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Abstract
We obtain a generalisation of the Stroock–Varadhan support theorem for a large class of systems of subcritical
singular stochastic partial differential equations driven by a noise that is either white or approximately self-similar.
The main problem that we face is the presence of renormalisation. In particular, it may happen in general that different
renormalisation procedures yield solutions with different supports. One of the main steps in our construction is the
identification of a subgroup H of the renormalisation group such that any renormalisation procedure determines a
unique coset 𝑔 ◦H. The support of the solution then depends only on this coset and is obtained by taking the closure
of all solutions obtained by replacing the driving noises by smooth functions in the equation that is renormalised
by some element of 𝑔 ◦ H.

One immediate corollary of our results is that the Φ4
3 measure in finite volume has full support, and the

associated Langevin dynamic is exponentially ergodic.
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1. Introduction

The purpose of this article is to provide a far-reaching generalisation of the support theorem of Stroock
and Varadhan [SV72]. Recall that this result can be formulated as follows: Let {𝑉𝑖}

𝑚
𝑖=0 be a finite

collection of vector fields on R𝑛 that have bounded first and second derivatives, and consider the
solution x to the system of stochastic differential equations given by

𝑑𝑋 = 𝑉0(𝑋)𝑑𝑡 +
𝑚∑
𝑖=1

𝑉𝑖 (𝑋) ◦ 𝑑𝑊𝑖 (𝑡), (1.1)

where the 𝑊𝑖 are independent and identially distributed standard Wiener processes and ◦ denotes
Stratonovich integration [Str64]. Write P𝑥 for the law of the solution to equation (1.1) with initial
condition 𝑋0 = 𝑥 on C(R+, R𝑛). It follows from the Wong–Zakai theorem that if we write 𝑋 (𝜀) for the
solution to the random ordinary differential equation

�𝑋 (𝜀) = 𝑉0

(
𝑋 (𝜀)

)
+

𝑚∑
𝑖=1

𝑉𝑖

(
𝑋 (𝜀)

)
�𝑊 (𝜀)
𝑖 , (1.2)
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for 𝑊 (𝜀) a smooth approximation to W (for example, convolution with a smooth mollifier), then
𝑋 (𝜀) → 𝑋 in probability. On the other hand, for any fixed 𝜀 > 0, the topological support of the law P(𝜀)

𝑥

of 𝑋 (𝜀) is contained in the closure 𝑅𝑥 of the range of the continuous map I𝑥 : C1(R+, R𝑚) → C(R+, R𝑛),
which maps any C1 function 𝑊 (𝜀) to the solution to equation (1.2).

Since the topological support is lower semicontinuous under weak convergence, this immediately
implies that one also has supp P𝑥 ⊂ 𝑅𝑥 . What Stroock and Varadhan proved in [SV72] is that one
actually has supp P𝑥 = 𝑅𝑥 . Our aim is to generalise this statement to a wide class of singular stochastic
partial differential equations (SPDEs).

The general framework used in this article is that of [BHZ19, BCCH17]. Loosely speaking, we
consider systems of SPDEs of the form

𝜕𝑡𝑢𝑖 = L𝑖𝑢𝑖 + 𝐹𝑖 (𝑢,∇𝑢, . . . ) +
∑
𝑗≤𝑛

𝐹
𝑗
𝑖 (𝑢,∇𝑢, . . . )𝜉 𝑗 , 𝑖 ≤ 𝑚, (1.3)

where the L𝑖 denote homogeneous differential operators on R𝑑 , the spatial variable takes values in the
torus T𝑑 and the 𝜉𝑖 denote driving noises that are of the form 𝜉𝑖 = K𝑖 ★𝜂𝑖 , where 𝜂𝑖 denotes space-time
white noise (or possibly noise that is white in space and constant in time) and K𝑖 is a kernel which is
self-similar in a neighbourhood of the origin and smooth otherwise. The 𝐹

𝑗
𝑖 are local nonlinearities in

the sense that the value of 𝐹
𝑗
𝑖 (𝑢,∇𝑢, . . . ) at a given space-time point is a smooth function of u and

finitely many of its derivatives evaluated at that same point. We will assume throughout that the system
(1.3) is locally subcritical in the sense of [BHZ19].

Remark 1.1. The choice 𝜉𝑖 = K𝑖 ★𝜂𝑖 covers many interesting examples in which 𝜉𝑖 is the solution of a
linear equation driven by 𝜂𝑖; in this case, K𝑖 should be chosen as the Green’s function. For our support
theorem we do not need K𝑖 to actually be the Green’s function of a PDE, but we do need the kernel to be
homogeneous under rescaling. This assumption will be used heavily throughout this article (compare
Assumption 4).

It was shown in [BHZ19] that one can associate to such an equation in a natural way a nilpotent
Lie group G−, usually called the renormalisation group in this context, as well as a construction of the
following type: Write X for a suitable space of right-hand sides for equation (1.3) (i.e., an element of X
consists of the nonlinearities 𝐹𝑖 as well as 𝐹

𝑗
𝑖 that can be described by a regularity structure built from

a fixed complete subcritical ‘rule’ as in [BHZ19, Section 5]) and write X0 ⊂ X for the ‘deterministic
right-hand sides’, – that is, those elements such that 𝐹 𝑗𝑖 ≡ 0.

One then has a map Υ : G− × X → X0 such that (𝑔, 𝐹) ↦→ 𝐹 + Υ(𝑔, 𝐹) yields a representation of
G− on X. (See Remark 1.3 for more details.)

Furthermore, given any natural regularisation 𝜉 𝜀 of 𝜉, one can find a sequence of elements 𝑔𝜀 ∈ G−

such that the solutions to

𝜕𝑡𝑢
𝜀
𝑖 = L𝑖𝑢𝜀𝑖 + 𝐹𝑖 (𝑢

𝜀 ,∇𝑢𝜀 , . . . ) +
∑
𝑗≤𝑛

𝐹
𝑗
𝑖 (𝑢𝜀 ,∇𝑢𝜀 , . . . )𝜉 𝜀𝑗 +

(
Υ(𝑔𝜀 , 𝐹)

)
𝑖 (𝑢

𝜀 ,∇𝑢𝜀 , . . . ), (1.4)

subject to suitable initial conditions 𝑢𝜀𝑖 (0, ·) = 𝑢𝜀, (0)𝑖 , converge to a limit u. (The convergence takes
place in probability in a space of Hölder continuous trajectories with possible finite-time blow-up.)
These limits have a restricted uniqueness property in the sense that for any other regularisation 𝜉 𝜀 of 𝜉,
one can find a sequence of elements �̃�𝜀 ∈ G− such that the solutions to equation (1.4) with 𝜉 𝜀 replaced
by 𝜉 𝜀 and 𝑔𝜀 replaced by �̃�𝜀 converge to the same limit.

Remark 1.2. As in [BCCH17, Section 2.7], the initial condition 𝑢𝜀, (0)𝑖 is dependent on 𝜀 and taken in
the form 𝑢𝜀, (0) = 𝑣 (0) + S−

𝜀 (𝜉) (0, ·), where S−
𝜀 (𝜉) is a stationary process representing the rough part

(i.e., the non-function-valued part) of the solution. In particular, it is in general not possible to choose as
the initial condition a deterministic smooth function, unless solutions themselves are function-valued,
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in which case S−
𝜀 ≡ 0. An interesting equation where this happens is the so-called Φ4

4−𝛿 equation
(see [BCCH17, Section 2.8.2] and Sections 1.2.1 and C.2). For many interesting examples, including
generalised KPZ and generalised PAM, this issue is not apparent, and the initial condition can be chosen
as any deterministic function (or even distribution) with sufficient regularity. An exceptional case is Φ4

3
where S−

𝜀 ≠ 0, but one can compensate for this by choosing 𝑣 (0) appropriately (compare Section C.1).

Remark 1.3. Writing 𝒯− for the set of trees of negative degree associated to the class of SPDEs under
consideration (see Section 2.2.1), one can explicitly set

Υ : (𝑔, 𝐹) ↦→
∑
𝜏∈𝒯−

𝑔(𝜏)

𝑆(𝜏)
Υ𝐹 [𝜏],

where the space of nonlinearities P𝔏+ , combinatorial factor 𝑆(𝜏) and evaluation map Υ𝐹 are defined
in [BCCH17, Section 2.7]. In the right-hand side, we identify elements of G− with maps 𝒯− → R
(characters on the free unital algebra generated by 𝒯−).

In this context, the purpose of Υ is to provide a formula for the counterterms required to renormalise
our equation. As already noted in [BCCH17], the same map also provides an expression for the
expansion of the ‘abstract solution’ to our SPDE in the corresponding regularity structure. This is
strongly reminiscent of the expression of the Taylor expansion of the solution to an ordinary differential
equation in terms of a sum over trees [But72].

We call a choice of (𝜉 𝜀 , 𝑔𝜀)𝜀>0 a renormalisation procedure, and we consider two such procedures
to be equivalent if they yield the same limit process for any system of SPDEs driven by 𝜉 𝜀 belonging
to a suitable class of systems of the same form as the original one. (See [BCCH17] for the definition of
this class of equations given a ‘rule’ in the sense of [BHZ19].) Given two renormalisation procedures
(𝜉 𝜀 , 𝑔𝜀) and

(
𝜉 𝜀 , �̃�𝜀

)
, it turns out that it is always possible to find one single element 𝑓 ∈ G− such that(

𝜉 𝜀 , �̃�𝜀
)

is equivalent to (𝜉 𝜀 , 𝑓 ◦ 𝑔𝜀). Given any fixed choice of compactly supported kernel K𝑖 such
that (𝜕𝑡 − L𝑖)K𝑖 = 𝛿 in a neighbourhood of the origin and any choice 𝜉 𝜀 of smooth approximation to 𝜉
(by convolution with a compactly supported mollifier, but this could in principle be more general), there
is a distinguished choice of 𝑔 (𝜀)

BPHZ (depending on 𝜉 𝜀), which we call the ‘BPHZ renormalisation’ (see
[BHZ19]). In particular, this has the property that the (𝜉 𝜀 , 𝑔 (𝜀)

BPHZ) are all equivalent for different choices
of 𝜉 𝜀 , so that we can talk about ‘the’ BPHZ solution to equation (1.3).

At first sight, the natural generalisation of Stroock and Varadhan’s result for a system of equations
of the type (1.3) may be that the support of the solutions starting at u coincides with the closure 𝑅𝑢
of the set of all solutions to equation (1.3) with the 𝜉 𝑗 replaced by smooth controls. A moment of
thought reveals that this cannot be the case, for the simple reason that the formal expression (1.3) only
determines a solution theory up to a choice of renormalisation procedure, and different renormalisation
procedures may produce solutions with different supports. This is already apparent in the case of
stochastic differential equations (SDEs) where an expression like

�𝑥 = 𝑉0(𝑥) +𝑉𝑖 (𝑥)𝜉𝑖

(summation over repeated indices is implicit) may be interpreted either in the Itô sense or in the
Stratonovich sense, yielding solution theories with distinct supports in general.

It is also not difficult to see that in general one cannot hope to obtain the support of equation (1.3)
as the closure 𝑅

𝑔
𝑢 of the set of all solutions to equation (1.4) with the 𝜉 𝜀𝑗 replaced by smooth controls
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and 𝑔𝜀 replaced by some fixed element g of the renormalisation group. Indeed, consider the system of
SPDEs given by

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + 𝜉, 𝜕𝑡𝑣 = 𝜕2

𝑥𝑣 + (𝜕𝑥𝑢)
2. (1.5)

The relevant part of the renormalisation group for this system is simply (R, +), with the renormalised
system being of the form

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + 𝜉, 𝜕𝑡𝑣 = 𝜕2

𝑥𝑣 + ((𝜕𝑥𝑢)
2 − 𝑐). (1.6)

For any fixed value of c, solutions to equation (1.6) with smooth 𝜉 and vanishing initial condition are
such that v is bounded below by −𝑐𝑡. However, the solution to equation (1.5) should really be interpreted
as the limit as 𝜀 → 0 of the solution to equation (1.6), with 𝜉 replaced by 𝜉𝜀 and c replaced by 𝑐𝜀 for a
suitable choice of 𝑐𝜀 → +∞.

Furthermore, it was already remarked in [Hai13] (in a slightly different setting) that for any fixed
smooth h, the solutions to

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + ℎ + 𝑎𝜀−1 cos

(
𝜀−1𝑥

)
, 𝜕𝑡𝑣 = 𝜕2

𝑥𝑣 + (𝜕𝑥𝑢)
2 − 𝑐 (1.7)

converge as 𝜀 → 0 to those of

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + ℎ, 𝜕𝑡𝑣 = 𝜕2

𝑥𝑣 + (𝜕𝑥𝑢)
2 −

(
𝑐 − 𝑐𝑎2

)
for some fixed positive constant 𝑐. In other words, it is possible to emulate a decrease in the renormal-
isation constant c (but not an increase!) by adding a small (in a distributional sense) highly oscillatory
term to h. This suggests that the support of the solution to equation (1.5) is given by the closure of the
set of all solutions to

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + ℎ, 𝜕𝑡𝑣 = 𝜕2

𝑥𝑣 + (𝜕𝑥𝑢)
2 − 𝑐 (1.8)

for any choice of smooth function h and any choice of constant 𝑐 ∈ R. As a matter of fact, by considering
perturbations of h of the type (1.7), but with an additional modulation of the highly oscillatory term, we
will see in Theorem 1.15 that whatever the choice of renormalisation procedure, solutions to equation
(1.5) have full support, so that this example exhibits some weak form of ‘hypoellipticity’.

1.1. The main theorem

We consider subcritical SPDEs of the form (1.3) such that Assumptions 2 and 3 hold. Subcriticality en-
sures that one can construct a problem-dependent regularity structure as in [BHZ19], and Assumptions
2 and 3 guarantee by [CH16, Theorem 2.33] the convergence of the sequence of admissible models �̂�

𝜀

to a random limit model �̂� , where �̂�
𝜀 denotes the renormalised canonical lift of the regularised noise

𝜉 𝜀 (see Section 2.2.2). Furthermore, we can only expect a support theorem to hold if the integration
kernels associated to our equations are homogeneous on small scales, and in order to not overcompli-
cate the presentation, we assume that our Green’s functions are self-similar under rescaling (compare
Assumption 4). For convenience, we also restrict to the case of independent (space or space-time) Gaus-
sian white noises 𝜉𝑖 (but compare Remark 2.5). Our assumptions ensure that equation (1.3) can be lifted
to an abstract fixed point problem as in [Hai14, Theorem 7.8]. Finally, we need a technical assump-
tion on the trees that appear in our regularity structure, which for ease of this introduction we will not
comment on; we refer the interested reader to Assumptions 5 and 6 in Section 2.5.

In order to have a well-behaved solution map, it is convenient to be in the slightly more restrictive
setting of [BCCH17], which guarantees in particular that the reconstructed solution to the abstract fixed
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point problem for �̂�
𝜀 satisfies the regularised and renormalised SPDE (1.4). We thus assume for the

sake of the main results – Theorems 1.6 and 1.7 – that the full assumptions of [BCCH17] are satisfied.

Assumption 1. We assume that [BCCH17, Equation 2.5, Assumptions 2.6, 2.8, 2.13, 2.15 and 2.16]
are satisfied and that our Assumptions 2–5, 7 and 8 hold.

Remark 1.4. We will show in Section 4 that Assumptions 7 and 8 are implied by Assumptions 2–6
(without requiring the additional assumptions of [BCCH17]).

Our main result then is a support theorem for the BPHZ renormalised model �̂� or indeed any model
differing from �̂� by the action of an element of the renormalisation group G− associated to the class of
equations under consideration. If we denote by 𝑍 (ℎ) the canonical lift of any ℎ ∈ C∞

0 , a slightly informal
version of our main result reads as follows:

Theorem 1.5. There exist a subgroup H ⊂ G− and a left coset 𝑔H of H such that

supp �̂� =
{
Rℎ𝑍 ( 𝑓 ) : 𝑓 ∈ C∞

0 , ℎ ∈ 𝑔H
}
.

One important remark here is that H is not determined solely by the regularity structure of the
problem. Instead, it also incorporates information about the symmetries satisfied by the integration
kernels associated to the problem. Extracting this ‘rigid’ algebraic data out of ‘soft’ analytic data is one
of the main difficulties of this article.

We also have a more concrete statement at the level of solutions, which we state now. Regarding
solutions, our support theorem applies for u in any space X =

⊕
𝑖 X𝑖 such that the solution operator

(mapping the space of admissible models for the regularity structure T into X) is continuous. For
instance, one could define the space X𝑖 as a version of the usual Hölder spaces allowing for finite-time
blow-up as in [BCCH17]. In situations where we know a priori that the solution survives until some
deterministic time 𝑇 > 0 almost surely, one can take alternatively for X𝑖 the usual Hölder–Besov spaces
C−

|𝔰 |
2 +𝛽𝑖−𝜅

𝔰Λ ((0, 𝑇) × T𝑒). (Here 𝛽𝑖 > 0 and the scaling 𝔰Λ : {0, . . . , 𝑒} → N are determined by the linear
part 𝜕𝑡 −L𝑖 of our equations; see Assumption 4. The statement holds for any 𝜅 > 0.) The main theorem
of this article is the following description of the topological support of u:

Theorem 1.6. Under Assumption 1, let 𝑢𝜀 denote the classical solutions to the regularised and renor-
malised equation (1.4) with noise 𝜉 𝜀 and renormalisation constants 𝑐𝜀𝜏 = ℎ ◦ 𝑔𝜀BPHZ(𝜏) for some fixed
ℎ ∈ G−, and set 𝑢 := lim𝜀→0 𝑢

𝜀 . Then one has the identity

supp 𝑢 =
⋂
𝜀>0

⋃
𝛿<𝜀

supp 𝑢𝛿

in X.

In Theorem 3.14 we show that Assumptions 2–5, 7 and 8 imply an analogous support theorem for
the random models associated to u and 𝑢𝛿 . More precisely, we show that

supp �̂� =
⋂
𝜀>0

⋃
𝛿<𝜀

supp �̂�
𝛿
, (1.9)

where �̂�
𝛿 denotes the BPHZ model associated to the noise 𝜉 𝛿 and �̂� denotes its limit, namely the BPHZ

model associated to the limiting white noise 𝜉.
Once we know equation (1.9), Theorem 1.6 is a direct consequence of the continuity of the solution

operator given in [BCCH17, Theorem 2.21], combined with the fact that given a measure 𝜇 and a
continuous map F, supp 𝐹∗𝜇 is given by the closure of 𝐹 (supp 𝜇). It will become clear from our proof
that for a ‘tweaked’ choice of renormalisation constants 𝑐𝜀𝜏 = 𝑘 𝜀 ◦ ℎ ◦ 𝑔𝜀BPHZ (𝜏) with 𝑘 𝜀 → 1∗ as 𝜀 → 0,
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one can show that denoting by �̃�𝜀 the classical solution to the system(1.3) with renormalisation constants
𝑐𝜀 , one still has �̃�𝜀 → 𝑢 in probability in X, but one has the stronger statement

supp �̃�𝜀 ⊆ supp 𝑢

for any 𝜀 > 0.
We also have a characterisation of the support in the spirit of Stroock and Varadhan’s support theorem

for SDEs [SV72]. The ‘correct’ way to resolve the issue of divergent renormalisation constants in such
a description turns out to be the following:

Theorem 1.7. Under Assumption 1, let ℎ ∈ G− and u be as in Theorem 1.6. There exist a Lie subgroup
H ⊆ G− of the renormalisation group and a character 𝑓 ∈ G− independent of the choice of h in
Theorem 1.6 such that the following holds: The support supp 𝑢 is given by the closure of all solutions
𝜑 to

𝜕𝑡𝜑𝑖 = L𝑖𝜑𝑖 + 𝐹𝑖 (𝜑,∇𝜑, . . . ) +
∑
𝑗≤𝑛

𝐹
𝑗
𝑖 (𝜑,∇𝜑, . . . )𝜓 𝑗 + (Υ𝑖𝑘) (𝜑,∇𝜑, . . . ), (1.10)

for any character 𝑘 ∈ ℎ ◦ 𝑓 ◦ H, initial condition1 𝜑(0, ·) ∈ Φ𝑘0 and smooth deterministic functions
𝜓 𝑗 , 𝑗 = 1, . . . , 𝑛 (depending only on space if 𝜉 𝑗 is purely spatial white noise). Here we write Υ𝑖𝑘 :=(
Υ𝑀𝑘Ω𝐹

)
𝑖 for simplicity.

This theorem follows from Proposition 3.8, the properties of the shift operator, Theorem 2.4 and the
continuity of the solution operator. The Lie subgroup H is given as the annihilator of a finite number
of linear ‘constraints’ between the renormalisation constants. We refer the reader to Definition 3.3 for a
precise definition. The tweaking by f is necessary, since the BPHZ characters respect these constraints
only up to order 1 (a by-product of the fact that we use truncated integration kernels for its definition).

Remark 1.8. When we are in a situation in which we are allowed to choose the initial condition
𝑢𝜀, (0) = 𝑣 (0) deterministically and independent of 𝜀, the initial condition of the control problem (1.10)
has to coincide with this choice, so that we have to set Φ𝑘0 =

{
𝑣 (0)}.

In order to also cover the case when the initial condition 𝑢𝜀, (0) is a perturbation to S−
𝜀 (𝜉) (0, ·)

(compare Remark 1.2), we make use of the fact that S−
𝜀 can be written as an explicit continuous function

of the model �̂� 𝜀 (compare [BCCH17, Proposition 5.22, Equation 6.10]). In the notation of that paper,
we define Φ𝑘0 as the set of all functions of the form 𝑣 (0) +

(
R𝑍P𝑍�̃�

)
(0, ·) ∈ (C∞(T𝑒))𝑚, where Z is a

renormalised canonical lift 𝑍 = R𝑘𝑍c(𝜓) with 𝜓 ∈ C∞
𝑐 (R×T𝑒)𝑛. (The fact that we can choose the initial

condition independent of the 𝜓 𝑗 ’s appearing in equation (1.10) comes from the fact that
(
R𝑍P𝑍�̃�

)
(0, ·)

depends only on the value of 𝜓 on negative times, whereas in equation (1.10) only the behaviour of 𝜓
for positive times matters.)

Remark 1.9. It suffices to prove Theorems 1.6 and 1.7 for ℎ = 1∗. This follows, since by [BCCH17,
Theorem 2.13] there exists a action (𝐹, ℎ) ↦→ ℎ ◦ 𝐹 of the renormalisation group G− onto the collection
of vector fields 𝐹 = (𝐹𝑖) which leaves the class of vector fields considered in [BCCH17] invariant and
is such that 𝐹𝑖 + Υ𝑖 (ℎ ◦ 𝑔) = ℎ ◦ 𝐹𝑖 + Υ𝑖𝑔 for any ℎ, 𝑔 ∈ G−. Therefore, changing renormalisation can
simply be viewed as changing the nonlinearity.

Remark 1.10. The set 𝑓 ◦ H used in Theorem 1.7 is in some sense the largest set of characters such
that we can guarantee that the solution to equation (1.10) is in the support of u. In many situations we
know a priori that there exists a smooth approximation 𝜉 𝜀 = 𝜉 ★ 𝜌𝜀 as before with the property that the
BPHZ characters 𝑔𝜀 take values in a fixed subset 𝐾 ⊆ 𝑓 ◦ H. In this case, combining Theorems 1.6
and 1.7 implies that the support supp 𝑢 is given by the closure of the set of all solutions to the control
problem (1.10) with 𝑘 ∈ 𝐾 .

