 2018) explore the
impact of maternal smoking during pregnancy on offspring aut-
ism spectrum disorder (ASD), using paternal smoking during
pregnancy as a negative control, and MR using genetic variants
associated with heaviness of smoking as a proxy for the exposure,
together with conventional regression-based analyses. The evi-
dence was not consistent with a causal effect for maternal smok-
ing in pregnancy on ASD.

The limitations of observational data for causal inference are
well known. However, the thoughtful application of multiple stat-
istical and design-based approaches, each with their own strengths
and weaknesses, and in particular sources and directions of bias,
can support stronger causal inference through the triangulation of
evidence provided by these. Triangulation can be within broad
methods (e.g. propensity score matching and fixed-effects regres-
sion within regression-based statistical approaches, or different
pleiotropy-robust MR methods), but is most powerful when it
draws on fundamentally different methods, as this is most likely
to ensure that sources of bias are different, and operating in dif-
ferent directions. It will be strongest when applied prospectively.
This could in principle include the pre-registration of a triangula-
tion strategy. This will encourage new research that does not sim-
ply have the same strengths and limitations as prior studies, but
instead intentionally has a different configuration of strengths
and limitations, and different sources (and, ideally, direction) of
potential bias. It is also worth noting that triangulation is cur-
rently largely a qualitative exercise, although methods are being
developed to support the quantitative synthesis of estimates pro-
vided by different methods.

Although triangulation is beginning to be applied in the con-
text of mental health, our review of recent studies that explicitly
make reference to triangulation revealed relatively few that did
so. Of course, others will have included multiple approaches with-
out describing the approach as one of triangulation, but it is in
part this explicit (and ideally prospective) recognition of the
need to understand potential sources of bias associated with
these different methods that is a key. Our hope is that this
approach will become more widely adopted – resulting in weight-
ier outputs that provide more robust answers to key questions.
This will have other implications – for example, larger teams of
researchers contributing distinct elements to studies will become
more common, and these contributions will need to be recog-
nized in ways that conventional authorship does not fully capture.
Triangulation can therefore be considered part of wider efforts to
improve the transparency and robustness of scientific research,
and the wider scientific infrastructure and system of incentives.
Ultimately, we must always be cautious when attempting to
infer causality from observational data. However, there are clear
examples where causality was confirmed, even before the under-
lying mechanisms were well understood (e.g. smoking and lung
cancer). In many respects, these conclusions might be considered

Fa
nc
ou

rt
&

St
ep

to
e
(2
01
9)

Cu
lt
ur
al

en
ga

ge
m
en

t
D
ep

re
ss
io
n

Lo
gi
st
ic

re
gr
es
si
on

M
ul
ti
va
ri
ab

le
re
gr
es
si
on

be
tw

ee
n
cu
lt
ur
al

en
ga

ge
m
en

t
an

d
de

pr
es
si
on

,a
dj
us
ti
ng

fo
r
po

te
nt
ia
l

co
nf
ou

nd
er
s
re
la
te
d
to

so
ci
o-
ec
on

om
ic
st
at
us

(S
ES

)
an

d
ba

se
lin

e
de

pr
es
si
on

sy
m
pt
om

s

St
ud

y
st
at
es

th
at

a
st
at
is
ti
ca
l
tr
ia
ng

ul
at
io
n

ap
pr
oa

ch
w
as

us
ed

,
ru
nn

in
g
th
re
e
se
pa

ra
te

se
ts

of
an

al
ys
es

th
at

ea
ch

ha
ve

di
ff
er
en

t
st
re
ng

th
s
an

d
ad

dr
es
s
di
ff
er
en

t
st
at
is
ti
ca
l

lim
it
at
io
ns

or
bi
as
es
;e

vi
de

nc
e
w
as

co
ns
is
te
nt

w
it
h
a
ca
us
al

ef
fe
ct

fo
r
cu
lt
ur
al

en
ga

ge
m
en

t
on

de
pr
es
si
on

(i.
e.

re
su
lt
s
fr
om

al
l
th
re
e

m
et
ho

ds
w
er
e
co
ns
is
te
nt

w
it
h
a
ca
us
al

ef
fe
ct
)

P
ro
pe

ns
it
y

sc
or
e
m
at
ch
in
g

Pa
rt
ic
ip
an

ts
w
er
e
m
at
ch
ed

ba
se
d
on

th
e

as
so
ci
at
io
n
be

tw
ee
n
th
ei
r
ex
po

su
re

an
d
SE

S

Fi
xe
d-
ef
fe
ct
s

re
gr
es
si
on

Re
gr
es
si
on

m
od

el
w
hi
ch

ta
ke
s
ac
co
un

t
of

al
l
ti
m
e-

in
va
ri
an

t
fa
ct
or
s
(w

hi
ch

in
cl
ud

e
m
ul
ti
pl
e
as
pe

ct
s
of

SE
S)

ev
en

if
un

ob
se
rv
ed

Psychological Medicine 575

https://doi.org/10.1017/S0033291720005127 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291720005127


the result of the accumulation of evidence from multiple sources –
a triangulation of a kind. However, in our view, the adoption of a
prospective and explicit triangulation framework offers the poten-
tial to accelerate progress to the point where we feel more confi-
dent in our causal inferences.
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