1See Remark 1.8 for the definition of this set.
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Remark 1.11. The classical Stroock–Varadhan support theorem can be viewed as the case 𝑑 = 0 of our
result with L𝑖 = 0. In this case, one has G− � (R, +)2 and, in the notation of Theorem 1.7,

(Υ𝑖𝑐) (𝑢) = 𝑐𝐹
𝑗
𝑘 (𝑢)𝜕𝑘𝐹

𝑗
𝑖 (𝑢), 𝑐 ∈ R � G−,

with summation over j and k implied. Furthermore, using the BPHZ model (and therefore setting ℎ = 0)
leads to solutions in the Itô sense. Since there is only one renormalisation constant in this case and the
‘heat kernel’ is given by the Heaviside function, which is nontrivial, Definition 3.3 readily leads us to
the conclusion that J is the unit ideal, so that its annihilator is given by H = {0}.

Theorem 1.7 then states that there exists some constant c such that the support of the Itô solutions to

𝑑𝑢𝑖 = 𝐹𝑖 (𝑢)𝑑𝑡 +
∑
𝑗≤𝑛

𝐹
𝑗
𝑖 (𝑢)𝑑𝑊 𝑗

is given by the closure of all solutions to

�𝑢𝑖 = 𝐹𝑖 (𝑢) +
∑
𝑗≤𝑛

𝐹
𝑗
𝑖 (𝑢)𝜓 𝑗 + 𝑐

∑
𝑘≤𝑚

∑
𝑗≤𝑛

𝐹
𝑗
𝑘 (𝑢)𝜕𝑘𝐹

𝑗
𝑖 (𝑢), (1.11)

with smooth controls 𝜓 𝑗 . Note that the correct value of c (corresponding to the character f in the
statement) is not specified by the theorem. On the other hand, one can explicitly compute the ‘BPHZ
character’ in this case and show that (again identifying G− with R) it converges as 𝜀 → 0 to − 1

2 , and
we conclude from Remark 1.10 that 𝑐 = − 1

2 in equation (1.11), thus recovering the Stroock–Varadhan
support theorem.

Before we proceed, let us briefly discuss how these results compare to the existing literature. There
are of course many support theorems for stochastic PDEs that do not require renormalisation – see, for
example, [BMS95, CWM01, CM11, DVSS14]. In all of these cases, the statement is the one that one
would expect, namely that the support is given by the closure of all solutions obtained by replacing the
noises by suitable controls. In the case of singular SPDEs, information on the support follows in some
special cases. For example, Jona-Lasinio and Mitter [JLM85] construct solutions to a type of Langevin
equation for the Φ4

2 measure by using Girsanov’s theorem, which yields full support as an immediate
by-product. One of the earliest results on the support in cases that cannot be dealt with in this way is the
work by Chouk and Friz [CF18] in which they consider a generalised parabolic Anderson model of the
form 𝜕𝑡𝑢 = Δ𝑢 + 𝑔(𝑢)𝜉 in dimension 2 and show that a suitably renormalised version of it has support
given by the closure of all solutions to control problems of the type 𝜕𝑡𝑢 = Δ𝑢+𝑔(𝑢)𝜙+𝑐(𝑔𝑔′) (𝑢) with 𝜙
a smooth function (constant in time) and c an arbitrary constant. This can be viewed as a special case of
our result in a situation where H = G ≈ (R, +). The way we deal with the presence of renormalisation,
while inspired by [CF18], substantially differs from the construction given there. See the discussion at
the start of Section 5 for more details.

Using similar techniques, Tsatsoulis and Weber [TW18] showed that theΦ4
2 dynamic has full support.

Finally, proofs of support theorems for stochastic ordinary differential equations based on rough-path
techniques are by now very classical. It was already mentioned in [Lyo98] that the continuity properties
of the solution map can be used for a straightforward proof of a support theorem, provided one has a
support theorem for the enhanced Brownian motion. The latter was shown in a series of results – see for
instance [LQZ02] (for a support theorem for rough paths in the p-variation topology), [Fri05] (in Hölder
topology), [FV06] (for enhanced fractional Brownian motions) and [FV10a] (for an implementation
using deterministic shifts). For an introduction to the topic and more details, see [FH14, Section 9.3] or
[FV10b, Chapter 19].

2Strictly speaking, one has G− � (R𝑛×𝑛 , +) , but only multiples of the identity matrix preserve the natural symmetries given
by invariance under permutation of indices.
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1.2. Applications

1.2.1. The Φ𝑝𝑑 equation
The Φ𝑝𝑑 equation formally is given by

𝜕𝑡𝑢 = Δ𝑢 +
∑

1≤𝑘≤𝑝−1
𝑎𝑘𝑢

𝑘 + 𝜉 (1.12)

with space-time white noise 𝜉 on D = R×T𝑑 . This equation is subcritical in the sense of [Hai14, BHZ19],
provided that 𝑝 < 2𝑑/(𝑑 − 2). As already pointed out, in a formal sense, one can also consider equation
(1.12) in dimension 𝑑 − 𝜀, either by replacing Δ by −(−Δ)1+𝜀 or by convolving 𝜉 with a slightly
regularising Riesz kernel. We will restrict ourselves here to the cases 𝑑 = 2 and p even, 𝑑 = 3 and
𝑝 = 4, and 𝑑 = 4 − 𝜀 and 𝑝 = 4. We denote by ‘the’ solution to equation (1.12) the BPHZ solution in
the sense of [BHZ19, CH16] for any fixed truncation K of the heat kernel. All statements that follow
are independent of the choice of cutoff.

Note that in dimension 𝑑 = 2, Assumption 6 is violated, but as is pointed out in Remark 2.23,
Assumption 6 can be replaced by Assumptions 7 and 8, which are trivially true in this case (one has
J := {0} and H = G−). In dimension 𝑑 = 3, all assumptions are satisfied. However, the ‘black-box’
theorem of [BCCH17] only allows us to start the approximate equation at a perturbation of S−

𝜀 (𝜉) (0, ·)
(compare Remark 1.2; in this case S−

𝜀 (𝜉) (0, ·) is in law a smooth approximation to the Gaussian free
field). As was already noticed in [Hai14, Section 9.4], this issue can be circumvented, but this requires
working with a model topology which is slightly stronger than the usual one. We show in Appendix C.1
that the support theorem still holds for this topology. If we emulate dimension 𝑑 = 4 − 𝜀 by slightly
regularising the noises, then our assumptions on the noises are violated (since they are no longer white),
but it is again possible to resolve this issue (see Appendix C.2). We will be interested in showing the
ergodicity of equation (1.12), so that we will always assume that 𝑎𝑝−1 < 0. Under this condition, we
have the following consequence of Theorem 1.7:

Theorem 1.12. Set 𝑢0 ∈ C𝜂 (T3), where 𝜂 > − 2
3 if 𝑑 = 2, 3 and 𝜂 > −(𝜀 ∧ 2

3 ) if 𝑑 = 4 − 𝜀. Let u
denote the solution to the Φ𝑝𝑑 equation with the combinations of p and d already mentioned, with initial
condition 𝑢0 + S−(𝜉) (0, ·) (in the sense of Remark 1.2). Then for any 𝑇 > 0, u has full support in
C𝛼𝔰

(
(0, 𝑇) × T𝑑

)
for 𝛼 = 2−𝑑

2 − 𝜅 for any 𝜅 > 0.
For 𝑑 = 2, 3, let 𝛼 be as in the foregoing and consider the solution u with fixed initial condition

𝑢0 ∈ C𝜂
(
T3) for some 𝜂 ∈ (− 2

3 , 𝛼]. Then u has support in C
(
[0, 𝑇], C𝜂

(
T𝑑

) )
given by all functions

with value 𝑢0 at time 0.

Proof. Global existence for these equation was shown in [TW18] in 𝑑 = 2 and in [MW17, MW20] in
𝑑 = 3. For 𝑑 = 4− 𝜀 it will be a consequence of a forthcoming paper [CMW19]. The first statement then
follows directly from Theorem 1.7, which shows that any trajectory can be realised, since the equation
is driven by additive noise.

The second statement does not follow immediately, because the topology of our model space is too
weak for the solution map to be continuous as a map with values in C

(
[0, 𝑇], C𝜂

(
T𝑑

) )
. We show in

Appendix C.1 that one can endow it with a slightly stronger topology in such a way that the solution
map becomes continuous and our support theorem still holds. �

A particular application of our support theorem in dimension 𝑑 ≤ 3 is to the uniqueness of the
invariant measure and exponential convergence to this measure:

Corollary 1.13. Assume that p, 𝑑 ≤ 3 and 𝑎𝑝−1 are as before. Then the Φ𝑝𝑑 equation admits a unique
invariant measure 𝜇 on C𝛼

(
T𝑑

)
.

Moreover, if 𝑝 ≥ 4, then we have uniform exponential convergence of the dynamical model to the
invariant measure in the following sense: Let u be the solution starting from 𝑢0 as in Theorem 1.12. Then

‖(𝑢𝑡 )∗P − 𝜇‖TV ≤ 1 ∧ 𝐶 exp(−𝜆𝑡), (1.13)
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for some 𝐶, 𝜆 > 0, uniformly over 𝑡 ≥ 0 and 𝑢0 ∈ C𝛼
(
T𝑑

)
. (Here, 𝑓∗P denotes the push-forward of the

measure P under the random variable f.)
Proof. This follows from Doeblin’s theorem (see, for instance, [Hai16a, Theorem 3.6] with 𝑉 = 0) that
it suffices to show that for some 𝑡 > 0, one has3��(𝑢𝑣𝑡 )∗ P −

(
𝑢𝑤𝑡

)
∗

P
��

TV ≤ 1 − 𝛿 (1.14)

for some 𝛿 > 0 and all 𝑣, 𝑤 ∈ C𝛼
(
T𝑑

)
. Here 𝑢𝑣 denotes the solution to equation (1.12) with initial

condition v.
As a consequence of the ‘coming down from infinity’ property (see [TW18, Equation 3.24] for 𝑑 = 2,

[MW17, Equation 1.27] for 𝑑 = 3; see also [MW20]), there exists a compact set 𝐾 ⊆ C𝛼
(
T𝑑

)
such that

inf
𝑣 ∈C𝛼 (T𝑑)

P
[
𝑢𝑣1 ∈ 𝐾

]
≥

1
2
.

By the strong Feller property for Φ𝑝𝑑 shown in [HM18] (see also [TW18] for 𝑑 = 2), the transition
probabilities are continuous in the total variation norm, so that for some 𝜀 > 0 one has��(𝑢𝑣1 )∗ P −

(
𝑢𝑤1

)
∗

P
��

TV ≤
1
2

for any v, w in the centred 𝜀-ball 𝐵𝜀 in C𝛼
(
T𝑑

)
. Again by the continuity of the transition probabilities

and the compactness of K, the infimum

𝜌 := inf
𝑣 ∈𝐾

P
[
𝑢𝑣1 ∈ 𝐵𝜀

]
is attained for some �̄� ∈ 𝐾 , and by Theorem 1.12, one has 𝜌 > 0. It follows that formula (1.14) holds
for 𝑡 = 3 with 𝛿 = 1

4 𝜌. �

Remark 1.14. We have to restrict to 𝑑 ≤ 3 in Corollary 1.13 because it is not known whether the
solution to Φ4

4−𝜀 is a Markov process (although it is expected). Actually, at the current state it is even
unclear whether one can start the equation at a fixed deterministic initial condition (compare Remark
1.2 for a discussion of this issue) or evaluate the solution at a fixed positive time.

1.2.2. The generalised KPZ equation
A natural analogue to the class of SDEs (1.1) is given by the class of SPDEs recently studied in
[Hai16b, BGHZ19], which can formally be written as

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + Γ(𝑢) (𝜕𝑥𝑢, 𝜕𝑥𝑢) + ℎ(𝑢) +

𝑚∑
𝑖=1

𝜎𝑖 (𝑢)𝜉𝑖 , (1.15)

where 𝑢 : R+ × 𝑆1 → R𝑛, the 𝜉𝑖 denote independent space-time white noises, ℎ : R𝑛 → R𝑛 and
𝜎𝑖 : R𝑛 → R𝑛 are smooth functions and Γ is a smooth map from R𝑛 into the space of symmetric
bilinear maps R𝑛 × R𝑛 → R𝑛. This should be viewed as a connection on R𝑛, which is why we use the
customary symbol Γ for it, and it gives rise to a notion of covariant differentiation:

(∇𝑋𝑌 )𝑖 (𝑢) = 𝑋 𝑗 (𝑢)𝜕 𝑗𝑌
𝑖 (𝑢) + Γ𝑖𝑗 ,𝑘 (𝑢)𝑋

𝑗 (𝑢)𝑌 𝑘 (𝑢), (1.16)

for any two smooth vector fields 𝑋,𝑌 : R𝑛 → R𝑛.
One problem in trying to even guess the form of a support theorem for an equation like equation

(1.15) is that there is typically no canonical notion of a solution associated to it. Instead, one has a

3We normalise the total variation norm so that mutually singular probability measures have distance 1.
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whole family of solution theories that can be parametrised by a renormalisation group G−. This already
happens for SDEs where one has a natural one-parameter family of solution theories which include
solutions in the sense of Itô, Stratonovich, backwards Itô, and so on, so that G− = (R, +) in this case.
While G− is always a finite-dimensional Lie group, it can be quite large in general: Even after taking
into account the 𝑥 ↔ −𝑥 symmetry and the fact that the noises 𝜉𝑖 are Gaussian and independent and
identically distributed, one has G− =

(
R54, +

)
in the case of equation (1.15) (at least for n large enough;

see [BGHZ19, Proposition 6.8]). Furthermore, there is typically no naïve analogue of the Wong–Zakai
theorem: If one simply replaces 𝜉 by a mollified version 𝜉 (𝜀) , the resulting sequence of solutions 𝑢 (𝜀)

typically fails to converge to any limit whatsoever. Instead, one needs to modify the right-hand side of
the equation in an 𝜀-dependent way in order to obtain a well-defined limit.

In some cases, imposing additional desirable properties on the solution theory results in a reduction
of the number of degrees of freedom but still leads to mollifier-dependent counterterms. For example, it
is shown in [BGHZ19] that equation (1.15) admits a natural one-parameter family of solution theories,
all of which satisfy all of the following properties simultaneously:
◦ The usual chain rule holds in the sense that if u solves equation (1.15) and 𝑣 = 𝜙(𝑢) for some

diffeomorphism 𝜙 : R𝑛 → R𝑛, then v solves the equation obtained from equation (1.15) by formally
performing the corresponding change of variables as if the 𝜉𝑖 were smooth. (This is analogous to the
property of Stratonovich solutions to SDEs.)

◦ If {�̃�𝑗 }
�̃�
𝑗=1 is a collection of smooth vector fields on R𝑛 such that

𝑚∑
𝑖=1

𝜎𝑖 (𝑢) ⊗ 𝜎𝑖 (𝑢) =
�̃�∑
𝑗=1

�̃�𝑗 (𝑢) ⊗ �̃�𝑗 (𝑢),

then the solution to equation (1.15) is identical in law to the solution with the 𝜎𝑖 replaced by the �̃�𝑖 .
(This is analogous to the property of Itô solutions to SDEs.)

◦ Given equation (1.15), there exists a collection of 12 vector fields4 𝑊𝑖 on R𝑛 such that for any mollifier
𝜌, there exist constants 𝑐 (𝜀)

𝑖 such that, setting 𝜉 (𝜀)
𝑖 = 𝜌𝜀 ★ 𝜉𝑖 , solutions to equation (1.15) are given

by 𝑢 = lim𝜀→0 𝑢𝜀 with

𝜕𝑡𝑢𝜀 = 𝜕2
𝑥𝑢𝜀 + Γ(𝑢𝜀) (𝜕𝑥𝑢𝜀 , 𝜕𝑥𝑢𝜀) + ℎ(𝑢𝜀) +

𝑚∑
𝑖=1

𝜎𝑖 (𝑢𝜀)𝜉
(𝜀)
𝑖 −

12∑
𝑗=1

𝑐 (𝜀)
𝑗 𝑊 𝑗 (𝑢𝜀). (1.17)

Furthermore, the 𝑊 𝑗 are such that for every 𝑢★ ∈ R𝑛 such that Γ(𝑢★) = 0 and 𝐷𝜎𝑖 (𝑢★) = 0
(for 𝑖 > 0), one has 𝑊 𝑗 (𝑢★) = 0 for every j.
Given equation (1.15), we then define a number of auxiliary vector fields. First, for 𝜇, 𝜈 = 1, . . . , 𝑚,

we set

𝑋𝜇𝜈 (𝑢) = (∇𝜎𝜇𝜎𝜈) (𝑢),

and we also write 𝑉★ for the vector field 𝐻Γ,𝜎 defined in [BGHZ19, Equation 1.9]. We then use the 𝑋𝜇𝜈
to define two additional vector fields

𝑉 = 𝑋𝜇𝜇, �̂� = ∇𝑋𝜇𝜈𝑋𝜇𝜈 ,

with implied summation over repeated indices.
As already mentioned, this class of equations admits a one-parameter canonical family of solution

theories that combine the formal properties of both Stratonovich and Itô solutions. We fix once and
for all one of these solution theories and call it henceforth ‘the’ solution to equation (1.15). Again,
our statement is independent of the precise choice of solution theory as long as it belongs to the

4The number 12 is the dimension of the space Vnice in [BGHZ19, Section 1.2, Remark 3.13].
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canonical family. (Actually, this can be further weakened; see Appendix C.3.) Under the assumption
that Γ, h and 𝜎 are smooth functions, we have the following result, the proof of which is postponed
to Appendix C.3:

Theorem 1.15. Let u be the solution to equation (1.15) with deterministic initial condition 𝑢(0) = 𝑢0 ∈

C𝛼 (T) for some 𝛼 ∈ (0, 1
2 ). Then there exists a constant 𝑐 such that the support of the law of u in

C𝛼 (R+ × T) is given by the closure of all solutions to

𝜕𝑡𝑢
𝑖 = 𝜕2

𝑥𝑢
𝑖 + Γ𝑖𝑗 ,𝑘 (𝑢)𝜕𝑥𝑢

𝑗𝜕𝑥𝑢
𝑘 + ℎ𝑖 (𝑢) + 𝑐�̂�

𝑖
(𝑢) + 𝐾★𝑉

𝑖
★(𝑢) + 𝐾𝑉 𝑖 (𝑢) + 𝜎𝑖𝜇 (𝑢)𝜂

𝜇 (1.18)

for arbitrary smooth controls 𝜂𝜇 and arbitrary constants 𝐾, 𝐾★.

Remark 1.16. The appearance of the additional constants K and 𝑐 in equation (1.18) may seem strange
at first, although we have of course already seen in the discussion preceding equation (1.8) that one
cannot expect to obtain the support of u by simply replacing noises by smooth controls in equation (1.18).

Remark 1.17. At this stage, we do not know whether one actually has 𝑐 = 0 (which would be natural)
or whether the description already given even depends on the value of 𝑐. We do, however, know that
both terms 𝑉★ and V are required for the result to hold, as follows from the example

𝜕𝑡𝑢1 = 𝜕2
𝑥𝑢1 + 𝜉, 𝜕𝑡𝑢2 = 𝜕2

𝑥𝑢2 + (𝜕𝑥𝑢1)
2, 𝜕𝑡𝑢3 = 𝜕2

𝑥𝑢3 + (𝜕𝑥𝑢2)
2,

with 𝑢(0) = 0, say. In this case, 𝑉 ∝ (0, 1, 0) and 𝑉★ ∝ (0, 0, 1), so that Theorem 1.15 (when combined
with Lemma C.4) shows that the law of u has full support, whereas we would have 𝑢2(𝑡) ≥ 𝐶2𝑡,
𝑢3 (𝑡) ≥ 𝐶3𝑡 if we placed some constraints on the possible values of 𝐾★ and K.

1.3. Outline

All equations in our setting can be lifted to abstract fixed point problems [Hai14, Theorem 7.8] in
a problem-dependent regularity structure T. Exploiting the continuity of the solution map – mapping
the space of admissible models M0 (see Section 2.2.1) continuously into some solution space X – we
can redirect our focus toward showing Theorem 3.14, which gives a characterisation of the topological
support of random models in complete analogy with Theorem 1.6. We are interested in random models
�̂� obtained as the limit of a sequence of smooth random models �̂� = lim𝜀→0 �̂�

𝜀 . The upper bound for
the support of �̂� then follows from elementary probabilitytheory arguments. The basic idea to show the
lower bound is to fix a deterministic model Z, for which we want to show 𝑍 ∈ supp �̂� , and to construct a
sequence of ‘shifts’ 𝜉 + 𝜁𝛿 of the underlying Gaussian noise 𝜉 by a smooth random function 𝜁𝛿 = 𝜁𝛿 (𝜉)
such that the ‘shifted model’ �̂� 𝛿 , formally given by �̂� 𝛿 (𝜉) = �̂� (𝜉 + 𝜁𝛿), converges to Z almost surely as
𝛿 → 0. Since supp �̂� 𝛿 ⊆ supp �̂� for any 𝛿 > 0 (this is not completely obvious, since 𝜁𝛿 is not adapted in
general, so Girsanov’s theorem need not apply; but see Lemma 3.12 for a proof) and supp �̂� is closed,
this shows that 𝑍 ∈ supp �̂� . While this is the broad strategy already used in [BMS95, CF18, TW18],
the identification of a suitable shift 𝜁𝛿 is significantly more involved in this case.

We want to consider random shifts for reasons outlined in detail later (most crucially, our shifted
noises are still of the type considered in [CH16]). It is then not even clear a priori what we mean by
a ‘shifted model’, since the law of 𝜉 + 𝜁𝛿 (𝜉) is not necessarily absolutely continuous with respect to
the law of 𝜉, so that simply evaluating the random limit model �̂� at 𝜉 + 𝜁𝛿 (𝜉) is in general not well
defined. Instead we rely on a purely analytic shift operator 𝑇 𝑓 (Theorem 2.4; see also [HM18, Theorem
3.1]), acting continuously on the space of admissible models and satisfying �̂� (𝜉 + 𝑓 ) = 𝑇 𝑓 �̂� (𝜉) for
deterministic, smooth, compactly supported functions f (in which case �̂� (𝜉 + 𝑓 ) is well defined by the
Cameron–Martin theorem), and we call �̂� 𝛿 (𝜉) := 𝑇𝜁𝛿 ( 𝜉 ) �̂� (𝜉) the shifted model. From the deterministic
continuity of the shift operator, we infer in particular that any shift maps the support of �̂� into itself
(this also works for random shifts; see Lemma 3.12), so that we are left to find the set of models Z for
which a shift as discussed can be constructed.
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For the type of statement we are looking for, it suffices to consider models Z of the form 𝑍 = Rℎ𝑍c( 𝑓 )
for some tuple of smooth functions 𝑓 = ( 𝑓𝑖)𝑖≤𝑚, where 𝑓𝑖 ∈ C∞

𝑐 (R × T𝑒) for any 𝑖 ≤ 𝑚, and some
character h in the renormalisation group G−. (See Section 2.2 for the notation used here; 𝑓 ↦→ 𝑍c( 𝑓 )
denotes the canonical lift, R : G− × M0 → M0 denotes the action of the renormalisation group
onto the set of admissible models.) In fact, since the shift operator commutes with the action of the
renormalisation group (Theorem 2.4), it suffices to consider 𝑓 = 0 in the sense that we aim to find a set
𝐻 ⊆ G− which is as large as possible such that for any ℎ ∈ 𝐻 one can find a sequence of smooth random
shifts 𝜁𝛿 such that

lim
𝛿→0

𝑇𝜁𝛿 �̂� (𝜉) = Rℎ𝑍c(0), (1.19)

where the limit is taken in the sense of convergence in probability in the space of models. Actually, since
our proof draws on the results of [CH16], we will automatically have convergence in 𝐿𝑝 for any 𝑝 ≥ 1.

Since the limit we aim for as 𝛿 → 0 is deterministic, we are left to choose 𝜁𝛿 in such a way that the
variance of the models goes to zero, while the expected value has the correct behaviour in the limit. The
first point is ensured if 𝜉 + 𝜁𝛿 → 0 in a strong enough sense, which will be formalised in Definition 2.13.
Note that the space of noises introduced there is a subset of the one used in [CH16], and our distance
(formula (2.21)) is stronger (see Lemma 2.18). Our noises always live in a fixed inhomogeneous Wiener
chaos with respect to some fixed Gaussian noise, which in particular allows us to work with a linear
space of noises, and our distance is an actual norm on this space. The main issue is then to obtain equation
(3.6), namely to ‘control’ the expected value Υ̂𝛿𝜏 := E𝑇𝜁𝛿 �̂�

𝜉
𝜏(0) of the finite number of trees 𝒯− of

negative homogeneity, so that in the limit 𝛿 → 0 they equal ℎ(𝜏). Here �̂�
𝜉 denotes the renormalised

canonical lift of 𝜉 and 𝑇𝜁𝛿 is, as before, the shift operator acting on the space of admissible models.
These two properties are obviously necessary for the convergence (1.19) in 𝐿2 in the space of models.

To see this, note that if we write 𝚷𝑔 for the model R𝑔𝑍c (0), then we have 𝚷𝑔𝜏(0) = 𝑔(𝜏) for any
𝜏 ∈ 𝒯−. With a bit more effort (Proposition 3.21) it is possible to see that they are also sufficient. At this
stage there are two main problems left to be solved, which we address respectively in Sections 4 and 5:

1. What is the set H of characters h such that we can find a shift 𝜁𝛿 as discussed? In particular, we
have to show that this set is large enough to ‘almost’ contain the BPHZ character 𝑔𝜀 (up to an 𝑜(1)
tweaking; see the remark after Theorem 1.6 or the second statement of Theorem 3.14).

2. Given ℎ ∈ 𝐻, how does one construct a shift 𝜁𝛿 such that 𝜉 + 𝜁𝛿 → 0 in some suitable space of
admissible noises 𝔐0 (see Definition 2.13) and such that lim𝛿→0 E𝑇𝜁𝛿 �̂�

𝜉
𝜏(0) = ℎ(𝜏) for every

𝜏 ∈ 𝒯−?

Let us first discuss the second question, since our solution to this problem motivates the choice of H. It is
natural to make the ansatz 𝜁𝛿 = −𝜉 𝛿 + 𝑘 𝛿 (see Section 5.1), where 𝜉 𝛿 is a smooth approximation of 𝜉 at
scale 𝛿 and 𝑘 𝛿 is a random, centred, stationary and smooth function living only on high frequencies, or
equivalently on small scales (think of scales much smaller than 𝛿). The last property will ensure weak
convergence of 𝑘 𝛿 to 0 as 𝛿 → 0. If we simply chose 𝑘 𝛿 = 0, then the quantity Υ̂𝛿𝜏 of some fixed tree
𝜏 ∈ 𝒯− would in general blow up, as shown in the following example:

Example 1.18. Consider the ‘cherry’ 𝜏 = appearing in the regularity structure associated to the Φ4
3

equation. Setting 𝜁𝛿 = −𝜉 𝛿 (so 𝑘 𝛿 = 0) and using the fact that by the definition of the BPHZ character
one has E�̂� 𝜉

(0) = 0, one has

Υ̂
𝛿

= −2
𝛿

+

𝛿 𝛿

� −𝛿−1. (1.20)

Here we use Feynman diagrams on the right-hand side to encode real constants in the same way as
in, for example, [Hai18] or [Hai14, Section 10.5]. Straight lines represent the heat kernel, dotted lines
represent the 𝛿0-distribution and wavy lines represent an approximation to 𝛿0 at scale 𝛿 > 0.
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To see how a ‘high-frequency perturbation’ can solve this issue, consider adding a term of the form
𝑘 𝛿 = 𝑎𝛿𝜉𝜆 with 𝜆 = 𝜆𝛿 � 𝛿 and 𝑎𝛿 ∈ R. Similar to equation (1.20), one obtains

Υ̂
𝛿

= −2
𝛿

+

𝛿 𝛿

+ 2𝑎𝛿
𝜆

− 2𝑎𝛿
𝜆 𝛿

+
(
𝑎𝛿

)2 𝜆 𝜆

� −2𝛿−1 + 𝛿−1 + 2𝑎𝛿𝜆−1 − 2𝑎𝛿𝛿−1 +
(
𝑎𝛿

)2
𝜆−1.

Fix now a number ℎ( ) ∈ R. Then provided 𝜆 � 𝛿, one can find 𝑎𝛿 such that Υ̂𝛿 = ℎ( ). To see
this, observe that in the regime 𝜆 � 𝛿 and 𝑎𝛿 � 1, one has 𝛿−1 � 𝜆−1 and

(
𝑎𝛿

)2
� 𝑎𝛿 , so that the

third term dominates all other terms, and one can solve the fixed point problem

𝑎𝛿 =
1
2

(
𝜆

)−1 (
ℎ( ) + 2

𝛿

−

𝛿 𝛿

+ 2𝑎𝛿
𝜆 𝛿

−
(
𝑎𝛿

)2 𝜆 𝜆
)
.

Remark 1.19. In this example, the term that ended up dominating the quantity Υ̂𝛿 was the tree in
which exactly one white noise was replaced by the highly oscillating perturbation 𝑘 𝛿 , while all other
noises remained white. We will tailor our shift so that the trees with this property will always represent
the dominating part; see Sections 5.2 and 5.4, in particular Lemmas 5.10 and 5.17.

This strategy is complicated by two hurdles. First, one has to control various trees simultaneously,
and it is a priori not clear that a perturbation designed to control one tree does not destroy the desired
expected value of another. Indeed, it is not hard to see that with our strategy we are in general not able
to control all trees 𝜏 ∈ 𝒯− at the same time to arbitrary values ℎ(𝜏), but we have to respect certain linear
constraints between them – see Examples 4.2–4.5 for examples of such linear constrains in the context
of various interesting SPDEs. (It is a crucial insight that these constraints are ‘almost’ satisfied by the
BPHZ character; see the outline to follow and Assumption 8.)

The second problem comes from the fact that we also have to bound the expected values of trees
with more than two leaves. If one tries to use high-frequency perturbations which are Gaussian, then in
general trees with one white noise replaced by such a perturbation would not dominate the expression
Υ̂
𝛿
𝜏. There are even trees for which these expressions vanish identically for any Gaussian shift 𝜁𝛿 . An

example is the tree from the Φ5
2 equation, for which we obtain (in case of a Gaussian shift 𝜁𝛿)

Υ̂
𝛿

= Υ̂
𝛿
en

(
4 +

)
. (1.21)

Here, red nodes are new noise types and should be thought of as placeholders for the shift 𝜁𝛿 . Formally,
the trees on the right-hand side of equation (1.21), which we call ‘shifted trees’, are elements of an
enlarged regularity structure T (see Section 5.1). The renormalisation group G− acts naturally on T by
only considering contractions of original trees. In this way one can build for any 𝜀, 𝛿 > 0 a ‘renormalised’
model �̂� 𝜉𝜀 ,𝜁𝛿

en , which converges in the limit 𝜀 → 0 to a model �̂� 𝜉 ,𝜁𝛿
en , and we introduce the notation

Υ̂
𝛿
en𝜏 := E�̂� 𝜉 ,𝜁𝛿

en 𝜏(0). (Note that �̂� 𝜉 ,𝜁𝛿
en is very different from the BPHZ renormalisation �̂�

𝜉𝜀 ,𝜁𝛿 on the
large regularity structure, in which case these quantities would vanish by the definition of the BPHZ
character.) We will define just after equation (5.3) a shift operator𝒮 : T → T, formally given by replacing
blue nodes with red nodes in all possible ways, and we will show in Lemma 5.1 that Υ̂𝛿 = Υ̂𝛿en𝒮.

In the example earlier, Υ̂𝛿en vanishes on any ‘shifted’ tree which does not appear on the right-hand
side of equation (1.21). To clarify why, let us write Υ𝜀, 𝛿en 𝜏 := E𝚷 𝜉𝜀 ,𝜁𝛿𝜏(0), where 𝚷 𝜉𝜀 ,𝜁𝛿 denotes the
canonical lift of (𝜉𝜀 , 𝜁𝛿) (think of 𝜀 � 𝛿) to a model in the enlarged regularity structure. Using equation
(5.4), one shows that

Υ̂
𝛿
en = lim

𝜀→0

(
Υ𝜀, 𝛿en − 3Υ𝜀, 𝛿en Υ𝜀, 𝛿en

)
= 0. (1.22)
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The second identity in this equation holds only if 𝜁𝛿 is Gaussian in general. This can be seen by using
Wick’s rule of calculating the expected values of all trees involved, which shows that it identically
vanishes for any fixed 𝜀 > 0. Note also that the renormalisation constant of this tree vanishes identically
– that is, one has 𝑔𝜂

( )
= 0 for any smooth Gaussian noises 𝜂 and the BPHZ character 𝑔𝜂 , but the

expectation after shifting the noise does not vanish, and with the choice 𝜁𝛿 = −𝜉 𝛿 would blow up as
𝛿 → 0.

One could now try to use shifted trees with more than one shifted noise to dominate the expression,
but that would lead to two issues which seem difficult to resolve. First, in general it would now be
subtrees of 𝜏 that dominate the behaviour of the shifted tree (in our example, it would be ), and one
may see constraints between these trees. Contrary to the constraints we end up with, such constraints
(between trees of different homogeneity with different number of leaves) are not seen at the level of the
BPHZ characters. Second, while the equation we needed to solve for was a perturbation of a linear
equation, we would now have to solve a polynomial equation, which introduces nonlinear constraints
(for example,

(
𝑎𝛿

)2 is always positive), and it is not clear if these polynomial equation can be solved (to
worsen the matter, recall that we need to control various trees simultaneously, so that we end up with a
system of polynomial equations).

We opt for a different way. We introduce a shift 𝑘 𝛿 such that trees with one noise replaced by a
shifted noise give a nonvanishing contribution. We ensure this by choosing 𝑘 𝛿 such that the cumulant
of

(
𝑘 𝛿 , 𝜉, . . . , 𝜉

)
, with 𝑚(𝜏) := #𝐿(𝜏) − 1 instances of white noise 𝜉, does not vanish. (Here 𝐿(𝜏)

denotes the number of ‘leaves’ of 𝜏.) The easiest way to guarantee this is to choose 𝑘 𝛿 in the 𝑚(𝜏)th
homogeneous Wiener chaos with respect to 𝜉.

Example 1.20. Consider the tree 𝜏 = from the generalised KPZ equation, where we draw and
to distinguish two different (hence independent) noise types. In this case we would choose our shift

𝑘 𝛿 := 𝑎𝛿𝐽[ , , ]

( )
,

where ∈ C̄∞
𝑐

(
D̄ × D̄3) is a suggestive way to write a kernel of the form

(𝑥; 𝑥1, 𝑥2, 𝑥3) = 𝐾 (𝑥 − 𝑥1)𝐾 (𝑥 − 𝑥2)𝐾 (𝑥 − 𝑥3)

for some kernels 𝐾, 𝐾, 𝐾 ∈ C∞
𝑐

(
D̄
)
, and 𝐽[ , , ] denotes a third-order stochastic integral with respect

to the joint law of (𝜉 , 𝜉 ) (see formula (2.9)). One then has the following graphical representation:

Υ̂
𝛿
en = 𝑎𝛿 + 𝑎𝛿 . (1.23)

Here, a dark-red node represents an instance of 𝑘 𝛿 . We would now rescale the kernels 𝐾, 𝐾, 𝐾 to a

scale 𝜆 = 𝜆𝛿 � 𝛿 at a homogeneity 𝛼, which is determined by the homogeneity
���� ����

𝔰
= −𝜅 and

𝑚

( )
= 3 (see formula (5.7)).

(See Section 2.1 for the definition of the domain D̄.)

The strategy we have outlined is implemented in Section 5 as follows: In Section 5.1 we construct an
enlarged regularity structure, containing additional noise types (5.2), large enough to be able to represent
the regularised noise 𝜉 𝛿Ξ (for any noise type Ξ) and the highly oscillating perturbation 𝑘 𝛿

(Ξ,𝜏) (for any
tree 𝜏 and noise type Ξ ∈ 𝔱(𝐿(𝜏)) appearing in 𝜏). We thus construct the shift operator 𝒮 : T → T
as in equation (5.3). We determine the set of trees 𝒮↑[𝜏] in the image of the shift operator which will
dominate the expected value in Definition 5.2. In Section 5.2 we construct in formula (5.12) a ‘highly
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oscillating perturbation’ 𝜂𝛿
(Ξ,𝜏) in the𝑚(𝜏)th Wiener chaos for any tree 𝜏 ∈ 𝔗− (see later for the definition

of 𝔗− ⊆ 𝒯−) and any Ξ ∈ 𝔱(𝐿(𝜏)). The kernel 𝐾 𝛿
(Ξ,𝜏) (with respect to Gaussian integration) of this

perturbation is a rescaled version of a fixed kernel Φ(Ξ,𝜏) (see formula (5.6)), at a homogeneity 𝛼(Ξ,𝜏)

(see formula (5.7)), to a scale 𝜆𝛿𝜏 (we will discuss shortly the choice of these scales). The kernelsΦ(Ξ,𝜏)

are chosen along the lines of Example 1.20 (there is a slight subtlety here in case of log-divergencies –
see Example 5.7 – which we ignore for the sake of this introduction).

A key result is Lemma 5.10, which determines the behaviour of the ‘dominating’ trees 𝜏 ∈ 𝒮↑[𝜏].
It will be useful to introduce the function 𝐹𝜏 (𝑎, 𝜆) := Υ̂𝛿𝜏 for 𝜏 ∈ 𝔗− (see formula (5.20)), where
𝑎 = 𝑎𝛿𝜏 and 𝜆 = 𝜆𝛿𝜏 , 𝜏 ∈ 𝔗−. In Proposition 5.19 in Section 5.4, we then, for fixed 𝜆, recast the equation
𝐹𝜏 (𝑎, 𝜆) = ℎ(𝜏) for 𝜏 ∈ 𝔗− into a fixed point problem for a. This problem is a small perturbation of a
solvable linear problem (linear because of the definition of 𝑘 𝛿 , solvable thanks to Lemma 5.10 and a
small perturbation thanks to Lemma 5.17), which is therefore straightforward to solve. The tricky issue
is that in order for Lemma 5.17 to hold, one needs to choose the scales 𝜆𝛿𝜏 carefully. In Section 5.3 we
determine an order ≤ on the set of trees 𝔗−, and we choose the scales such that 𝜆𝛿𝜏 � 𝜆𝛿�̃� whenever
𝜏, 𝜏 ∈ 𝔗− with 𝜏 ≤ 𝜏. To formalise this idea, we introduce in Definition 5.14 the notion of an attainable
statement, and we show at the end of Section 5.4 that the necessary bound of Lemma 5.17 is attainable
in this sense.

We now outline how we will address the first point mentioned earlier – that is, how to define the set
H, which we do in Section 4. Every tree 𝜏 ∈ T can be mapped onto a function K𝜏 : R(𝑑+1)𝐿 (𝜏) → R
(see formula (3.1)). One should think of K𝜏 as the function obtained by anchoring the root to the origin
and integrating out all other vertices except for the leaves.

Example 1.21. In the case of the Φ4
3 equation, one has, for instance,(

K
)
(𝑥1, . . . , 𝑥4) =

∫
𝑑𝑦𝐾 (𝑥1)𝐾 (𝑦)𝐾 (𝑥2 − 𝑦)𝐾 (𝑥3 − 𝑦)𝐾 (𝑥4 − 𝑦),

where we identify the set of leaves 𝐿
( )

� {1, 2, 3, 4}, with 1 denoting the leaf directly attached to
the root, and where K denotes a truncation of the heat kernel.

Denote now by K̂𝜏 the function defined in same way, but with K replaced by the actual (i.e., not
truncated) heat kernel �̂� (we will later write K�̂� 𝜏 for this). It is a priori not clear that these integrals
are well defined on large scales, but we show in Theorem 4.19 that at least for trees 𝜏 of nonpositive
homogeneity this is always the case. Let us furthermore write Ksym𝜏 and K̂sym𝜏 for the kernels obtained
from K𝜏 and K̂𝜏 by symmetrisation under spatial reflections (𝑡, 𝑥) ↦→ (𝑡,−𝑥) and permutation of the
variables. (If 𝜏 contains more than one noise type, one should only symmetrise variables corresponding
to the same noise type.)

From the foregoing discussion, it is clear that we cannot hope to control two trees 𝜏, 𝜏 independently
if K̂sym𝜏 and K̂sym𝜏 are linearly dependent. To make this more clear, consider the following example:

Example 1.22. Continuing Example 1.20, one has

Υ̂
𝛿
en = 2𝑎𝛿

∫
𝑑𝑥1 · · · 𝑑𝑥4

(
Ksym

)
(𝑥1, . . . , 𝑥4) (𝑥3; 𝑥1, 𝑥2, 𝑥4), (1.24)

where we identify the leaves of 𝜏 := with {1, 2, 3, 4} from left to right. Since one should think
of as being rescaled to scales 𝜆 � 𝛿, only the small-scale behaviour of Ksym𝜏 matters, which is
(essentially) the behaviour of the self-similar kernel K̂sym𝜏. (The last statement is justified by Lemma
5.10, where we show that the difference between equation (1.24) with Ksym and with K̂sym vanishes in
the limit 𝛿 → 0.) It follows that if 𝜏 ∈ 𝒯− is another tree carrying the same noise types as 𝜏 and such
that K̂sym𝜏 = 𝑐K̂sym𝜏 for some 𝑐 ∈ R, then the shifted trees which are dominating (i.e., elements of
𝒮↑[𝜏] and 𝒮↑[𝜏]) satisfy the same linear relation in the limit 𝛿 → 0.
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Motivated by this example, we introduce in Definition 3.3 an ideal J ⊂ T− generated by linear
combination of trees 𝜎 ∈ T carrying the same noise types and such that K̂sym𝜎 = 0. Here we introduce
the notation T− for the free, unital, commutative algebra generated by𝒯−. We recall at this point [BHZ19]
that T− is naturally endowed with a Hopf algebra structure with coproduct Δ− (the character group of T−

is precisely the renormalisation group G− already mentioned); see Section 2.2.1 for details and precise
references.

We show in Section 4 that J is a Hopf ideal (see Assumption 7). The crucial implication is that its
annihilator H is a Lie subgroup of G−. We show further Assumption 8, which states that the BPHZ
character 𝑔𝜀 of the regularised noise 𝜉 𝜀 ‘almost’ belongs to this group, in the sense that one has
𝑔𝜀 ∈ 𝑓 𝜀 ◦ H, for a sequence of characters 𝑓 𝜀 ∈ G− which converges to a finite limit 𝑓 𝜉 as 𝜀 → 0. It is
crucial to note that we show this also for a class of non-Gaussian approximations 𝜉 𝜀 which is rich enough
to contain the shift 𝜁𝛿 . Assumption 8 finally justifies the assertion already made that 𝑔𝜀 ‘almost’ satisfies
the linear constraints. (In a perfect world, 𝑔𝜀 would satisfy these constraints precisely. The discrepancy
stems from the fact that we use truncated kernels to define 𝑔𝜀 .) Moreover, we have identified that the
set 𝐻 ⊆ G− for which we can construct a shift as before is equal to the coset 𝑓 𝜉 ◦ H. It may be useful
to observe that while the character 𝑓 𝜉 is not uniquely defined, the coset 𝑓 𝜉 ◦ H is unique.

Section 4 shows that a under a technical assumption (Assumption 6), Assumptions 7 and 8 always
hold. The latter two are formulated as assumptions (rather than theorems) because there are a range of
interesting equations in which Assumption 6 is violated, whereas one can simply show Assumptions 7
and 8 by hand. (Examples are theΦ𝑝2 equations discussed in Section 1.2.1 and the 2D parabolic Anderson
model.) The general proof, assuming Assumption 6 and given in Section 4, is motivated and outlined at
the beginning of this section.

We are left to link the two constructions we have outlined. In Definition 3.18 we define a set𝔗− ⊆ 𝒯−,
which is a maximal set with the property that Vec𝔗− and J are linearly independent (in other words,
one has Vec𝔗− ⊕ J = T−, where ⊕ denotes the direct sum of vector spaces). For any fixed character
ℎ ∈ 𝑓 𝜉 ◦ H, we will tailor a shift of the noise in Section 5 (see earlier in the outline) such that
Υ̂
𝛿
𝜏 → ℎ(𝜏) as 𝛿 → 0 for any 𝜏 ∈ 𝔗−. Using the fact that Vec𝔗− has a complement in Vec𝒯− which is

a subset of the ideal J, we will show in Proposition 3.21 that the sequence of shifted models converges
to Rℎ𝑍c (0) almost surely, which shows in particular that{

Rℎ𝑍c ( 𝑓 ) : ℎ ∈ 𝑓 𝜉 ◦ H, 𝑓 ∈ C∞
𝑐

}
⊆ supp �̂� .

Philosophically, Proposition 3.21 fills in the ‘gap’ between 𝔗− and 𝒯−, in the sense that we do not need
any a priori information on how the shifted models behave on trees 𝜏 ∈ 𝒯−\𝔗−. This step relies of course
on the relation between the set 𝔗− and the ideal J, and the fact that we choose ℎ ∈ 𝑓 𝜉 ◦H, where H is
the annihilator of J. What is less obvious, it also uses crucially the fact that H is indeed a subgroup of
G− (see Assumption 7). By Assumption 8, the ‘tweaked’ BPHZ character 𝑓 𝜉 ◦ ( 𝑓 𝜀)−1 ◦𝑔𝜀 is an element
of 𝑓 𝜉 ◦ H for any 𝜀 > 0, and using the fact that 𝑓 𝜉 ◦ ( 𝑓 𝜀)−1 → 1∗ as 𝜀 → 0 concludes the proof.

2. Notation and assumptions

2.1. Conventions on notation

For any integer 𝑀 ∈ N we write [𝑀] := {1, . . . , 𝑀}, with the convention that [0] = ��. We fix a spatial
dimension 𝑒 ≥ 1 and a space-time domain 𝒟 := R × T𝑒. We assume that all noises 𝜉 𝑗 in equation (1.3)
are either space-time white noises or purely spatial white noises. In the first case, we define D := 𝒟

as the space-time domain with dimension 𝑑 := 𝑒 + 1; in the second case, we let D := T𝑒 be the purely
spatial domain with dimension 𝑑 := 𝑒. In either case, we define D̄ := R𝑑 , so that D can be identified
with the factor space of D̄ modulo a suitable discrete group of translations. Given a distribution u on D,
we can naturally view u as a distribution on D̄ by periodic extension.

For any integer 𝑚 ∈ N, we write D′(R𝑚) for the space of distributions and C∞
𝑐 (R𝑚) for the space

of compactly supported, smooth functions on R𝑚. For any distribution u and any multi-index 𝑘 ∈ N𝑑 ,
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we denote by 𝐷𝑘𝑢 the kth distributional derivative of u. In the sequel, test functions that are compactly
supported in the difference of their variables but invariant under simultaneous translations of all their
arguments will play an important role. We capture this in the following definition:

Definition 2.1. For any finite set L, we define the space C̄∞
𝑐

(
D̄𝐿

)
as the set of smooth functions

𝜙 ∈ C∞
(
D̄𝐿

)
such that both of the following properties are satisfied:

1. The function 𝜙 is invariant under simultaneous translation of all variables by any vector ℎ ∈ D̄.
In other words, we postulate that one has the identity

𝜙((𝑥𝑢)𝑢∈𝐿) = 𝜙((𝑥𝑢 + ℎ)𝑢∈𝐿)

for any ℎ ∈ D̄ and any 𝑥 ∈ D̄𝐿 .
2. There exists 𝑅 > 0 such that 𝜙((𝑥𝑢)𝑢∈𝐿) = 0 for any 𝑥 ∈ D̄𝐿 such that for some 𝑢, 𝑣 ∈ 𝐿, one has

|𝑥𝑢 − 𝑥𝑣 | > 𝑅.

We will consider the usual topology of test-functions on this space.

Scalings
We write 𝔰Λ for the scaling on 𝒟 (which we used already in the formulation of our main results,
Theorems 1.6 and 1.7). Here 𝔰Λ is determined by the integration kernels (see Assumption 4). We will
mostly work with the scaling 𝔰 : [𝑑] → N, defined by restricting 𝔰Λ to D. We write |𝔰 | :=

∑𝑑
𝑖=1 𝔰(𝑖) for

the effective dimension. For a multi-index 𝑘 ∈ N{1,...,𝑑 } we write |𝑘 |𝔰 :=
∑𝑑
𝑖=1 𝔰(𝑖)𝑘𝑖 , and for 𝑧 ∈ D we

write |𝑧 |𝔰 :=
∑𝑑
𝑖=1 |𝑧𝑖 |

1
𝔰 (𝑖) . We use the convention that sums of the form∑

|𝑘 |𝔰≤𝑟

(· · · )

always run over all multi-indices 𝑘 ∈ N𝑑 , with |𝑘 |𝔰 ≤ 𝑟 . Finally, for any 𝑥 ∈ D̄, 𝜙 ∈ C∞
(
D̄
)

and 𝜆 > 0,
we define 𝜆−𝔰𝑥 ∈ D̄ and 𝜙 (𝜆) ∈ C∞

(
D̄
)

by(
𝜆−𝔰𝑥

)
𝑖 := 𝜆−𝔰 (𝑖)𝑥𝑖 , 𝑖 ≤ 𝑑, and 𝜙 (𝜆) (𝑥) := 𝜆−|𝔰 |𝜙

(
𝜆−𝔰𝑥

)
. (2.1)

Multisets
Let A be a finite set. A multiset m with values in A is an element of N𝐴 (i.e., a map 𝐴 → N
counting the number of occurrences of each element). Given two multisets m, n ∈ N𝐴, we write
(m\ n)𝑎 := (m𝑎 − n𝑎) ∨ 0 for any 𝑎 ∈ 𝐴. We also naturally identify a subset 𝐵 ⊆ 𝐴 with the multiset
I𝐵 : 𝐴 → {0, 1}. Given a function 𝑓 : 𝐴 → R, we write 𝑓 (m) :=

∑
𝑎∈m 𝑓 (𝑎) :=

∑
𝑎∈𝐴 m(𝑎) 𝑓 (𝑎).

Given any finite set I and a map 𝜑 : 𝐼 → 𝐴, we write [𝐼, 𝜑] for the multiset with values in A given by

[𝐼, 𝜑]𝑎 := #{𝑖 ∈ 𝐼 : 𝜑(𝑖) = 𝑎} (2.2)

for any 𝑎 ∈ 𝐴. Given a finite multiset m, it will be useful to define the index set

d(m) := {(𝑎, 𝑘) : 𝑎 ∈ 𝐴, 1 ≤ 𝑘 ≤ m(𝑎)} ⊂ 𝐴 × N . (2.3)

It will be useful to consider functions f with the property that their domain is intuitively given
by 𝑀m for some set M and some multiset m. Given sets M and N, we write 𝑓 : 𝑀m → 𝑁 as a
shorthand for a function 𝑓 : 𝑀d(m) → 𝑁 which is symmetric in the sense that 𝑓

(
𝑥 𝑗

)
= 𝑓

(
𝑥𝜎 ( 𝑗)

)
for

every permutation 𝜎 of d(m) preserving the ‘fibres’ {𝑎} × N for all 𝑎 ∈ 𝐴. Note that if m = [𝐼, 𝜑],
then any 𝑓 : 𝑀 [𝐼 ,𝜑 ] → 𝑁 can be identified with a function 𝑓𝐼 : 𝑀 𝐼 → 𝑁 by choosing any bijection
𝜓 : 𝐼 → d(m) with the property that 𝜓1 = 𝜑, and setting 𝑓𝐼 ((𝑥𝑖)𝑖∈𝐼 ) := 𝑓 ((𝑥𝜓−1 (𝑎,𝑘) )(𝑎,𝑘) ∈d(m) ). The
symmetry of f guarantees that 𝑓𝐼 is independent of the choice of bijection 𝜓. If M and N are subsets of
the euclidean space, we use the notation C∞(𝑀m, 𝑁), and so on, with the obvious meaning.
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Another way of viewing a multiset m : 𝐴 → N is to fix an arbitrary total order � on A and implicitly
identify m with the tuple m̃ ∈ 𝐴#m defined as the (unique) order-preserving map m̃ : [#m] → 𝐴
such that #{𝑖 : m̃𝑖 = 𝑎} = m(𝑎) for every 𝑎 ∈ 𝐴.

Remark 2.2. We now have three equivalent representations of multisets: m : 𝐴 → N, d(m) ⊆ 𝐴 × N
and m̃ : [#m] → 𝐴. We will mostly be working with the first, but depending on the context it will be
helpful to have the notations d(m) and m̃ at hand.

2.2. Regularity structures

Our driving noises 𝜉 are indexed by a finite set of noise types 𝔏−. These noises 𝜉Ξ, Ξ ∈ 𝔏−, should be
thought of as independent Gaussian noises whose law is self-similar under rescaling. For simplicity, we
will restrict to Gaussian space or space-time white noises (but see Remark 2.5). The components of our
equation are indexed by a finite set of kernel types 𝔏+, and to any component 𝔱 ∈ 𝔏+ we associate an
integration kernel 𝐾𝔱 ∈ C∞

𝑐

(
D̄ \ {0}

)
satisfying the ‘usual’ assumptions (see Section 2.2.2). We equip

𝔏 := 𝔏+ � 𝔏− with two homogeneity assignments |·|𝔰 : 𝔏★ → R★ and � · �𝔰 : 𝔏★ → R★ � {0} for
★ ∈ {+,−}, where we think of � · �𝔰 as the ‘real homogeneity’ of the noises (for instance, |Ξ|𝔰 = −

|𝔰 |
2

for space-time white noise), and we assume that

|𝔱 |𝔰 = �𝔱�𝔰 , for 𝔱 ∈ 𝔏+, |Ξ|𝔰 = �Ξ�𝔰 − 𝜅, for 𝔱 ∈ 𝔏+,

for some 𝜅 > 0 (small enough).
Recall [BHZ19, Definition 5.7] that a rule R is a collection (𝑅(𝔱))𝔱∈𝔏+

that assigns to any kernel
type 𝔱 ∈ 𝔏+ a set 𝑅(𝔱) of multisets with values in 𝔏 × N𝑑 . In order to lift our problem to the abstract
level of regularity structures, we assume that we are given a normal, subcritical (with respect to |·|𝔰)
and complete (compare [BHZ19, Definitions 5.7, 5.14, 5.22]) rule R which is ‘rich enough’ to treat the
system at hand. (Such a rule is not hard to work out by hand in situations which are simple enough. For
more involved examples, we refer the reader to [BCCH17].)

In [BHZ19, Definition 5.26] the authors constructed an (extended) regularity structure T ex based on
the rule R. We also write T ⊆ T ex for the reduced regularity structure obtained as in [BHZ19, Section
6.4]. (We will actually work with a slightly simplified extended decoration; compare Section 2.2.1.) We
extend the homogeneity assignments |·|𝔰 and � · �𝔰 to homogeneity assignments |·|+ and � · �+ (resp.,
|·|− and � · �−) on T ex in the usual way, taking into account (resp., neglecting) the extended decoration.
On the reduced structure T we set |·|𝔰 := |·|+ = |·|− and � · �𝔰 := � · �+ = � · �−. We also write 𝒯ex and
𝒯 for the set of trees in T ex and T, respectively, so that T ex and T are freely generated by 𝒯ex and 𝒯

as linear spaces.

2.2.1. Trees and algebras
Given a rooted tree T, we define a total order ≤ on the vertex set 𝑉 (𝑇) of T by setting 𝑢 ≤ 𝑣 if and only
if u lies on the unique shortest path from v to the root 𝜌𝑇 , and we write edges 𝑒 ∈ 𝐸 (𝑇) as ordered
pairs 𝑒 =

(
𝑒↑, 𝑒↓

)
, with 𝑒↑ ≥ 𝑒↓. If 𝑢 ∈ 𝑉 (𝑇)\{𝜌𝑇 }, then there exists a unique edge 𝑒 ∈ 𝐸 (𝑇) such that

𝑢 = 𝑒↑, and in this case we write 𝑢↓ := 𝑒.
Basis elements 𝜏 ∈ 𝒯ex can be written as typed, decorated trees 𝜏 =

(
𝑇𝔫,𝔬𝔢 , 𝔱

)
, where T is a rooted

tree with vertex set 𝑉 (𝑇), edge set 𝐸 (𝑇) and root 𝜌𝑇 ; the map 𝔱 : 𝐸 (𝑇) → 𝔏 assigns types to edges; and
the decorations 𝔫,𝔢,𝔬 are maps 𝔫 : 𝑁 (𝑇) → N𝑑 , 𝔢 : 𝐸 (𝑇) → N𝑑 and 𝔬 : 𝑁 (𝑇) → (−∞, 0]. We call 𝔬
the extended decoration. Here we define the decomposition of the set of edges into 𝐸 (𝑇) = 𝐿(𝑇) �𝐾 (𝑇)

with 𝑒 ∈ 𝐿(𝑇) (resp., 𝑒 ∈ 𝐾 (𝑇)) if and only if 𝔱(𝑒) ∈ 𝔏− (resp., 𝔱(𝑒) ∈ 𝔏+), and we write 𝑁 (𝑇) ⊆ 𝑉 (𝑇)

for the set of 𝑢 ∈ 𝑉 (𝑇) such that there does not exist 𝑒 ∈ 𝐿(𝜏) such that 𝑢 = 𝑒↑. We will often abuse
notation slightly and leave the type map 𝔱 and the root 𝜌𝜏 implicit. Recall that it follows from the fact that
R is normal (compare [BHZ19, Definition 5.7]) that elements 𝑢 ∈ 𝑉 (𝑇)\𝑁 (𝑇) are leaves of the tree T.
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Given a typed, decorated tree 𝜏, 𝑘 ∈ N𝑑 and 𝔱 ∈ 𝔏+, we write J𝑘𝔱 𝜏 for the planted, decorated, typed
tree obtained from 𝜏 by attaching an edge 𝑒 = (𝜌(𝜏), 𝜌(J𝑘𝔱 𝜏)) with type 𝔱 to the root 𝜌(𝜏) and 𝔢(𝑒) = 𝑘 ,
and moving the root 𝜌(J𝑘𝔱 𝜏) to the new vertex.

We frequently use the Hopf algebras T− and T ex
− associated to negative renormalisation [BHZ19,

Equation 5.23, Section 6.4]. The character group G− of T− is called the renormalisation group, and we
write ◦ for the group product. We denote by 𝒯− the set of trees of 𝜏 ∈ 𝒯 with |𝜏 |𝔰 < 0 and such that
𝜏 is not planted, so that T− is freely generated as a unital, commutative algebra from 𝒯−. We will also
frequently use the algebras T̂− and T̂ ex

− [BHZ19, Definition 5.26], which are freely generated as a unital,
commutative algebra by 𝒯 and 𝒯ex, respectively.

Recall [BHZ19, Proposition 5.35, Corollary 6.37] that the algebras T− and T ex
− endowed with the

coproduct Δ− are Hopf algebras, and T̂ ex
− with the coaction Δ− : T̂ ex

− → T ex
− ⊗ T̂ ex

− is a comodule.
Finally, we write Ã− : T ex

− → T̂ ex
− for the twisted antipode [BHZ19, Proposition 6.6].

With this notation, we make the following assumption, which guarantees that the analytic BPHZ
theorem of [CH16] can be applied:

Assumption 2. For any tree 𝜏 ∈ 𝒯 with 𝐾 (𝜏) ≠ ��, one has

|𝜏 |𝔰 >

(
−

|𝔰 |
2

)
∨ max
𝑢∈𝐿 (𝜏)

|𝔱(𝑢) |𝔰 ∨

(
−|𝔰 | − min

Ξ∈𝔏−

|Ξ|𝔰

)
. (2.4)

We also impose the condition that for any 𝜏 ∈ 𝒯 and any 𝑒 ∈ 𝐾 (𝜏), one has |𝔱(𝑒) |𝔰 − |𝔢(𝑒) |𝔰 > 0.

We also make the simplifying assumption on the rule that we do not allow products or derivatives
of noises to appear on the right-hand side of the equation. As was already remarked in [CH16] and
[BCCH17], such an assumption does not seem to be crucial, but it simplifies certain arguments.

Assumption 3. We assume that for any 𝔱 ∈ 𝔏 and any 𝑁 ∈ 𝑅(𝔱), there exists at most one pair
(Ξ, 𝑘) ∈ 𝔏− × N𝑑+1 such that 𝑁 (Ξ,𝑘) ≠ 0, and in this case 𝑘 = 0 and 𝑁 (Ξ,0) = 1.

2.2.2. Kernels and models
We assume that for any 𝔱 ∈ 𝔏+ we are given a Green’s function 𝑃𝔱 ∈ C∞

(
D̄\{0}

)
, and we make the

following assumption:

Assumption 4. We assume that for any kernel type 𝔱 ∈ 𝔏+, the kernel 𝑃𝔱 is invariant under rescaling in
the sense that

𝜆−|𝔰Λ |+ |𝔱 |𝔰𝑃𝔱
(
𝜆−𝔰Λ ·

)
= 𝑃𝔱

for any 𝜆 > 0. Furthermore, in case that the 𝜉Ξs are purely spatial white noises, we assume that
|𝔰 | − |𝔱 |𝔰 > 𝔰0.

The last property ensures that in case of purely spatial white noise, the time integral �̂� 𝔱 (𝑥) :=∫ ∞

−∞
𝑃𝔱 (𝑡, 𝑥)𝑑𝑡 is well defined and self-similar under scaling 𝜆−|𝔰 |+ |𝔱 |�̂� 𝔱 (𝜆

𝔰 ·) = �̂� 𝔱 for any 𝜆 > 0. To
avoid case distinctions, we set �̂� := 𝑃 in the case of space-time white noise.

It follows from Assumption 4 that �̂� 𝔱 can be decomposed into �̂� 𝔱 = 𝐾𝔱 + 𝑅𝔱 with 𝑅𝔱 ∈ C∞
(
D̄
)

and
such that 𝐾𝔱 ∈ C∞

𝑐

(
D̄\{0}

)
(smooth functions with bounded support) satisfies [Hai14, Assumptions 5.1,

5.4]. It will be convenient in Section 4.6 to assume that 𝐾𝔱 = �̂� 𝔱𝜙, where 𝜙 ∈ C∞
𝑐

(
D̄
)

is symmetric under
𝑥𝑖 → −𝑥𝑖 for any 𝑖 ≤ 𝑑 and equal to 1 in a neighbourhood of the origin. Given the kernel assignment
(𝐾𝔱)𝔱∈𝔏+

we recall the definition of admissible models [Hai14, Definitions 2.7, 8.29]. We call a model
𝑍 = (Π, Γ) smooth if Π𝑥𝜏 ∈ C∞(D) for any 𝜏 ∈ 𝒯ex and some (and therefore any) 𝑥 ∈ D, and we call Z
reduced if Π𝑥𝜏 does not depend on the extended decoration of 𝜏.

Given an admissible [BHZ19, Definition 6.8] and reduced linear map 𝚷 : T ex → C∞(D), we write
Z(𝚷) for the model constructed as in [BHZ19, Equations 6.11, 6.12], whenever this is well defined, and
we write M∞ for the set of smooth, reduced, admissible models for T ex. We write M0 for the closure
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of M∞ in the space of models. We write Ω∞ := Ω∞(𝔏−) := C∞(D)𝔏− and, given 𝑓 ∈ Ω∞, we write
𝑍c ( 𝑓 ) = 𝑍 𝑓 = Z

(
𝚷 𝑓

)
for the canonical lift of f to a model 𝑍 𝑓 ∈ M∞ (compare [BHZ19, Remark

6.12]).

2.2.3. Renormalised models
Recall [BHZ19, Equation 6.23] that for a smooth noise 𝜂 (which we assume to be stationary and centred,
with all its derivatives having moments of all orders), we can define a character Υ𝜂 on T̂ ex

− by setting
Υ𝜂 := E(𝚷𝜂𝜏) (0) for any tree 𝜏 ∈ T̂ ex

− , and extending this linearly and multiplicatively, where 𝚷𝜂

denotes the canonical lift of 𝜂 to an admissible random model. The BPHZ character 𝑔𝜂 ∈ G− ⊂ (T ex
− )∗

is then given by

𝑔𝜂 := Υ𝜂Ã−, (2.5)

with Ã− : T ex
− → T̂ ex

− denoting the ‘twisted antipode’ as given in [BHZ19, Equation 6.8]. A character
𝑔 ∈ G− defines a renormalisation map 𝑀𝑔 : T ex → T ex by

𝑀𝑔 := (𝑔 ⊗ Id)Δ−,

and we recall that the BPHZ renormalised model �̂�
𝜂
= Z

(
�̂�
𝜂
)

for a smooth noise 𝜂 is given by
[BHZ19, Theorem 6.17]

�̂�
𝜂
𝜏 := 𝚷𝜂𝑀𝑔𝜂𝜏 (2.6)

for any 𝜏 ∈ T ex. Finally, note that one has a continuous action 𝑔 ↦→ R𝑔 of the renormalisation group
G− onto the space M0 of admissible models, given by

R𝑔Z(𝚷) := Z (𝚷𝑀𝑔) . (2.7)

(The fact that M0 is stable under this action is not obvious but was shown in [BHZ19, Theorem 6.15].)

Remark 2.3. We will work with the convention that the renormalisation group product on G− is given by

𝑔 ◦ ℎ := (𝑔 ⊗ ℎ)Δ−.

With this convention, one obtains 𝑀ℎ◦𝑔 = 𝑀𝑔𝑀ℎ for any 𝑔, ℎ ∈ G−, which follows from a quick
computation

𝑀ℎ◦𝑔 = ((ℎ ◦ 𝑔) ⊗ Id) Δ− = (ℎ ⊗ 𝑔 ⊗ Id)(Δ− ⊗ Id)Δ−

= (ℎ ⊗ 𝑔 ⊗ Id) (Id ⊗ Δ−)Δ− = (ℎ ⊗ 𝑀𝑔) Δ− = 𝑀𝑔𝑀ℎ ,

so that the groupℜ of ‘matrices’ 𝑀𝑔 acting on T is naturally identified with the opposite group Gop
− . Note,

however, that the action R of G− onto the space of models satisfies R𝑔◦ℎ = R𝑔Rℎ for any 𝑔, ℎ ∈ G−.

A central role will be played by the following ‘shift operator’:

Theorem 2.4. For any ℎ ∈ Ω∞, there exists a continuous operator 𝑇ℎ : M0 → M0 with the property
that for any 𝑓 ∈ Ω∞ and any 𝑔 ∈ G−, the canonical lift 𝑍c( 𝑓 ) of f satisfies

R𝑔𝑍c ( 𝑓 + ℎ) = 𝑇ℎR𝑔𝑍c( 𝑓 ) = R𝑔𝑇ℎ𝑍c ( 𝑓 ). (2.8)

Moreover, this operator is continuous as a map Ω∞ ×M0 → M0 : (ℎ, 𝑍) ↦→ 𝑇ℎ𝑍 , where we endow
the space Ω∞ × M0 with the product topology. We call 𝑇ℎ the shift operator .
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Proof. The construction of𝑇ℎ and the verification of equation (2.8), as well as its continuity, are obtained
very similarly to the verification of Assumption 10 in the proof of [HM18, Theorem 5.1], so we give
only a sketch of the proof.

Consider first an enlarged set of types 𝔏 such that 𝔏+ = 𝔏+, but 𝔏− = {Ξ,Ξ : Ξ ∈ 𝔏}. In other words,
every original noise typeΞ comes with a new ‘shifted’ noise typeΞ. We then define a regularity structure
T in the same way as T, but from an enlarged rule 𝑅 obtained from R by allowing us to replace any
number of noises by their corresponding ‘shifted’ noises. We also write M0 for the space of admissible
models analogous to M0, but for T. Finally, we fix 𝑎 > 0 sufficiently large so that, setting degΞ = 𝑎 for
every shifted noise (the degrees of the original noises and kernels remain unchanged), one has T− = T−

– that is, all newly added basis vectors of T have strictly positive degree.
As a consequence of this last condition, it is straightforward to show by repeated invocations of

[Hai14, Proposition 3.31] and [Hai14, Theorem 5.14] that given any model Z(𝚷) ∈ M0 and any
ℎ ∈ Ω∞, there exists a unique model Y(ℎ,𝚷) ∈ M0 with the property that

Y(ℎ,𝚷)𝜏 = 𝚷𝜏, ∀𝜏 ∈ T−, Y(ℎ,𝚷)Ξ = ℎΞ, ∀Ξ ∈ 𝔏−.

Exactly as in [HM18, Equation 5.9], one can then construct a continuous map Z : M0 → M0 which
has the effect of ‘adding the function represented by Ξ to the distribution represented by Ξ’. Setting
𝑇ℎ𝑍 = Z(Y(ℎ, 𝑍)), the claim now follows from [HM18, Equations 5.10, 5.11], combined with the
continuity of both Y and Z. �

2.3. Driving noises

For simplicity, we restrict to the case in which our noises (𝜉Ξ)Ξ∈𝔏−
are independent Gaussian white

noises on D, so that one has

E[𝜉Ξ(𝜑)𝜉Ξ′ (𝜑′)] = 〈𝜑, 𝜑′〉𝐿2 (D)IΞ=Ξ′ ,

and we set �Ξ�𝔰 := −
|𝔰 |
2 . We fix a smooth and compactly supported function 𝜌 ∈ C∞

𝑐

(
D̄
)

such that∫
𝜌(𝑥)𝑑𝑥 = 1, and, recalling for any 𝜀 > 0 the notation 𝜌 (𝜀) from formula (2.1), we define the random

smooth noise 𝜉 𝜀 by setting

𝜉 𝜀𝔱 := 𝜉𝔱 ★ 𝜌 (𝜀)

for any 𝔱 ∈ 𝔏−.

Remark 2.5. We do this in order to not complicate the presentation unnecessarily. In principle, the
proof we give in this paper will hold (modulo some minor modifications) in the case in which 𝜉 is a
family of independent, stationary, centred Gaussian noises with ‘self-similar’ covariance structure and
the property that all smooth, compactly supported functions are included in the Cameron–Martin space.
One can often relate these situations back to our setting by introducing a new kernel type; see, for
instance, Appendix C.2, where this is made precise for the Φ4

4−𝜀 equation.

It is well known that 𝜉 admits a version which is a random element of

Ω :=
⊕
Ξ∈𝔏−

C |Ξ |𝔰
𝔰 (D).

We denote the law of 𝜉Ξ on C |Ξ |𝔰
𝔰 (D) by Q, and we write P :=

⊗
Ξ∈𝔏−

Q for the law of 𝜉 onΩ. Since only
the law of 𝜉Ξ is relevant in order to establish a support theorem, there is no loss of generality to assume
that 𝜉 : Ω → Ω denotes the canonical process. We write 𝐻 := 𝐿2 (D)𝔏− ⊆ Ω for the Cameron–Martin
space of P, and we recall the following well-known theorem:

Theorem 2.6 (Cameron–Martin). For any fixed ℎ ∈ 𝐻, the laws of 𝜉 and 𝜉 + ℎ under P are equivalent.
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Since smooth noises Ω∞ are in general not in the Cameron–Martin space, we define the space
of compactly supported smooth noises Ω∞,𝑐 :=

⊕
Ξ∈𝔏−

C∞
𝑐 (D). It will often be convenient to identify

functions ℎ ∈ C∞
𝑐

(
D̄
)

with the element of C∞
𝑐 (D) obtained by symmetrisation. We endow C∞

𝑐 (D) with the
usual topology (which induces convergence in the sense of test functions), and we define the seminorms

‖ 𝑓 ‖𝛼,𝐾 := sup
𝑥∈𝐾

|𝐷𝛼 𝑓 (𝑥) |

for 𝐾 ⊆ D compact and 𝛼 ∈ N𝑑 .
Recall [Bog98, Nua06] that there is a canonical isomorphism ℎ ↦→ 𝐼 (ℎ) between the Cameron–

Martin space H and a closed subspace H1 of 𝐿2 (Ω, P) with the property that (𝐼 (ℎ))ℎ∈𝐻 are jointly
Gaussian random variables. This extends to isomorphisms 𝐼𝑚 between the symmetric tensor product
𝐻⊗𝑠𝑚 and subspaces H𝑚 of 𝐿2 (Ω, P) by setting 𝐼𝑚(ℎ ⊗ · · · ⊗ ℎ) = 𝐻𝑚(𝐼 (ℎ), ‖ℎ‖𝐻 ), where 𝐻𝑚 (𝑥, 𝑐)
denotes the mth Hermite polynomial with parameter c. These maps extend to contractions on the full
tensor product spaces 𝐻⊗𝑚 by setting 𝐼𝑚(ℎ1 ⊗ · · · ⊗ ℎ𝑚) := 𝐼𝑚(ℎ1 ⊗𝑠 · · · ⊗𝑠 ℎ𝑚). We call 𝐼𝑚(ℎ) the
iterated integral of ℎ ∈ 𝐻⊗𝑚 with respect to P, and we write 𝐼𝑚(ℎ) [𝜉] if we want to emphasise the
dependence of 𝐼𝑚(ℎ) on the noise 𝜉.

We write 𝜋Ξ : 𝐿2 (D) → 𝐻 for the isometry given by (𝜋Ξℎ)Ξ̃ = ℎ1Ξ̃=Ξ for any ℎ ∈ 𝐿2 (D). More
generally, given 𝑚 ≥ 1 and a map m̃ : [𝑚] → 𝔏−, we write 𝜋m̃ :

⊗𝑚
𝐿2 (D) →

⊗𝑚
𝐻 for the

isometry which satisfies

𝜋m̃(ℎ1 ⊗ · · · ⊗ ℎ𝑚) :=
(
𝜋m̃1ℎ1

)
⊗ · · · ⊗

(
𝜋m̃𝑚ℎ𝑚

)
.

We then introduce the notation

𝐼m̃(ℎ) := 𝐼𝑚 (𝜋m̃ℎ) , (2.9)

for any ℎ ∈
⊗𝑚

𝐿2 (D). We will mostly need a stochastic integral whose output is a smooth stationary
function on D rather than just a number, and we define

𝐽m̃(ℎ) (𝑧) := 𝐼m̃
(
ℎ(𝑧 − (·)1, . . . , 𝑧 − (·)𝑚)

)
. (2.10)

Finally, recall from Remark 2.2 that given a total order � on 𝔏− (which we assume to be fixed once
and for all), we obtain a map m̃ : [#m] → 𝔏− for any multiset m. We then abuse notation slightly and
write 𝐽m := 𝐽m̃.

2.4. Non-Gaussian noises

In this section, let 𝕷− be a finite set of noise types such that 𝔏− ⊆ 𝕷−. A possible choice is of course
𝕷− = 𝔏−, but we do not require this here. One should rather think of 𝕷− as an enlarged set of noise types
(see Section 5). The noises (𝜂𝚵)𝚵∈𝕷− which we will consider always take values in a fixed inhomogeneous
Wiener chaos with respect to the (fixed) family of independent Gaussian white noises 𝜉 = (𝜉Ξ)Ξ∈𝔏−

. For
technical reasons we restrict ourselves to a class of noises 𝜂 such that the kernels of 𝜂Ξ (in the Wiener
chaos decomposition) have a relatively simple structure. For this we write C∞

𝑐,1(D̄) ⊆ C∞
𝑐

(
D̄
)

for the
space of smooth functions 𝜑 ∈ C∞

𝑐

(
D̄
)

which are supported in a neighbourhood of |·|𝔰 radius 1 around
the origin. We also fix an integer 𝑟 ∈ N larger than |𝔰 |

2 , and given a homogeneity 𝛼 < 0 and a kernel
𝐾 ∈ C∞

𝑐

(
D̄\{0}

)
, we write ‖𝐾 ‖𝛼 ∈ [0,∞] for the smallest constant such that��𝐷𝑘𝐾 (𝑥)

�� ≤ ‖𝐾 ‖𝛼 |𝑥 |
𝛼−|𝑘 |𝔰
𝔰 (2.11)
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for any 𝑥 ∈ D̄\{0} and multi-index 𝑘 ∈ N𝑑 with |𝑘 |𝔰 < 𝑟 , and such that∫
𝑥𝑘𝐾 (𝑥)𝑑𝑥 ≤ ‖𝐾 ‖𝛼 (2.12)

for any 𝑘 ∈ N𝑑 with |𝑘 |𝔰 ≤ "−𝛼 − |𝔰 |#.

Definition 2.7. For 𝑛 ∈ N, let Y𝑛∞ denote the space

Y𝑛∞ =
𝑛⊗
𝑖=0

C∞
𝑐,1 (D̄). (2.13)

For any �̄� = (�̄�𝑖)𝑖=0,...,𝑛 ∈ R𝑛+1
− , we define a norm on Y𝑛∞ by

‖𝐾0 ⊗ · · · ⊗ 𝐾𝑛‖�̄� :=
𝑛∏
𝑖=0

‖𝐾𝑖 ‖�̄�𝑖 . (2.14)

Finally, given 𝛼 < 0 we define for 𝑛 ≥ 2 the norm

‖𝐾 ‖𝛼 := sup
�̄�

‖𝐾 ‖�̄�, (2.15)

where the supremum on the right-hand side runs over all �̄� ∈ R𝑛+1
− such that

∑𝑛
𝑖=0 �̄�𝑖 = 𝛼 − |𝔰 |,

�̄�0 > −|𝔰 | − 1 and �̄�𝑖 > −|𝔰 | for 𝑖 = 1, . . . , 𝑛. For 𝑛 = 1 we define ‖𝐾0 ⊗ 𝐾1‖𝛼 := ‖𝐾0 ★𝐾1‖𝛼.

Elements 𝐾 ∈ Y𝑛∞ define kernels U𝐾 ∈ C∞
𝑐

(
D̄𝑛

)
in the following way:

Definition 2.8. We define a linear map U : Y𝑛∞ → C∞
𝑐

(
D̄𝑛

)
by setting

U𝐾 (𝑥1, . . . , 𝑥𝑛) =
∫

D̄
𝑑𝑦𝐾0(𝑦)𝐾1(𝑥1 − 𝑦) · · ·𝐾𝑛 (𝑥𝑛 − 𝑦). (2.16)

We call kernels of the form U𝐾 simple kernels, and we write K𝑛 for the linear space generated by simple
kernels in n variables.

One should think of U𝐾 as a kernel with respect to stochastic integration (see Definition 2.13).

Remark 2.9. One has an obvious isomorphism between C∞
𝑐

(
D̄𝑛

)
and C̄∞

𝑐

(
D̄ × D̄𝑛

)
given by identifying

K and (𝑥, 𝑥1, . . . , 𝑥𝑛) ↦→ 𝐾 (𝑥 − 𝑥1, . . . , 𝑥 − 𝑥𝑛). It will sometimes be useful to view simple kernels as
elements of C̄∞

𝑐

(
D̄ × D̄𝑛

)
in this way, which we will do implicitly later.

Remark 2.10. The ‘kernels’ 𝐾𝑖 that we have in mind for 𝑖 = 1, . . . , 𝑛 are of the form 𝐾𝑖 = 𝜆𝛽+|𝔰 |𝜙 (𝜆)
𝑖 for

some fixed test function 𝜙𝑖 and some 𝜆 > 0, where 𝛽 := 𝑛−1𝛼, while 𝐾0 will be of the form 𝐾0 := 𝜙 (𝜆)
0

for some fixed test function 𝜙0 integrating to zero. One then has ‖𝐾𝑖 ‖�̄�𝑖 � 𝜆𝛽−�̄�𝑖 and ‖𝐾0‖�̄�0 � 𝜆−�̄�0−|𝔰 |

uniformly in 0 > �̄�𝑖 > −|𝔰 |, 0 > �̄�0 > −|𝔰 | − 1 and 𝜆 > 0, and thus

‖𝐾0 ⊗ · · · ⊗ 𝐾𝑛‖𝛼 � 1 (2.17)

uniformly in 𝜆 > 0. This is the type of kernel we will use when we define the shift of the noise
in Section 5.

But we want the space of noises to be rich enough to encode not only the shifts but also an
approximation to white noise itself. In this case one cannot choose 𝐾0 to integrate to zero, which
explains the slightly different definition of the norm ‖·‖𝛼 on Y1

∞.

We fix a homogeneity 𝖘 : 𝕷− → R− with 𝖘 ≥ −
|𝔰 |
2 − 𝜅 for 𝜅 > 0 small enough, and we set

𝛽𝚵m := 𝖘(𝚵) − #m |𝔰 |
2 for any 𝚵 ∈ 𝕷− and any multiset m.
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Definition 2.11. For 𝑁 ∈ N, we denote by 𝔜𝑁∞ the space of all families 𝐾 =
(
𝐾𝚵

m

)
, where 𝚵 ∈ 𝕷− and

m runs over all multisets with values in 𝔏− such that #m ≤ 𝑁 , and such that 𝐾𝚵
m ∈ Y#m

∞ . On 𝔜𝑁∞ we
define the norm ‖·‖𝖘 by setting

‖𝐾 ‖𝖘 :=
∑
m,𝚵

‖𝐾𝚵
m‖𝛽𝚵m. (2.18)

We write 𝔜𝑁0 for the closure of 𝔜𝑁∞ under this norm.

Remark 2.12. We will shortly interpret the kernels 𝐾Ξm as ‘stochastic integration kernels’ which define
a translation-invariant noise in a fixed Wiener chaos (see Definition 2.13). The norm defined in formula
(2.18) is then the natural norm to put on elements of 𝔜𝑁∞ . In particular,

‖𝐾 ‖var := max
𝚵,m

∫
D̄#m

𝑑𝑥

∫
D̄
𝑑𝑦U𝐾𝚵

m(0, 𝑥1, . . . , 𝑥#m)U𝐾𝚵
m(𝑦, 𝑥1, . . . , 𝑥#m), (2.19)

which corresponds to [CH16, Equation A.15], is automatically bounded by ‖𝐾 ‖𝖘 . See the proof of
Lemma 2.18 for more details.

Definition 2.13. For 𝑁 ∈ N, we denote by 𝔐𝑁
∞ = 𝔐𝑁

∞ (𝕷−) the space of tuples 𝜂 = (𝜂𝚵)𝚵∈𝕷− given by

𝜂𝚵 := 𝐽𝚵 (𝐾) :=
∑
m

𝐽m

(
U𝐾𝚵

m

)
(2.20)

for some 𝐾 ∈ 𝔜𝑁∞ with 𝐽m as in formula (2.3). We call any 𝜂 ∈ 𝔐𝑁
∞ a smooth noise. On𝔐𝑁

∞ we define
the norm

‖𝜂‖𝖘 := inf
𝐾

‖𝐾 ‖𝔜𝑁
∞
, (2.21)

where the infimum runs over all 𝐾 ∈ 𝔜𝑁∞ such that formula (2.20) holds, and we denote by 𝔐𝑁
0 =

𝔐𝑁
0 (𝕷−) the closure of the set of simple smooth noises under this norm. (The space 𝔐𝑁

0 depends on
𝖘, but we hide this dependence in the notation.) It will be convenient to write 𝔐∞ :=

⋃
𝑁 𝔐

𝑁
∞ and

𝔐0 :=
⋃
𝑁 𝔐

𝑁
0 .

Remark 2.14. We will see in Lemma 2.18 that any smooth noise in our setting is a smooth noise in the
sense of [CH16], and the distance ‖·; ·‖𝔠 considered there is dominated by ‖·‖𝖘 (provided the cumulant
homogeneity 𝔠 is chosen appropriately; see later). One advantage of the restricted setting introduced
here is that the spaces𝔐∞ and𝔐0 form linear spaces, and formula (2.21) is indeed a norm (this is very
different from [CH16], where ‖·; ·‖𝔠 is not even a distance in the metric sense).

Remark 2.15. One motivation behind this definition is that cumulants formed by noises of this type are
represented by Feynman diagrams, so we can use the results of [Hai18]. This is of particular importance
whenever we need results not covered in [CH16] (for instance, bounds on their large-scale behaviour or
conditions under which one does not see a log-divergence for the renormalisation constant of 0-order
trees).

In order to apply the results from [CH16], we will have to bound cumulants of orders higher than
2. The assumptions in [CH16] are formulated on objects called cumulant homogeneities (see [CH16,
Definition A.14]). We define now such a cumulant homogeneity 𝔠 consistent with 𝖘. (Later on we will
show that the shift of our noise is bounded uniformly by this cumulant homogeneity.)
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Given a homogeneity assignment 𝖘, we define a cumulant homogeneity 𝔠 = 𝖘𝔠 as follows. For any
𝑀 ∈ N, any map 𝔱 : [𝑀] → 𝕷−, any spanning tree T for [𝑀] and any interior vertex 𝜈 ∈ T◦, we define
the quantity

𝔠 (𝔱, [𝑀 ])

T (𝜈) := −
���

∑
𝜇∈CT (𝜈)

max
𝑢∈𝐿(T𝜇)

𝖘(𝔱𝑢)
� ! + max

𝑢∈𝐿 (T𝜈)
𝖘(𝔱𝑢)I𝜈≠𝜌T , (2.22)

where CT(𝜈) denote the set of children of 𝜈 in T and 𝐿
(
T𝜇

)
denote the set of leaves u of T such that

𝑢 ≥ 𝜇 with respect to the tree order. Note that in particular, 𝐿(T𝑢) = {𝑢} for any leaf 𝑢 ∈ 𝐿(T).

Remark 2.16. In the notation of [CH16], we always set 𝔏cum := 𝔏all
cum.

As a first result we check the consistency [CH16, Definition A.16] of 𝖘 and 𝖘𝔠, and the superregularity
of the shifted trees 𝜏. Here we call a tree 𝜏 a ‘shifted tree’ if there exists 𝜏 =

(
𝑇𝔫𝔢 , 𝔱

)
∈ T such that

𝜏 =
(
𝑇𝔫𝔢 , 𝔱

′
)
, where 𝔱(𝑒) = 𝔱′(𝑒) for kernel-type edges 𝑒 ∈ 𝐾 (𝜏) and 𝔱′(𝐿(𝜏)) ⊆ 𝕷−. (The basis vectors

of the larger regularity structure which we construct in Section 5.1 are shifted trees in this sense.) The
next lemma applies in particular in the case of 𝕷− = 𝔏− and 𝖘 = 𝔰:

Lemma 2.17. The cumulant homogeneity 𝖘𝔠 is consistent with𝖘. Moreover, provided that𝖘(𝚵) ≥ −
|𝔰 |
2 −𝜅

for any 𝚵 ∈ 𝕷−, any shifted tree is (𝖘𝔠, |·|𝖘)-superregular.

Proof. We first check consistency in the sense of [CH16, Definition A.16]. Set 𝑀 ∈ N and 𝔱 : [𝑀] → 𝕷−.
The fact that ∑

𝜈∈T◦

𝖘𝔠𝔱, [𝑀 ]

T (𝜈) = −|𝔱([𝑀]) |𝖘

follows directly from the definition. To see point 3 of [CH16, Definition A.16], set 𝜈 ∈ T◦ such that
𝜈 ≠ 𝜌T. Then we have∑

𝜇∈T◦ , 𝜇≥𝜈

𝖘𝔠𝔱, [𝑀 ]

T (𝜇) = −
∑

𝑖∈𝐿 (T𝜈)

|𝔱𝑖 |𝖘 + max
𝑖∈𝐿 (T𝜈)

|𝔱𝑖 |𝖘 < −|𝔱(𝐿(T𝜈)) |𝖘 .

To see the last point, set 𝑀 ≥ 3 and 𝜈 ∈ T◦ with |𝐿(T𝜈) | ≤ 3. Then∑
𝜇∈T◦ , 𝜇≥𝜈

𝖘𝔠𝔱, [𝑀 ]

T (𝜇) < |𝔰 | ( |𝐿(T𝜈) | − 1),

since by assumption one has |𝔱 |𝖘 > −|𝔰 | for any noise type 𝔱 ∈ 𝕷−.
We show next that any shifted tree 𝜏 =

(
𝑇𝔫𝔢 , 𝔱

)
is superregular. Let 𝜏 =

(
𝑇𝔫𝔢 , 𝔱

′
)

be as in the definition
of shifted trees. Since the tree 𝜏 ∈ T− is 𝔰-superregular by assumption, one has, for any subtree 𝑆 ⊆ 𝑇
with the property that #𝐾 (𝑆) > 1, the estimate���(𝑆0

𝔢 , 𝔱
)���
𝖘
≥

���(𝑆0
𝔢 , 𝔱

′
)���
𝔰
> −

|𝔰 |
2

.

Furthermore, we have in the notation of [CH16, Definition A.24] the identity

ℏ𝖘𝔠 (𝔱(𝐿(𝑆))) = − max
𝑢∈𝐿 (𝑆)

|𝔱(𝑢) |𝖘 . (2.23)
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Choose now a noise-type edge 𝑣 ∈ 𝐿(𝑆) with the property that the maximum on the right-hand side of
equation (2.23) is attained for v. If v is such that 𝔱(𝑣) ≠ 𝔱′(𝑣), then one has���(𝑆0

𝔢 , 𝔱
)���
𝖘
≥

���(𝑆0
𝔢 , 𝔱

′
)���
𝔰
+ (|𝔱(𝑣) |𝖘 − |𝔱′(𝑣) |𝔰) > −ℏ𝖘𝔠 (𝐿(𝑆)),

where we use the fact that by the superregularity of 𝜏, one has
�� (𝑆0

𝔢 , 𝔱
) ��
𝔰 > |𝔱(𝑣) |𝔰 .

Finally, in the notation of [CH16, Definition 2.26], we have for any leaf-typed sets A and B

𝑗𝐴(𝐵) ≥
|𝔰 |
2

− 𝜅,

and for 𝜅 > 0 small enough we have −
|𝔰 |
2 + 𝜅 <

�� (𝑆0
𝔢 , 𝔱

) ��
𝖘 . �

We recall the notation ‖𝜂‖𝑁 ,𝔠 and ‖𝜂; 𝜂‖𝑁 ,𝔠 from [CH16, Definitions A.18, A.19].

Lemma 2.18. Fix 𝑁, �̄� ∈ N. Let �̃� : 𝕷− → R− be a second homogeneity assignment such that
−

|𝔰 |
2 −

(
�̄� + 1

)
𝜅 < �̃� < 𝖘 − �̄�𝜅, and set 𝔠 := �̃�𝔠. For any 𝜂 ∈ 𝔐𝑁

∞ and 𝐶 > 0, one has

‖𝜂‖�̄� ,𝔠 � ‖𝜂‖𝖘 (2.24)

uniformly over all noises 𝜂 ∈ 𝔐𝑁
∞ with ‖𝜂‖𝖘 ≤ 𝐶.

If 𝜂 ∈ 𝔐𝑁
∞ is another smooth noise, then one has

‖𝜂; 𝜂‖ �̄� ,𝔠 � ‖𝜂; 𝜂‖𝖘 (2.25)

uniformly over all noises 𝜂, 𝜂 with ‖𝜂‖𝖘 ∨ ‖𝜂‖𝖘 ≤ 𝐶.

Proof. We show only formula (2.24); the bound (2.25) follows similarly. Let 𝐾 ∈ 𝔜𝑁∞ be such that
formula (2.20) holds and such that ‖𝐾 ‖𝖘 ≤ 2‖𝜂‖𝖘 . To continue the proof, we introduce some notation
from [CH16]. Given 𝑀 ∈ N, we call T a spanning tree for M if T is a binary, rooted tree with set
of leaves given by 𝐿(T) = [𝑀]. We denote by

◦

T the set of interior nodes of T, and we call an order-
preserving map s :

◦

T → N a labelling. Given a labelled spanning tree (T, s) and a map 𝔱 : [𝑀] → 𝕷−,
we introduce the notation 〈

𝔠𝔱, [𝑀 ]

T , s
〉

:=
∑
𝜈∈

◦
T

𝔠𝔱, [𝑀 ]

T (𝜈)s(𝜈),

and the set 𝐷 (T, 𝔰) ⊆ D̄𝑀 as the set of 𝑥 ∈ D̄𝑀 such that

𝐶−12−s(𝑘∧T𝑙) ≤ |𝑥𝑘 − 𝑥𝑙 | ≤ 𝐶2−s(𝑘∧T𝑙)

for any 1 ≤ 𝑘, 𝑙 ≤ 𝑀 and for some constant 𝐶 > 0 large enough. (Here 𝐶 > 0 is fixed but large enough
so that the sets 𝐷 (T,s) cover all of D̄𝑀 .) With this notation one has

‖𝜂‖�̄� ,𝔠 ≤ ‖𝐾 ‖var + max
𝑀 ≤�̄�

max
𝔱:[𝑀 ]→𝕷−

sup (T, s) sup
𝑥∈𝐷 (T,s)

��E𝑐 [ (
𝜂𝔱 (𝑘) (𝑥𝑘 )

)
𝑘≤𝑀

] �� 2−
〈
𝔠𝔱, [𝑀 ]

T ,s
〉
,

where the first supremum runs over all labelled spanning trees (T, s) for M.
We fix from now on 𝑀 ≤ �̄� , a type map 𝔱 : [𝑀] → 𝕷− and a spanning tree T for M. Writing

E𝑐 (𝑋𝑘 )𝑘≤𝑀 for the Mth joint cumulant of a collection of random variables 𝑋𝑘 , the cumulant of the
noises 𝜂𝔱 (𝑘) (𝑥𝑘 ) can be bounded by��E𝑐 [ (

𝜂𝔱 (𝑘) (𝑥𝑘 )
)
𝑘≤𝑀

] �� ≤ ∑
m

���E𝑐 [
𝐽m(𝑘)

(
U𝐾 𝔱 (𝑘)

m(𝑘)
(𝑥𝑘 )

)
𝑘≤𝑀

] ��� ,
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where the sum runs over all families (m𝑘 )𝑘∈[𝑀 ] , where each m𝑘 is a multiset with values in 𝔏−. We
fix such a family from now on. We then write 𝐾 (𝑘) := 𝐾 𝔱 (𝑘)m𝑘

∈ Y#m(𝑘)
∞ , so that it suffices to show that���E𝑐 [

𝐽m𝑘

(
U𝐾 (𝑘) (𝑥𝑘 )

)
𝑘≤𝑀

] ��� � 𝑀∏
𝑘=1

���𝐾 (𝑘)
���
𝛽 (𝑘)

2
〈
𝔠𝔱, [𝑀 ]

T ,s
〉
,

uniformly over all labelling s and 𝑥 ∈ 𝐷 (T,s) , where 𝛽 (𝑘) := 𝛽𝚵(𝑘)
m𝑘

is as in formula (2.18). It suffices to
show this bound uniformly over all simple tensors 𝐾 (𝑘) = 𝐾 (𝑘)

0 ⊗ · · · ⊗ 𝐾 (𝑘)
𝑚𝑘

, where 𝑚𝑘 := #m𝑘 ; the
general case follows from the definition of the tensor norm.

We define Λ := {(𝑘, 𝑙) : 1 ≤ 𝑘 ≤ 𝑀, 1 ≤ 𝑙 ≤ 𝑚(𝑘)}. We think of Λ as indexing the variables of
the kernels 𝐾 (𝑘) which are integrated out by stochastic integration. We define P as the set of pairings
P of Λ with the following properties: We require that for any {(𝑘, 𝑙), (𝑚, 𝑛)} ∈ 𝑃, one has 𝑘 ≠ 𝑚
and 𝚵(𝑃) := m̃𝑘 (𝑙) = m̃𝑚 (𝑛). (The first condition reflects the fact that our noises take values in
homogeneous Wiener chaoses, so that self-contractions do not need to be considered; the second
condition reflects the fact that the Gaussian noises 𝜉Ξ are independent.) We also require that the pairing
be connected, in the sense that if ∼ denotes the smallest equivalence relation on [𝑀] with the property
that 𝑘 ∼ 𝑙 whenever there exists some 𝑖, 𝑗 such that {(𝑘, 𝑖), (𝑙, 𝑗)} ∈ 𝑃, then all elements of [𝑀] are
equivalent.

The cumulant can then be written as

E𝑐
[
𝐽m𝑘

(
U𝐾 (𝑘) (𝑥𝑘 )

)
𝑘≤𝑀

]
=

∑
𝑃∈P

𝐸𝑃 (𝑥),

where

𝐸𝑃 (𝑥) :=
∫

D̄Λ
𝑑𝑦Λ

𝑀∏
𝑘=1

U𝐾 (𝑘)
( (
𝑥𝑘 − 𝑦 (𝑘,𝑙)

)
𝑙≤𝑚𝔱 (𝑘)

) ∏
𝑃={𝑎,𝑏}∈P

𝛿(𝑦𝑎 − 𝑦𝑏), (2.26)

and we will show that for any 𝑃 ∈ P, one has

|𝐸𝑃 (𝑥) | �
𝑀∏
𝑘=1

���𝐾 (𝑘)
���
𝛽 (𝑘)

2
〈
𝔠𝔱, [𝑀 ]

T ,s
〉
. (2.27)

Let 𝐽 ⊆ [𝑀] denote the set of indices 𝑘 ≤ 𝑀 with 𝑚𝑘 > 1, and we write

𝐸𝑃 (𝑥) =
∫

D̄𝑀
𝑑𝑧𝑀

∏
𝑘∈𝐽

𝐾 (𝑘)
0 (𝑥𝑘 − 𝑧𝑘 )

∏
𝑘∉𝐽

𝛿0 (𝑥𝑘 − 𝑧𝑘 )�̃�𝑃 (𝑧)𝑑𝑧,

with

�̃�𝑃 (𝑧) :=
∫

D̄Λ
𝑑𝑦Λ

𝑀∏
𝑘=1

Ũ𝐾 (𝑘)
( (
𝑥𝑘 − 𝑦 (𝑘,𝑙)

)
𝑙≤𝑚𝔱 (𝑘)

) ∏
𝑃={𝑎,𝑏}∈P

𝛿(𝑦𝑎 − 𝑦𝑏),

where we set

Ũ𝐾 (𝑘) :=

{
U(𝛿0 ⊗ 𝐾 (𝑘)

1 ⊗ · · · ⊗ 𝐾 (𝑘)
𝑚𝑘

) if 𝑘 ∈ 𝐽,

U(𝐾 (𝑘)
0 ⊗ 𝐾 (𝑘)

1 ) if 𝑘 ∉ 𝑗 .

It suffices to show the bound uniformly over kernels with ‖𝐾 (𝑘)
0 ‖−|𝔰 | = 1 for any k. Then it suffices

to show formula (2.27) with 𝐸𝑃 replaced by �̃�𝑃 , and the bound for 𝐸𝑃 can be argued as in [CH16,
Section B].
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By definition, for every choice of homogeneities 𝛽 (𝑘)
𝑖 , 𝑘 = 1, . . . , 𝑀 , 𝑖 = 1, . . . , 𝑚𝑘 , with −|𝔰 |−I𝑘∉𝐽 <

𝛽 (𝑘)
𝑖 < 0 and

∑𝑚𝑘

𝑖=1 𝛽 (𝑘)
𝑖 = 𝛽 (𝑘) , one has the bound

���̃�𝑃 (𝑥)
�� � (

𝑀∏
𝑘=1

𝑚𝑘∏
𝑖=1

����̃� (𝑘)
𝑖

���
𝛽

(𝑘)
𝑖

) ∏
{(𝑘,𝑖) , (𝑙, 𝑗) }∈P

2−s(𝑘∧T𝑙)
((
𝛽

(𝑘)
𝑖 +𝛽

(𝑙)
𝑗 +|𝔰 |

)
∧0

)
.

Here we set �̃� (𝑘)
𝑖 := 𝐾 (𝑘)

𝑖 if 𝑘 ∈ 𝐽 and �̃� (𝑘)
1 := 𝐾 (𝑘)

0 ★𝐾 (𝑘)
1 = Ũ

(
𝐾 (𝑘)

)
if 𝑘 ∉ 𝐽.

Since by definition one has the estimate

𝑀∏
𝑘=1

𝑚𝑘∏
𝑖=1

����̃� (𝑘)
𝑖

���
𝛽

(𝑘)
𝑖

≤

𝑀∏
𝑘=1

���𝐾 (𝑘)
���
𝛽 (𝑘)

,

it remains to find a choice of 𝛽 (𝑘)
𝑖 as before with the property that

−
∑
𝜇≥𝜈

∑
𝑘,𝑙:(𝑘∧T𝑙)=𝜇

((
𝛽 (𝑘)
𝑖 + 𝛽 (𝑙)

𝑗 + |𝔰 |
)
∧ 0

)
≤

∑
𝜇≥𝜈

𝔠𝑡 , [𝑀 ]

T (𝜇) (2.28)

for any 𝜈 ∈
◦

T. Let �̄� :
◦

T\{𝜌T} → [𝑀] be the injective map defined recursively by setting5 �̄� (𝜈) :=
argmin𝑘∈𝐿 (T𝜈)

�̃�(𝔱(𝑘)) if 𝜈 is maximal in
◦

T, and

�̄� (𝜈) := argmin
(
�̃�(𝔱(𝑘)) : 𝑘 ∈ 𝐿(T𝜈)\

{
�̄� (𝜇) : 𝜇 > 𝜈

})
(2.29)

otherwise. (Recall that 𝐿(T𝜈) denotes the set of leaves 𝑢 ∈ 𝐿(T) such that 𝑢 ≥ 𝜈.) Note that 𝔠𝔱, [𝑀 ]

T (𝜈) =

−�̃�
(
𝔱
(
�̄� (𝜈)

) )
for 𝜈 ∈

◦

T\{𝜌T}. Denote moreover by 𝑘1, 𝑘2 ∈ [𝑀] the two distinct elements of [𝑀] not
in the range of �̄� , so that 𝔠𝑡 , [𝑀 ]

T (𝜌T) = −�̃�(𝑘1) − �̃�(𝑘2).
Conversely, denote by �̄�(𝑘) ∈

◦

T the interior node of T with the property that 𝐾 (𝑘) ‘collapses’ at
�̄�(𝑘) – that is, �̄�(𝑘) is the maximum node 𝜈 with the property that whenever {(𝑘, 𝑖), (𝑙, 𝑗)} ∈ 𝑃, one has
𝑘 ∧T 𝑙 ≥ 𝜈. Since we only have to consider ‘connected’ pairings, it is clear that

#{𝑘 ∈ [𝑀] : �̄�(𝑘) ≥ 𝜇} ≤ #𝐿
(
T𝜇

)
− 1

for any 𝜇 ∈
◦

T\{𝜌T}. Let finally 𝑖(𝑘) ∈ {1, . . . , 𝑚(𝑘)} denote some index such that {(𝑘, 𝑖(𝑘)), (𝑙, 𝑗)} ∈ 𝑃
for some (𝑙, 𝑗) ∈ Λ such that 𝑘 ∧T 𝑙 = �̄�(𝑘).

We also choose an arbitrary index 𝑗 (𝑘) ∈ {1, . . . , 𝑚(𝑘)} such that 𝑗 (𝑘) ≠ 𝑖(𝑘) whenever 𝑘 ∈ 𝐽 (and
hence 𝑚(𝑘) > 1). With the choice

𝛽 (𝑘)
𝑖 := −

|𝔰 |
2

+ (𝖘(𝔱(𝑘)) + 𝜅)I𝑖=𝑖 (𝑘) − 𝜅I𝑖= 𝑗 (𝑘) ,

one has
∑
𝑖 𝛽

(𝑘)
𝑖 = 𝛽 (𝑘) and 𝛽 (𝑘)

𝑖 > −|𝔰 | − I𝑘∉𝐽 , so that it remains to show formula (2.28), which follows
once we show that ∑

𝑘:�̄� (𝑘) ≥𝜈

𝖘(𝔱(𝑘)) − 𝜅𝑀 ≥
∑
𝜇≥𝜈

�̃�
(
𝔱
(
�̄� (𝜇)

) )
.

5If the argmin is not unique, we choose a minimiser arbitrarily.
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It is clear from the fact that the numbers �̄� (𝜇) were recursively chosen to maximise 𝖘(𝔱(𝑘)), so that for
any 𝐴 ⊆ 𝐿(T𝜈) with #𝐴 ≤ #𝐿(T𝜈) − 1, one has∑

𝜇≥𝜈

�̃�
(
𝔱
(
�̄� (𝜇)

) )
≤

∑
𝑘∈𝐴

�̃�(𝔱(𝑘)) ≤
∑
𝑘∈𝐴

𝖘(𝔱(𝑘)) + 𝜅�̄� .

Since �̄�(𝑘) ≥ 𝜈 implies 𝑘 ∈ 𝐿(T𝜈), the proof is finished. �

2.5. Additional technical assumptions

For the main result of this article we need a technical assumption that guarantees that ‘logarithmic’ trees
which appear (modulo polynomial decoration) as subtrees of other ‘logarithmic’ trees are such that the
BPHZ character vanishes automatically. This should also hold after we shift the noise. It turns out that
in some examples (for instance, generalised KPZ; see Appendix C.3), this is not true if we consider
arbitrary shifts. Instead, we exploit certain (anti-)symmetries of our integration kernels, and for this we
need the expectation that our noise is invariant under these symmetries. To make this more concrete,
we fix a finite symmetry group g ⊆ GL(𝑑) in d dimensions. The typical case one should have in mind
(which suffices for our purpose) is when g is generated by finitely many spatial reflections.

To incorporate this symmetry into our definitions, we make the following definition:

Definition 2.19. We denote byYs,𝑛
∞ ⊆ Y𝑛∞ the set of 𝐾 ∈ Y𝑛∞ such thatU𝐾 is invariant under simultaneous

transformation of all variables by any 𝐴 ∈ g. We also write 𝔜s,𝑁
∞ ⊆ 𝔜𝑁∞ for the space of all 𝐾 =

(
𝐾Ξm

)
such that 𝐾Ξm ∈ Ys,#m

∞ for any m and any Ξ, and we write 𝔜s,𝑁
0 ⊆ 𝔜𝑁0 for the closure of 𝔜s,𝑁

∞ under
the norm (2.18).

Later on it will be convenient to also introduce the notation Ys,𝑛
∞,★ ⊆ Ys,𝑛

∞ for the linear space spanned
by 𝐾0 ⊗ · · · ⊗ 𝐾𝑛 ∈ Ys,𝑛

∞ such that
∫

𝐾0 = 0. Note that for any 𝐾 ∈ Ys,𝑛
∞ , one can view U𝐾 as an element

C̄∞
𝑐

(
D̄𝑛/g

)
. Here we let g act on D̄𝑛 via 𝐴(𝑥𝑖)𝑖≤𝑛 := (𝐴𝑥𝑖)𝑖≤𝑛 for any 𝐴 ∈ g. The following definition

will play an important role:

Definition 2.20. We write 𝔐s
∞ ⊆ 𝔐∞ for the subspace of noises given as in formula (2.20) for some

𝐾 ∈ 𝔜s,𝑁
∞ , and we write𝔐s

0 ⊆ 𝔐0 for the closure of𝔐s
∞ under the norm (2.21). We call a smooth noise

𝜂 = (𝜂Ξ)Ξ∈𝔏−
∈ 𝔐s

∞ a ‘shifted smooth noise’.

The terminology ‘shifted noise’ will become clear in Section 5.2. In order to formulate our assump-
tion, let V denote the set of trees 𝜏 ∈ 𝒯− with �𝜏�𝔰 = 0 and which are ‘subtrees’ (modulo polynomial
decoration) of a larger tree of zero homogeneity. More precisely, for any 𝜏 ∈ V there exist another
tree 𝜎 = 𝑆𝔫𝔢 ∈ 𝒯− with �𝜎�𝔰 = 0, a proper subtree 𝜏 = 𝑇𝔫𝔢 ⊆ 𝜎 of 𝜎 (with ‘proper’ meaning that
𝐸 (𝜏) � 𝐸 (𝜎)) and a decoration �̃� : 𝑁 (𝜏) → N𝑑 such that 𝜏 = 𝑇

�̃�
𝔢 . We also assume that 𝜏 is connected to

its complement in 𝜎 with more than one node, so that #{𝑢 ∈ 𝑁 (𝜏) : ∃𝑒 ∈ 𝐸 (𝜎) \𝐸 (𝜏) with 𝑢 ∈ 𝑒} > 1.

Assumption 5. We assume that for any 𝜏 ∈ V and (not necessarily Gaussian) shifted smooth noise 𝜂,
one has 𝑔𝜂 (𝜏) = 0.

Remark 2.21. The only place where Assumption 5 is used is the proof of Lemma 5.23. Loosely
speaking, it ensures that if 𝜏 is a tree of 0 homogeneity and only one of its noises is made slightly more
regular, then the renormalisation constant does not present any logarithmic divergences anymore. We
need this to ensure that renormalisation constants of ‘shifted’ trees are bounded by a constant depending
only on the largest scale involved (we will have various shifts which are regularised on different scales).
The strategy we employ relies on upper and lower bounds of the blow-up behaviour of renormalisation
constants, from which we deduce exactly which ‘shifted’ tree is dominant. We do not show such a lower
bound for log-divergences, which is why we need an additional assumption ensuring that there is only
the ‘main’ log-divergence and no log-subdivergence.

Finally, denote by V0 the set of 𝜏 ∈ 𝒯− with �𝜏�𝔰 = 0 and #𝐿(𝜏) = 2.
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Assumption 6. We assume that for any 𝜏 ∈ V0 and (not necessarily Gaussian) shifted smooth noise 𝜂,
one has 𝑔𝜂 (𝜏) = 0.

Assumption 6 is needed in Section 4, since the stability under removing the large-scale cutoff given
in Theorem 4.19 fails in general for 𝜏 ∈ V0. Note that for 𝜏 ∈ V0, one has E𝚷𝜂𝜏(0) = −𝑔𝜂 (𝜏) = 0.

Remark 2.22. We give an informal reason why Assumption 6 is needed in Theorem 4.19. There we
consider the evaluation from Definition 4.17, which defines a constant based on the idea of integrating a
tree 𝜏 with leaves 𝑢1, . . . , 𝑢𝑛 against a test function 𝜙(𝑢1, . . . , 𝑢𝑛). We will assume in this context that 𝜙
is a function of the differences of its arguments and compactly supported in these differences (i.e., there
exists 𝑅 > 0 so that 𝜙(𝑢1, . . . , 𝑢𝑛) = 0 whenever there exist 𝑖, 𝑗 ≤ 𝑛 such that

��𝑢𝑖 − 𝑢 𝑗
�� > 𝑅). Under this

assumption, we will show that this evaluation remains bounded as one removes the large-scale cutoff
from the integration kernels. The proof relies on a counting argument, which we use to apply the results
from the last section of [Hai18]. One can think of this as a generalisation of the fact that

∫
R𝑑 (1+ |𝑥 |) 𝑝𝑑𝑥

exists if and only if 𝑝 < −𝑑 to the case of generalised convolutions. In this analogy, the case 𝜏 ∈ V0 is
similar to the situation of trying to integrate (1 + |𝑥 |)−𝑑 , which diverges on large scales.

Note that we do not have this problem for trees with more than two leaves, even if they are logarith-
mically divergent. This is because we assume that 𝜙 is compactly supported in all differences between
its arguments, which in some sense means that we ‘gain’ a degree |𝔰 |

2 for every leaf, as far as the power-
counting argument is concerned (formula (4.16) makes this more clear).

Remark 2.23. One can replace Assumption 6 by the weaker Assumptions 7 and 8 introduced in
Section 3.1. We show in Section 4 that the former really implies the latter two. In some interesting
examples, including stochastic differential equations, Φ𝑝2 , Yang–Mills and the parabolic Anderson in
two spatial dimensions, Assumptions 7 and 8 can be shown ‘by hand’ relatively easily, even though
all of these examples violate Assumption 6. However, for many more convoluted examples, including
Φ4

4−𝜀 , generalised KPZ and the parabolic Anderson model in three dimensions, it seems difficult to
show these assumptions by hand. We actually expect Assumptions 7 and 8 to always hold, so that one
should be able to drop Assumption 6 with a little more technical effort.

3. A support theorem for random models

Recall that we fix a Gaussian (space or space-time) white noise 𝜉 = (𝜉Ξ)Ξ∈𝔏−
, which we can view as an

element of 𝔐s
0 (see Definition 2.20). We also fix a smooth mollifier 𝜌 ∈ C∞

𝑐

(
D̄/g

)
with

∫
𝜌 = 1, so

that 𝜉 𝜀 := 𝜉 ★ 𝜌 (𝜀) ∈ 𝔐s
∞ for any 𝜀 > 0, and one has 𝜉 𝜀 → 𝜉 in𝔐s

0. We write 𝑔𝜀 := 𝑔 𝜉
𝜀 for the BPHZ

character (2.5) and �̂�
𝜀 := �̂�

𝜉 𝜀

and �̂�
𝜀 := �̂�

𝜉 𝜀

for the BPHZ-renormalised lift (2.6) of 𝜉 𝜀

3.1. The ideal J
Let us first introduce the following notation, which we will use heavily in the forthcoming sections:
Given a kernel assignment (𝐺𝔱)𝔱∈𝔏+

with 𝐺𝔱 ∈ C∞
𝑐

(
D̄\{0}

)
absolutely integrable, we define for any tree

𝜏 ∈ T a function K𝐺𝜏 : D̄𝐿 (𝜏) → R by

K𝐺𝜏
(
𝑥𝐿 (𝜏)

)
:=

∫
D̄𝑁 (𝜏)

𝑑𝑥𝛿
(
𝑥𝜌𝜏

) ∏
𝑒∈𝐾 (𝜏)

𝐷𝔢(𝑒)𝐺𝔱 (𝑒)
(
𝑥𝑒↓ − 𝑥𝑒↑

)
×

∏
𝑢∈𝑁 (𝜏)

𝑥𝔫 (𝑢)
𝑢

∏
𝑒∈𝐿 (𝜏)

𝛿
(
𝑥𝑒 − 𝑥𝑒↓

)
. (3.1)

We also write K̂ := K�̂� . Although �̂� does not have bounded support, this is well defined as a limiting
distribution obtained by removing a cutoff (see Theorem 4.19). Given additionally a smooth function
𝜑 ∈ C̄∞

𝑐

(
D̄𝐿 (𝜏)

)
, it will be useful to introduce the notation

〈K𝐺𝜏, 𝜑〉 :=
∫

D̄𝐿 (𝜏)

𝑑𝑥K𝐺𝜏(𝑥)𝜑(𝑥) ∈ R. (3.2)
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Example 3.1. We can graphically represent the action of K𝐺𝜏. For instance, we write (slightly
informally) (

K𝐺
)
(𝑥1, . . . , 𝑥4) =

𝑥1 𝑥2
𝑥3 𝑥4 ,

where we leave G implicit on the right-hand side.

For two different trees 𝜏, 𝜏, one has by definition 𝐿(𝜏) ∩ 𝐿(𝜏) = ��, so that K𝐺𝜏 and K𝐺𝜏 have
disjoint domains of definition. However if m := [𝐿(𝜏), 𝔱] = [𝐿(𝜏), 𝔱], then after symmetrising one can
naturally view K𝐺𝜏 and K𝐺𝜏 as being defined on the same space D̄m. In particular, the notation (3.2)
extends naturally to 𝜑 ∈ C̄∞

𝑐

(
D̄m

)
. This motivates the following definition:

Definition 3.2. We write Ψ̃ for the set of all families of test functions (𝜓m)m, indexed by multisets
m with values in 𝔏−, such that 𝜓m ∈ C̄∞

𝑐

(
D̄m/g

)
. We also write Ψ̃◦ for the set of 𝜓 ∈ Ψ̃ such that∫

𝜓m :=
∫

D̄m 𝛿
(
𝑥𝑝

)
𝜓m(𝑥m) = 0 for any m. Here we fix some arbitrary 𝑝 ∈ d(m) (it is clear that this

definition does not depend on the choice of p). We then define an evaluation 〈K𝐺𝜏, 𝜓〉 for 𝜏 ∈ T and
𝜓 ∈ Ψ̃ by setting

〈K𝐺𝜏, 𝜓〉 :=
〈
K𝐺𝜏, 𝜓 [𝐿 (𝜏) ,𝔱]

〉
.

With this notation we now define an ideal J as follows:

Definition 3.3. We define J ⊆ T− as the ideal generated by all elements 𝜏 ∈ Vec𝒯− such that〈
K̂𝜏, 𝜓

〉
= 0 for any 𝜓 ∈ Ψ̃◦. We then denote by H ⊆ G− the annihilator of J (given by the set of all

characters 𝑔 ∈ G− with the property that 𝑔(𝜎) = 0 for all 𝜎 ∈ J).

Note that by definition J is generated by linear combinations of trees (rather than linear combinations
of products of trees). We will use this fact heavily later.

Remark 3.4. There is a natural norm on ‖·‖K+ on large-scale kernel assignments R (see formula (4.9)),
and writing K+

0 for the closure of the space of smooth, compactly supported functions under this norm,
one has indeed �̂� − 𝐾 ∈ K+

0 . Moreover, it is not hard to show that 〈K𝐾+𝑅𝜏, 𝜓〉 extends continuously to
𝑅 ∈ K+

0 for any 𝜏 ∈ T− and any 𝜓 ∈ Ψ̃◦, so that
〈
K̂𝜏, 𝜓

〉
is well defined. The last claim follows from a

straightforward counting argument as in [Hai18, Section 4], which is carried out in Lemma 4.21.

Remark 3.5. We choose 𝜓 in the definition of Ψ̃◦ to integrate to zero, since the cumulants of our ‘shifts’
will satisfy this property. This is needed to ensure weak convergence of the shift to zero.

Example 3.6. Consider as an example the KPZ equation 𝜕𝑡ℎ = Δℎ + |𝜕𝑥ℎ|
2 + 𝜉, where T− is generated

by the trees

, , , , , .

We show that J is the ideal generated by { }. First note that we have ∈ J, since K𝐺 = 0.
Next, we recall that J is generated by linear combinations of trees with the same number of leaves.
Furthermore, by simply rescaling 𝜙(𝑥) ↦→ 𝜙

(
𝜀−1𝑥

)
, we see that J is generated by linear combinations

of trees of the same number of leaves and the same homogeneity. It follows that no linear combination
involving any of , or belongs to J. The only nontrivial part is to deal with the remaining

two trees , . We sketch the proof that they cannot form a linear combination that takes
values in J. For this, fix test functions 𝜓𝑖, 𝑗 : D̄ → R and consider test functions 𝜙𝜀 of the form
𝜙𝜀 (𝑥1, 𝑥2, 𝑥3, 𝑥4) =

∑
𝜎

∑
1≤𝑖< 𝑗≤4 𝜓

𝜀
𝑖, 𝑗

(
𝑥𝜎 (𝑖) − 𝑥𝜎 ( 𝑗)

)
, where the first sum runs over all permutations
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𝜎 of {1, 2, 3, 4}. Here 𝜓𝜀𝑖, 𝑗 (𝑥) := 𝜀− 3
2 𝜓𝑖, 𝑗 (𝜀

−𝔰𝑥) if (𝑖, 𝑗) ∈ {(1, 2), (3, 4)}, and 𝜓𝜀𝑖, 𝑗 (𝑥) := 𝜓𝑖, 𝑗 (𝑥)
otherwise. It is then not difficult to see that〈

K̂ , 𝜙𝜀

〉
∼ 𝜀−1 and

〈
K̂ , 𝜙𝜀

〉
∼ 𝜀−2 .

The reason for this is that the first tree contains only one subdivergence of degree −1, whereas the
second tree contains two of them. From this it follows that no linear combination of these two trees can
be an element of J, thus leading to the claim.

We now state the two assumptions that we are going to need for this section. The first assumes that
the annihilator H of J forms indeed a group.

Assumption 7. The ideal J is a Hopf ideal in T−. In particular, its annihilator H is a Lie subgroup of
the renormalisation group G−.

The next assumption relates the subgroup H to the BPHZ characters associated to smooth shifted
noise. We recall the notation 𝔐s

∞ for the space of smooth shifted noises and 𝔐s
0 for its closure under

the norm (2.21). In the following assumption we do not require the noise 𝜂 to be Gaussian:

Assumption 8. There exists a continuous map𝔐s
0 ' 𝜂 ↦→ 𝑓 𝜂 ∈ G− with the property that 𝑓 0 = 1∗, and

such that 𝑔𝜂 ∈ 𝑓 𝜂 ◦ H for any 𝜂 ∈ 𝔐s
∞. Here 0 denotes the 0-noise.

We will see in Corollary 3.23 that H is in fact the smallest Lie subgroup of G− that has the property
described in this assumption. As was already pointed out in Remark 2.23, we will show in Section 4
that the two assumptions given here are implied by Assumption 6 (which is the only argument in this
paper where Assumption 6 is needed).

3.2. A support theorem for random models

From now on, we will always assume that Assumptions 2–5, 7 and 8 hold, except when specified
explicitly. The only exception is Section 4, where we prove that Assumptions 7 and 8 are implied by
Assumptions 2–6.

Setting �̂�
𝜀
= R𝑔𝜀

𝑍c(𝜉
𝜀) for the renormalised approximate model and �̂� = lim𝜀→0 �̂�

𝜀 for its limit,
we can rewrite it as

�̂�
𝜀
= 𝑇𝜉 𝜀R𝑔𝜀

𝑍c (0).

Models obtained by acting on the canonical lift of 0 with the renormalisation operators will later play
an important role, so we introduce the following notation:

Definition 3.7. For any character 𝑔 ∈ G−, we define the model 𝒵(𝑔) by letting the renormalisation
operator act on the canonical lift of 0 to a model – that is, we set

𝒵(𝑔) := R𝑔𝑍c (0).

We will see in Lemma 3.12 that the action of the translation operator maps the support into itself,
so that the main part of the proof consists in understanding the set of characters 𝑔 ∈ G− such that
R𝑔𝑍c(0) ∈ supp �̂� . We will show that this set is a coset 𝑓 ◦ H of the Lie subgroup H of G− already
constructed.

Proposition 3.8. Let H be the Lie subgroup of G− defined in Definition 3.3 and let 𝑓 𝜉 ∈ G− be the
character defined in Assumption 8. Then for any character 𝑔 ∈ 𝑓 𝜉 ◦ H in the left coset determined by
𝑓 𝜉 and H, one has

𝒵(𝑔) ∈ supp �̂� .
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This proposition follows from Proposition 3.21, which in turn relies on the constructions carried out
in Sections 3.3 and 5. Before we prove Proposition 3.8, we show now that it implies a support theorem
for random models (see Theorem 3.14).

Remark 3.9. The converse of Proposition 3.8 is not true in general. An example of this is given by
the rough paths B = (𝐵, B + M), where B𝑖, 𝑗𝑠,𝑡 :=

∫ 𝑡
𝑠

(
𝐵𝑖𝑟 − 𝐵𝑖𝑠

)
◦ 𝑑𝐵

𝑗
𝑟 denotes the Stratonovich lift and

M𝑠,𝑡 = (𝑡− 𝑠)𝑀 for a constant (in time) and skew-symmetric matrix M. These rough paths are known to
have support independent of M, but H = {1∗} is trivial in this case. We just sketch the argument here that
the support is really independent of M. Consider deterministic smooth shifts 𝐵𝑖𝑡 → 𝐵𝑖𝑡 + 𝜀

1
2 cos

(
𝜀−1𝑡

)
and 𝐵

𝑗
𝑡 → 𝐵

𝑗
𝑡 + 𝜀

1
2 sin

(
𝜀−1𝑡

)
. The translation operator transforms the second component into

B𝑖, 𝑗 , 𝜀𝑠,𝑡 = B𝑖, 𝑗𝑠,𝑡 + 𝜀− 1
2

∫ 𝑡

𝑠

(
𝐵𝑖𝑢 − 𝐵𝑖𝑠

)
cos

(
𝜀−1𝑢

)
𝑑𝑢

+ 𝜀
1
2

∫ 𝑡

𝑠
cos

(
𝜀−1𝑢

)
− cos

(
𝜀−1𝑠

)
𝑑𝐵𝑢 +

∫ 𝑡

𝑠

(
cos

(
𝜀−1𝑢

)
− cos

(
𝜀−1𝑠

))
cos

(
𝜀−1𝑢

)
𝑑𝑢.

The last term converges to a positive constant times (𝑡 − 𝑠) as 𝜀 → 0, and a quick computation shows
that the two terms in the centre vanish in this limit.

Remark 3.10. Proposition 3.8 also gives information about limit models obtained from a different
choice of renormalisation: For any 𝑘 ∈ G− and any 𝑔 ∈ 𝑘 ◦ 𝑓 𝜉 ◦ H, one has

𝒵(𝑔) ∈ suppR𝑘 �̂� .

Before we state the main theorem, we derive some immediate identities.

Lemma 3.11. For any character 𝑔 ∈ G− and any smooth noise ℎ ∈ 𝔐∞, one has the equality

R𝑔𝑍c (ℎ) = 𝑇ℎ𝒵(𝑔).

In particular, one has the identity

�̂�
𝜀
[𝜉] = 𝑇𝜉 𝜀𝒵(𝑔𝜀)

almost surely for any 𝜀 > 0.

Proof. In order to see the first identity, it is enough to apply Theorem 2.4 to 𝑓 ≡ 0. The second claim
follows from the facts that �̂� 𝜀 = R𝑔𝜀

𝑍 𝜀 and 𝑍 𝜀 [𝜉] = 𝑇𝜉 𝜀𝑍c (0). �

The next lemma crucially states that shifting the noises by a random smooth function maps the
support into itself.

Lemma 3.12. Set ℎ ∈ Ω∞. Then one has the identity

𝑇ℎ �̂� [𝜉] = �̂� [𝜉 + ℎ]

almost surely. Moreover, if ℎ ∈ 𝔐∞ is any smooth random noise, then one has the identity

supp𝑇ℎ �̂� ⊆ supp �̂� .

Proof. We show the first statement. By Cameron–Martin (Theorem 2.6), it follows that the laws of 𝜉
and 𝜉 + ℎ are equivalent. In particular, the right-hand side is well defined P-almost surely. To see the
identity claimed in the statement, we use the fact that T is jointly continuous in h and Z. We then have

�̂� [𝜉 + ℎ] = lim
𝜀→0

�̂�
𝜀
[𝜉 + ℎ] = lim

𝜀→0
𝑇ℎ𝜀 �̂�

𝜀
[𝜉] = 𝑇ℎ �̂� [𝜉] .
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In order to see the second statement, let first ℎ ∈ Ω∞ be deterministic. In this case we exploit again the
fact that the laws of 𝜉 and 𝜉 + ℎ are equivalent, so that the laws of �̂� [𝜉] and 𝑇ℎ �̂� [𝜉] = �̂� [𝜉 + ℎ] are
equivalent as well and supp �̂� = supp𝑇ℎ �̂� . Using Lemma 3.13, it follows that the continuous operator
𝑇ℎ maps the support of �̂� into itself.

Let now ℎ ∈ 𝔐∞ be random and let 𝐴 ⊆ Ω be the set of full P-measure with the property that
�̂� (𝜔) ∈ supp �̂� for any 𝜔 ∈ 𝐴. It then follows for 𝜔 ∈ 𝐴 that 𝑇ℎ (𝜔) �̂� (𝜔) ∈ supp �̂� . In particular we
have 𝑇ℎ �̂� ∈ supp �̂� almost surely. �

In the previous proof we used the following lemma:

Lemma 3.13. Let 𝑋,𝑌 be two Polish spaces, let 𝑇 : 𝑋 → 𝑌 be a continuous map and let 𝜇 be a
probability measure on X. Then supp𝑇∗𝜇 = 𝑇 (supp 𝜇).

Proof. Since 𝑥 ∈ supp 𝜇 for 𝜇-almost every 𝑥 ∈ 𝑋 , it follows that𝑇 (𝑥) ∈ 𝑇 (supp 𝜇) 𝜇-almost surely, and
hence supp𝑇∗𝜇 ⊆ 𝑇 (supp 𝜇). To see the inverse inclusion, let 𝑦 = 𝑇 (𝑥) ∈ 𝑇 (supp 𝜇) with 𝑥 ∈ supp 𝜇,
and let U be a neighbourhood of y in Y. By continuity it follows that 𝑇−1 (𝑈) is a neighbourhood of x
in X, and by the definition of the support, it follows that 𝜇{𝑥 : 𝑇 (𝑥) ∈ 𝑈} = 𝜇

(
𝑇−1 (𝑈)

)
> 0, and thus

𝑦 ∈ supp𝑇∗𝜇. This shows that 𝑇 (supp 𝜇) ⊆ supp𝑇∗𝜇 and concludes the proof. �

Assuming Proposition 3.8, we can now state and prove the main theorem of this section.

Theorem 3.14. For any 𝜀 > 0, let �̂� 𝜀 denote the BPHZ renormalised lift of the regularised noise 𝜉 𝜀 to
a random admissible model and let 𝑘 ∈ G− be any character. Then one has the identity

suppR𝑘 �̂� =
⋂
𝜀>0

⋃
𝛿<𝜀

suppR𝑘 �̂�
𝛿
. (3.3)

Moreover, if we denote by 𝑓 𝜀 := 𝑓 𝜉
𝜀

∈ G− the sequence of characters defined in Assumption 8 (so that
𝑓 𝜀 → 𝑓 𝜉 as 𝜀 → 0), then one has the stronger statement

suppR𝑘 �̂� =
⋃

𝜀∈(0,1)
suppR𝑘◦ 𝑓 𝜉 ◦( 𝑓 𝜀 )−1

�̂�
𝜀
. (3.4)

Proof. Remember that we assume Proposition 3.8. We first argue that equation (3.3) follows from
equation (3.4). To see this, we introduce the sequence of characters 𝑙 𝜀 ∈ G− via the identity 𝑘 ◦ 𝑓 𝜉 ◦

( 𝑓 𝜀)−1 = 𝑙 𝜀 ◦ 𝑘 , and we note that since 𝑘 ◦ 𝑓 𝜉 ◦ ( 𝑓 𝜀)−1 → 𝑘 in G−, it follows that 𝑙 𝜀 → 1∗. By Lemma
3.13 and the continuity of the action of the renormalisation group, it follows that suppR𝑘 �̂� can be
written as

lim
𝜀→0

⋃
𝛿<𝜀

suppR𝑙𝜀◦𝑘 �̂�
𝛿
= lim
𝜀→0

R𝑙𝜀
⋃
𝛿<𝜀

suppR𝑘 �̂�
𝛿
=

⋂
𝜀>0

⋃
𝛿<𝜀

suppR𝑘 �̂�
𝛿
.

It remains to show equation (3.4). The fact that suppR𝑘 �̂� is contained in the right-hand side follows
trivially from the fact that

R𝑘◦ 𝑓 𝜉 ◦( 𝑓 𝜀 )−1
�̂�
𝜀

→ R𝑘 �̂�

in probability in the space of models, so it remains to show the inverse inclusion. By Lemma 3.11 we
have the identity

suppR𝑘◦ 𝑓 𝜉 ◦( 𝑓 𝜀 )−1
�̂�
𝜀
=

{
𝑇ℎ𝒵

(
𝑘 ◦ 𝑓 𝜉 ◦ �̂�𝜀

)
: ℎ ∈ Ω∞

}
,
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where we introduce the character �̂�𝜀 ∈ G− via the identity 𝑓 𝜀 ◦ �̂�𝜀 = 𝑔𝜀 . By Assumption 8 one has
�̂�𝜀 ∈ H, so Proposition 3.8 implies that

𝒵
(
𝑘 ◦ 𝑓 𝜉 ◦ �̂�𝜀

)
∈ suppR𝑘 �̂� .

It remains to show that the translation operator 𝑇ℎ leaves the support of R𝑘 �̂� invariant, in the sense that
for any smooth function ℎ ∈ Ω∞ one has

supp𝑇ℎR𝑘 �̂� = suppR𝑘 �̂� .

This in turn is a corollary of Lemma 3.12, the fact that renormalisation and translation commute
(see Theorem 2.4) and Cameron and Martin’s theorem. �

One consequence of Theorem 3.14 is that the support of the limit model does in general depend on
the choice of renormalisation 𝑘 ∈ G−. In the next result we show that for any fixed 𝑘 ∈ G−, there exists
a Lie subgroup H𝑘 of G− such that changing renormalisation from k to 𝑙 ◦ 𝑘 for some 𝑙 ∈ H𝑘 does not
change the support. More precisely, we have the following result:
Corollary 3.15. For any 𝑘 ∈ G−, let �̄� := 𝑘 ◦ 𝑓 𝜉 , and denote by H𝑘 the Lie subgroup of G− obtained
from H by conjugation with �̄� – that is, the subgroup given by

H𝑘 := �̄� ◦ H ◦ �̄�−1.

Then for any 𝑙 ∈ H𝑘 , one has

suppR𝑙◦𝑘 �̂� = suppR𝑘 �̂� .

Moreover, the groups H𝑘 are invariant under composing k with any element of H𝑘 – that is, one has
H𝑘 = H𝑙◦𝑘 for any 𝑙 ∈ H𝑘 .
Proof. The supports of R𝑘 �̂� and R𝑙◦𝑘 �̂� are respectively characterised as the closure of all smooth
translations of all models of the form 𝒵(ℎ) and 𝒵

(
ℎ̃
)

for some ℎ ∈ �̄� ◦H and some ℎ̃ ∈ 𝑙 ◦ �̄� ◦H. We
are thus left to show that

𝑙 ◦ �̄� ◦ H = �̄� ◦ H,

which is true if and only if 𝑙 ∈ H𝑘 .
The fact that H𝑘 is invariant under a change of renormalisation by 𝑙 ∈ H𝑘 follows from the fact that

H𝑙◦𝑘 = 𝑙 ◦
(
�̄� ◦ H ◦ �̄�−1

)
◦ 𝑙−1

⊆ �̄� ◦ H ◦ �̄�−1 ◦
(
�̄� ◦ H ◦ �̄�−1

)
◦ �̄� ◦ H ◦ �̄�−1 = H𝑘 ,

whence the claim follows. �

Remark 3.16. A consequence of this corollary is that, writing e for the unit in G−, the collection of
cosets {𝑘 ◦H𝑒 : 𝑘 ∈ G−} yields a foliation of G− into a family of manifolds of fixed dimension with the
property that for any 𝑘 ∈ G−, the support of R𝑙 �̂� is independent of 𝑙 ∈ 𝑘 ◦ H𝑒.

3.3. Renormalisation-group argument

In light of the previous section, it remains to show Proposition 3.8. For this we fix from now on a character
ℎ ∈ 𝑓 𝜉 ◦ H and we will construct a sequence 𝜁𝛿 ∈ 𝔐∞, 𝛿 > 0, of random smooth noises such that

𝑇𝜁𝛿 �̂� → 𝒵(ℎ) in probability in M0
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as 𝛿 → 0. Together with the continuity of the translation operator and Lemma 3.12, this immediately
implies Proposition 3.8. This convergence essentially relies on two conditions. The first condition
(formula (3.5)) guarantees that the noise cancels out in the limit 𝛿 → 0, and the second condition
(equation (3.6)) guarantees the correct behaviour of the expected values. Before stating the main
proposition of this section, we introduce the following notation:

Definition 3.17. Let ∼ denote the equivalence relation on 𝒯− given by setting 𝜏 ∼ 𝜏 if and only if
�𝜏�𝔰 = �𝜏�𝔰 , and one has that the identity [𝐿(𝜏), 𝔱] = [𝐿(𝜏), 𝔱] between multisets. We write 𝒯−/∼ for
the set of equivalence classes of 𝒯− with respect to ∼.

We also fix an arbitrary total order � on 𝒯− with the property that 𝜏 � 𝜏 whenever 𝜏, 𝜏 ∈ 𝒯− are two
trees such that either #𝐸 (𝜏) < #𝐸 (𝜏) or #𝐸 (𝜏) = #𝐸 (𝜏) and

∑
𝑢∈𝑁 (𝜏) 𝔫(𝑢) ≤

∑
𝑢∈𝑁 ( �̃�) 𝔫(𝑢). We write

𝒯�𝜏
− ⊆ 𝒯− and𝒯≺𝜏

− ⊆ 𝒯−, respectively, for the set of trees 𝜏 ∈ 𝒯− such that 𝜏 � 𝜏 and 𝜏 ≺ 𝜏. We denote
the unital subalgebras of T− generated by 𝒯≺𝜏

− and 𝒯�𝜏
− by T≺𝜏

− and T�𝜏
− , respectively, and we point out

that it follows from the properties of the coproduct Δ− that both of these algebras form Hopf algebras.
We use the total order � to select a subset of trees 𝔗− ⊆ 𝒯− in the following way:

Definition 3.18. For any equivalence class Θ ∈ 𝒯−/∼, we write 𝒯−(Θ) ⊆ Θ for the set of trees 𝜏 ∈ Θ
with the property that there exists a linear combination of trees 𝜎 ∈ Vec

(
Θ ∩ 𝒯≺𝜏

−

)
such that

𝜏 + 𝜎 ∈ J.

(Here, J is the ideal in T− defined in Definition 3.3.) We also write 𝔗−(Θ) := Θ\𝒯−(Θ), and we define
𝔗− :=

⊔
Θ∈𝒯−/∼

𝔗−(Θ).

In equation (3.8) we will give a linear subspace X of Vec𝒯− for which we can show relatively easily
that J ∩ Vec𝒯− ⊆ 𝑋 , and our goal will be to show that 𝑋 = Vec𝒯−. Definition 3.18 is set up so that it
suffices to show that𝔗− ⊆ 𝑋 . The total order � is chosen in such a way that we can show this inductively
in the number of edges and the polynomial decoration of 𝜏 ∈ 𝔗−.

Example 3.19. Consider the case of the 2D PAM equation, where

𝒯− =
{

, , 1 1 , 2 2

}
and where J is the ideal generated by , − 1 1 − 2 2 . Here a bold edge with label 𝑘 = 1, 2 denotes
the derivative of the Poisson kernel with respect to 𝑥𝑘 , and a circle denotes an instance of spatial white
noise. In this case we can choose the total order by setting � � 1 1 � 2 2 . We then have

𝒯−/∼=
{
{ },

{
, 1 1 , 2 2

}}
, and further, 𝔗−({ }) = �� and 𝔗−

({
, 1 1 , 2 2

})
=

{
, 1 1

}
.

In particular, we have 𝔗− =
{

, 1 1

}
.

In Section 5 we will show the following proposition (see Proposition 5.19), for which we recall the
notation Υ𝜂 from Section 2.2.3 and the spaces𝔐s

∞ and𝔐0 of smooth shifted noises and (rough) noises
from Definition 2.13:

Proposition 3.20. There exists a sequence 𝜁𝛿 ∈ 𝔐s
∞, 𝛿 > 0, of smooth random noises such that

𝜉 + 𝜁𝛿 → 0 in 𝔐0 (3.5)

and such that for any 𝜏 ∈ 𝔗−, one has

lim
𝛿→0

lim
𝜀→0

Υ𝜉
𝜀+𝜁𝛿 𝑀𝑔𝜀

𝜏 = ℎ(𝜏). (3.6)
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Given this proposition, we can show the following result:

Proposition 3.21. Let 𝜁𝛿 be the sequence given by Proposition 3.20. Then one has

lim
𝛿→0

𝑇𝜁𝛿 �̂� =𝒵(ℎ)

in probability in the space of admissible models.

Proof. We denote as before the BPHZ character for 𝜉 𝜀 by 𝑔𝜀 := 𝑔 𝜉
𝜀 , and we denote similarly by

𝑔𝜀, 𝛿 := 𝑔 𝜉
𝜀+𝜁𝛿 the BPHZ character for the smooth noise 𝜉 𝜀 + 𝜁𝛿 . We define a character ℎ𝜀, 𝛿 ∈ G− via

the relation

ℎ𝜀, 𝛿 ◦ 𝑔𝜀, 𝛿 = 𝑔𝜀 , (3.7)

where ◦ denotes the group product in G−. We show inductively with respect to ≺ that one has

lim
𝛿→0

lim
𝜀→0

ℎ𝜀, 𝛿 (𝜏) = ℎ(𝜏). (3.8)

Let first 𝜏 ∈ 𝔗−. Since, for any tree 𝜏 ∈ 𝒯 which contains at least one noise-type edge, one has

Υ𝜉
𝜀+𝜁𝛿 𝑀𝑔𝜀,𝛿

𝜏 → 0

in the limit 𝜀 → 0 and 𝛿 → 0 by Lemma 3.22, it follows that

ℎ𝜀, 𝛿 (𝜏) = Υ𝜉
𝜀+𝜁𝛿 𝑀𝑔𝜀,𝛿

𝑀ℎ𝜀,𝛿
𝜏 −

(
ℎ𝜀, 𝛿 ⊗ Υ𝜉

𝜀+𝜁𝛿 𝑀𝑔𝜀,𝛿
)
(Δ−𝔦 − Id ⊗ 1)𝜏

= Υ𝜉
𝜀+ℎ𝛿 𝑀𝑔𝜀

𝜏 + 𝑜(1),

where 𝑜(1) → 0 as 𝜀 → 0 and 𝛿 → 0, so that equation (3.8) follows from equation (3.6).
Set now 𝜏 ∈ 𝒯−\𝔗−. Let Θ ∈ 𝒯−/∼ be the equivalence class of 𝜏, and let 𝜏 ∈ Vec

(
Θ ∩ 𝒯≺𝜏

−

)
such

that 𝜎 := 𝜏+𝜏 ∈ J. We claim that ( 𝑓 𝜀)−1 ◦ℎ𝜀, 𝛿 (𝜎) → 0 in the limit 𝜀 → 0 and 𝛿 → 0. Indeed, one has

( 𝑓 𝜀)−1 ◦ ℎ𝜀, 𝛿 ◦ 𝑓 𝜀, 𝛿 ◦ �̂�𝜀, 𝛿 = �̂�𝜀 ,

where 𝑓 𝜀 , �̂�𝜀 and 𝑓 𝜀, 𝛿 , �̂�𝜀, 𝛿 are defined as in Assumption 8 for the noises 𝜉 𝜀 and 𝜉 𝜀 + 𝜁𝛿 , respectively,
so that 𝑓 𝜀 ◦ �̂�𝜀 = 𝑔𝜀 and 𝑓 𝜀, 𝛿 ◦ �̂�𝜀, 𝛿 = 𝑔𝜀, 𝛿 . By definition, one has that �̂�𝜀, 𝛿 ∈ H and �̂�𝜀 ∈ H, so that

( 𝑓 𝜀)−1 ◦ ℎ𝜀, 𝛿 ◦ 𝑓 𝜀, 𝛿 = �̂�𝜀 ◦
(
�̂�𝜀, 𝛿

)−1
∈ H. (3.9)

By Assumption 8, the characters 𝑓 𝜀 and 𝑓 𝜀, 𝛿 converge to 𝑓 𝜉 and 1∗ in G−, respectively. At this stage
we would be done, if we knew a priori that lim𝛿→0 lim𝜀→0 ℎ𝜀, 𝛿 exists in G− on T�𝜏

− . By the induction
hypothesis, this is true on T≺𝜏

− , so that it remains to show that ℎ𝜀, 𝛿 (𝜏) converges to something in the
limit 𝜀 → 0 and 𝛿 → 0. For this, note that equation (3.9) vanishes when applied to 𝜎, since 𝜎 ∈ J. On
the other hand, one has

(Δ− ⊗ Id)Δ−𝜎 ∈ (1 ⊗ 𝜏 ⊗ 1) +
(
T�𝜏

− ⊗ T≺𝜏
− ⊗ T�𝜏

−

)
,

and we conclude using the induction hypothesis, which implies in particular that

( 𝑓 𝜀)−1 ⊗ ℎ𝜀, 𝛿 ⊗ 𝑓 𝜀, 𝛿

converges on T�𝜏
− ⊗ T≺𝜏

− ⊗ T�𝜏
− .

https://doi.org/10.1017/fmp.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.18


Forum of Mathematics, Pi 39

It follows that lim𝛿→0 lim𝜀→0( 𝑓
𝜀)−1 ◦ ℎ𝜀, 𝛿 =

(
𝑓 𝜉

)−1
◦ ℎ on T�𝜏

− . Since T�𝜏
− is a Hopf subalgebra

of T−, we conclude that one also has lim𝛿→0 lim𝜀→0 ℎ𝜀, 𝛿 = ℎ on T�𝜏
− , and this concludes the proof of

equation (3.8).
The remaining proof is now straightforward. We first compute

𝑇𝜁𝛿 �̂�
𝜀
= R𝑔𝜀

𝑍c(𝜉
𝜀 + 𝜁𝛿) = Rℎ𝜀,𝛿R𝑔𝜀,𝛿

𝑍c(𝜉
𝜀 + 𝜁𝛿).

It follows from [CH16, Theorem 2.33] that lim𝛿→0 lim𝜀→0 R𝑔𝜀,𝛿
𝑍c(𝜉

𝜀 + 𝜁𝛿) = 𝑍c (0) in probability in
the space of models. Using the fact that the renormalisation group G− acts continuously onto the space
of admissible models, together with the fact that lim𝛿→0 lim𝜀→0 ℎ𝜀, 𝛿 = ℎ, we obtain

lim
𝛿→0

lim
𝜀→0

𝑇𝜁𝛿 �̂�
𝜀
= Rℎ𝑍c (0) =𝒵(ℎ),

and this concludes the proof. �

Lemma 3.22. For any 𝜏 ∈ T, the map 𝜂 ↦→ E𝚷𝜂𝑀𝑔𝜂𝜏(0) is continuous as a map from 𝔐0 into R.

Proof. The continuity of the map 𝜂 ↦→ E
(
𝚷𝜂𝑀𝑔𝜂𝜏

)
(𝜑) for any fixed test function 𝜑 ∈ C∞

𝑐 (D) is a
consequence of [CH16]. To show the lemma, it thus suffices to find, for any fixed 𝜏 ∈ T, a test function
𝜑 such that E𝚷𝜂𝑀𝑔𝜂𝜏(0) = E

(
𝚷𝜂𝑀𝑔𝜂𝜏

)
(𝜑) for any smooth noise 𝜂 ∈ 𝔐∞. For this we recall that

one has (
�̂�
𝜂
𝜏
)
(𝑧) ∼

(
�̂�
𝜂

⊗ 𝑔𝑧

)
Δ+𝜏(0), 𝑧 ∈ D, (3.10)

whereΔ+ denotes the coproduct on the structure group G+ and 𝑔𝑧 ∈ G+ is defined by setting 𝑔𝑧 (𝑋𝑖) := 𝑧𝑖 ,
and 𝑔𝑧 (𝜏) = 0 for any nonpolynomial 𝜏 ∈ T+ (in the language of [BHZ19, Definition 6.16], this follows
from the fact that �̂�𝜂 is stationary). It follows that

E𝚷𝜂𝑀𝑔𝜂𝜏(𝑧) =
((

E�̂�𝜂
)
⊗ 𝑔𝑧

)
Δ+𝜏(0) =: 𝑃𝜂 (𝑧),

where 𝑃𝜂 is a polynomial depending on 𝜂 with deg 𝑃𝜂 ≤
∑
𝑢∈𝑁 (𝜏) |𝔫(𝑢) |𝔰 . Since for any fixed degree

N, one can find a test function 𝜑 integrating to 1 and such that
∫

𝑥𝑘𝜑(𝑥) 𝑑𝑥 = 0 for all 0 < |𝑘 | ≤ 𝑁 , we
conclude that 𝑃𝜂 (0) =

∫
𝑃𝜂 (𝑧)𝜑(𝑧), and thus

E𝚷𝜂𝑀𝑔𝜂𝜏(0) = E
(
�̂�
𝜂
𝜏
)
(𝜑),

which finishes the proof. �

3.4. Corollaries

We get the following characterisation of H:

Corollary 3.23. The group H is the smallest Lie subgroup of G− with the property that the statement of
Assumption 8 holds.

Proof. Let K ⊆ G− be any Lie subgroup of G− such that the statement of Assumption 8 holds, and
denote the corresponding characters for the noises 𝜉 𝜀 and 𝜉 𝜀 + 𝜁𝛿 by 𝑓 𝜀 and 𝑓 𝜀, 𝛿 . It then follows that
𝑓 𝜉 := lim𝜀→0 𝑓 𝜀 exists and lim𝛿→0 lim𝜀→0 𝑓 𝜀, 𝛿 = 1∗.

Let ℎ ∈ 𝑓 𝜉 ◦ H be any character and let 𝜁𝛿 be the sequence of smooth shifts defined in Proposition
3.20. Denoting as in the proof of Proposition 3.21 by 𝑔𝜀 and 𝑔𝜀, 𝛿 the BPHZ characters for 𝜉 𝜀 and
𝜉 𝜀 + 𝜁𝛿 , and by ℎ𝜀, 𝛿 ∈ G− the character defined via the relation (3.7), then it follows from equation
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(3.8) that ℎ𝜀, 𝛿 → ℎ. On the other hand, K is a subgroup, and by definition one has
(
𝑓 𝜀

)−1
◦ 𝑔𝜀 ∈ K

and
(
𝑔𝜀, 𝛿

)−1
◦ 𝑓 𝜀, 𝛿 ∈ K, so that (

𝑓 𝜀
)−1

◦ ℎ𝜀, 𝛿 ◦ 𝑓 𝜀, 𝛿 ∈ K.

Note now that since K is a Lie subgroup of a nilpotent (and therefore simply connected) Lie group,
it is closed (see, for example, the introduction of [MV93]). Since 𝑓 𝜀 → 𝑓 𝜉 and 𝑓 𝜀, 𝛿 → 1∗, one has
ℎ ∈ 𝑓 𝜉 ◦ K, whence it follows that

𝑓 𝜉 ◦ H ⊆ 𝑓 𝜉 ◦ K.

Since the identity belongs to H and K is a group, we conclude that
(
𝑓 𝜉

)−1
◦ 𝑓 𝜉 ∈ K and therefore that

H ⊆ K. �

An interesting, although somewhat unrelated, corollary is the following statement:

Corollary 3.24. Let 𝑘, 𝑙 ∈ G− be two characters, with 𝑘 ≠ 𝑙 and 𝑘 (Ξ) = 𝑙 (Ξ) = 0 for any noise type
Ξ ∈ 𝔏−. Then the laws of R𝑘 �̂� and R𝑙 �̂� are singular with respect to each other.

Remark 3.25. Even though the laws of R𝑘 �̂� and R𝑙 �̂� are mutually singular, their topological supports
may still be the same.

Proof. This is a corollary of Proposition 3.21. Indeed, for any random smooth noise 𝜁 such that
𝜁 : Ω → Ω∞ is continuous, we denote by 𝑇𝜁 : M → M the continuous map

𝑇𝜁Z(𝚷) := 𝑇𝜁 ( (𝚷Ξ)Ξ∈𝔏−)
Z(𝚷).

This is well defined, since the map Z(𝚷) ↦→ (𝚷Ξ)Ξ∈𝔏−
is continuous from M into Ω. In particular, for

any 𝑘 ∈ G− which acts trivially on 𝔏−, one has the identity

𝑇𝜁 ( 𝜉 )R𝑘 �̂� (𝜉) = 𝑇𝜁R𝑘 �̂� (𝜉).

If we now denote by 𝜁𝛿 the sequence defined in Proposition 3.21, then it follows that for a suitable
subsequence 𝛿 → 0 sufficiently fast, we have the P-almost sure limit

lim
𝛿→0

𝑇𝜁𝛿R𝑘 �̂� =𝒵(𝑘).

Since 𝒵(𝑘) ≠𝒵(𝑙) (and both are deterministic), the claim follows. �

Remark 3.26. In case of space-time white noise, we believe that the same statement holds for the laws
of R𝑘 �̂� and R𝑙 �̂� restricted to any open subset U of 𝒟 which contains the initial time slice {𝑡 = 0}.

4. Constraints between renormalisation constants

The goal of this section is to show that Assumption 6, which in this section we assume holds, implies
Assumptions 7 and 8:

Proposition 4.1. Assumption 6 implies Assumptions 7 and 8.

Assumption 7 is proven in Corollary 4.63, and Assumption 8 follows from Lemmas 4.68 and 4.71.
To get a feeling for the ideal J first we consider a couple of examples of generators.

Example 4.2. In the case of the 3-dimensional PAM equation, one has

− 1 1 − 2 2 − 3 3 ∈ J.
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As before, a bold edge with label 𝑘 = 1, 2, 3 denotes the derivative of the Poisson kernel with respect to
𝑥𝑘 , and a circle denotes an instance of spatial white noise.The reason for this is the relation

𝐾 − 𝜕1𝐾 ∗ 𝜕1𝐾 − 𝜕2𝐾 ∗ 𝜕2𝐾 − 𝜕3𝐾 ∗ 𝜕3𝐾 = 0

for the Poisson kernel K in three dimensions. Note that the corresponding linear combination between
the renormalisation constants does not vanish (since we work with a spatial truncation of the Poisson
kernel), but it is easy to see that it is bounded uniformly in the limit.

Example 4.3. Another possible source of constraints is given by ‘total derivatives’. For instance, in the
case of the generalised KPZ equation one has

+ + ∈ J,

where the gray circles denote instances of white noise (the circles are allowed to denote different
instances of white noise, but with the convention that circles that appear at the same position in the three
trees correspond to the same white noise). These two classes of constraints were recently used quite
systematically in [Ger20].

Example 4.4. A third possible constraint comes from symmetries; for instance, in the case of

𝜕𝑡𝑢 = −Δ2𝑢 + 𝑔(𝑢, 𝜕𝑥𝑢) (−Δ)1−𝜅𝜂,

with 𝜂 spatial white noise in two dimensions and 𝜅 > 0, one has

∈ J.

Here an edge denotes the (truncation of the) Green’s function for 𝜕𝑡 − Δ2, the bold edge denotes its
spatial derivative (say with respect to 𝑥1) and a node denotes an instance of (−Δ)1−𝜅𝜂.

Example 4.5. Finally, a possible source of constraints comes from moving the root. For instance, if one
considers a couple of interacting forward-backward generalised KPZ equations, one has

− ∈ J,

where the red edge denotes the backward heat kernel.

Remark 4.6. Forward-backward equations appear naturally in the context of the dual to the tangent
equation in studying the existence of densities for solutions to stochastic equations; see [GL17, Sch18] for
this construction in the context of SPDEs. Consider, for example, the KPZ equation 𝜕𝑡ℎ = 𝜕2

𝑥ℎ+|𝜕𝑥ℎ|
2+𝜉

with tangent equation 𝜕𝑡𝑣 = 𝜕2
𝑥𝑣 + 2𝜕𝑥ℎ𝜕𝑥𝑣 + 𝑓 , where f denotes a Cameron–Martin function. The dual

of the tangent equation is given by −𝜕𝑡𝑤 = 𝜕2
𝑥𝑤 − 2𝜕𝑥ℎ𝜕𝑥𝑤 + 𝑔. Some of the trees needed to solve the

coupled equation for (ℎ, 𝑣, 𝑤) contain the backward heat kernel.

Remark 4.7. It is unclear at this point whether all constraints that show up in reasonable examples are
of the form already described. One could of course always construct more contrived examples by simply
choosing the integration kernels themselves to satisfy certain constraints. The approach chosen in this
article aims for the largest possible generality while avoiding having to explicitly characterise these
constraints. Instead, we show directly that the ideal generated by these constraints always has ‘nice’
algebraic properties (Assumption 7) and that the BPHZ characters are ‘well behaved’ in the sense that
they respect these constraints up to discrepancies of order 1 (Assumption 8).

We first generalise the notation (3.1) by including noises. We define the space 𝔐★
∞ := 𝔐s

∞ � {1}

and its closure 𝔐s
0 under the norm (2.21). Here, we let 1 act on any noise type Ξ ∈ 𝔏− by setting
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1(Ξ) := 1.6 With this notation, we now make the following key definition:

Definition 4.8. Given a tree 𝜏 ∈ T, we define for any 𝜂 ∈ 𝔐★
∞, any 𝜓 ∈ Ψ̃ and any large-scale kernel

assignment 𝑅 = (𝑅𝔱)𝔱∈𝔏+
with 𝑅𝔱 ∈ C∞

𝑐

(
D̄
)

the constant

Υ̃𝜂,𝜓𝑅 𝜏 := 〈K𝐾+𝑅𝜏, 𝜁〉, (4.1)

where 𝜁 (𝑥) :=
(
E
∏
𝑒∈𝐿 (𝑇 ) 𝜂𝔱 (𝑒) (𝑥𝑒)

)
𝜓(𝑥). We will write Υ̃𝜓𝑅 := Υ̃1,𝜓

𝑅 .

As was already remarked after Definition 3.3, we will show in Theorem 4.19 that for any 𝜏 ∈ 𝒯−,
the limit Υ̃𝜂,𝜓𝑅 𝜏 does indeed exist as the smooth kernels 𝑅𝔱 approach �̂� 𝔱 − 𝐾𝔱, and we denote this limit
by Υ̃𝜂,𝜓 . We write also Υ̃𝜓 := Υ̃1,𝜓 . All operators introduced here are multiplicatively extended to
characters on the Hopf algebra T−.

Remark 4.9. Note that convergence when 𝑅𝔱 approaches �̂� 𝔱 − 𝐾𝔱 relies on the smooth cutoff function
𝜓. This is the reason for introducing this cutoff in the definition (4.1).

The following lemma gives a useful alternative description of J:

Lemma 4.10. Under Assumption 6, the ideal J is generated by all 𝜏 ∈ Vec𝒯− such that Υ̃𝜂,𝜓𝜏 = 0 for
any 𝜂 ∈ 𝔐★

∞ and any 𝜓 ∈ Ψ̃.

Proof. Comparing formula (4.1) and Definition 3.3, we have to show only that〈
K̂𝜏, 𝜓

〉
= 0

for any 𝜏 ∈ J and any 𝜓 ∈ Ψ̃. Rescaling 𝜓 → 𝜓𝜀 and exploiting the homogeneous behaviour of
the integration kernels �̂� 𝔱 , it suffices to consider linear combinations of trees 𝜏 =

∑
𝑖≤𝑟 𝑐𝑖𝜏𝑖 such that

[𝐿(𝜏𝑖), 𝔱] and 𝛼 := �𝜏𝑖�𝔰 do not depend on 𝑖 ≤ 𝑟 . In particular, it suffices to consider the cases 𝜏𝑖 ∈ V0
for all 𝑖 ≤ 𝑟 or 𝜏𝑖 ∉ V0 for all 𝑖 ≤ 𝑟 . In the former case, Assumption 6 guarantees that

〈
K̂𝜏, 𝜓

〉
= 0 for

any 𝜓 ∈ Ψ̃. In the latter case, note that 𝜏 ∈ J implies that〈
K̂𝜏, 𝜓

〉
= 𝑎(𝜏)

∫
𝜓 (4.2)

for some 𝑎(𝜏) ∈ R and all 𝜓 ∈ Ψ̃. However, the transformation 𝜓𝜀 (𝑥) := 𝜀−|𝔰 |𝜓 (𝜀−𝔰𝑥) leaves the
right-hand side of equation (4.2) invariant, while the left-hand side is transformed as

〈
K̂𝜏, 𝜓𝜀

〉
=

𝜀𝛼+( 1
2 #𝐿 (𝜏𝑖)−1) |𝔰 |

〈
K̂𝜏, 𝜓

〉
, which is a contradiction unless 𝛼 = −#𝐿(𝜏𝑖)

|𝔰 |
2 + |𝔰 |. Unless #𝐿(𝜏𝑖) = 2, one

has 𝛼 ≤ −
|𝔰 |
2 , contradicting Assumption 2. If #𝐿(𝜏𝑖) = 2, then one has 𝛼 = 0 and thus 𝜏 ∈ V0, in

contradiction of 𝜏 ∉ V0. �

An important remark is that if the cutoff functions 𝜓 are chosen such that 𝜓 ≡ 1 in a large enough
neighbourhood of the origin, then one has the identity

Υ̃𝜂,𝜓0 𝜏 = E𝚷𝜂𝜏(0) =: Υ𝜂𝜏

for any smooth noise 𝜂 ∈ 𝔐∞.
One may wonder what the function 𝜓 in this notation is trying to accomplish. We want to study the

limit of Υ̃𝜂,𝜓𝑅 𝜏 in which 𝑅𝔱 converges to �̂� 𝔱 − 𝐾𝔱, where �̂� 𝔱 : D̄ → R is the homogeneous extension
of the integration kernel to the whole space (see Section 2.2.2). Without the cutoff function 𝜓, this
quantity has no chance of converging in general. However, we will see that the presence of the cutoff 𝜓
is sufficient for this limit to exist. The fact that we cannot get rid of the large-scale cutoff completely is
no surprise. Indeed, even for 𝜂 = 1 this is not true:

6Note that 1 ∉ 𝔐∞, since E1 ≠ 0.
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Example 4.11. Consider the cherry tree in Φ4
3. We obtain

Υ̃𝜓𝑅 =
∫

R+×R3
𝑑𝑥

∫
R+×R3

𝑑𝑦 (𝐾 + 𝑅) (𝑥) (𝐾 + 𝑅) (𝑦)𝜓(𝑥 − 𝑦),

where we identify 𝜓 ∈ C̄∞
𝑐

(
D̄𝐿 (𝜏)

)
� C∞

𝑐

(
D̄
)
. We can only guarantee that this is finite as 𝑅 → �̂� − 𝐾 if

𝜓 is compactly supported.

On a more technical level, this issue is related to the bound on the degrees of tight partitions introduced
in [Hai18, Section 4].

There is, however, one big advantage of the large-scale cutoff introduced by 𝜓 over the one given
by simply choosing a compactly supported kernel K: the latter ‘sees’ the interior structure of the tree
𝜏, whereas the former ‘sees’ only the noise-type edges. When we work out properties of the ideal J
later on, this becomes crucial, as it can happen that two trees with the property that the evaluation (4.1)
differs only due to the large-scale cutoff have distinct interior structures (compare, e.g., Example 4.2).
However, such trees will always carry the same multiset of noise types, so that the cutoff introduced
by 𝜓 as in formula (4.1) will affect each of them in precisely the same way, thus not destroying exact
identities between their renormalisation constants.

A motivating example

The main difficulty in proving Assumptions 7 and 8 is to determine the algebraic structure of a tree
𝜏 drawing only on the analytic information given by K�̂� 𝜏. The strategies to show the first of these
results, namely that J is a Hopf ideal, and the second one, namely that the BPHZ characters 𝑔𝜂 ‘almost’
annihilate J, are quite similar. The main step is to show how J interacts with the coproducts Δ− and
Δ−𝔦 (compare formulas (4.51) and (4.50) in Proposition 4.60). The interaction property of J with Δ−

gives immediately the Hopf-ideal property, but the statement about the BPHZ characters needs a further
argument, carried out in Section 4.6.

Consider as an example two trees coming from the generalised PAM equation in three dimensions.
Recall that in this equation we consider purely spatial white noise, and the integration kernel is given
by the 3D Poisson kernel P. One then has

𝜏1 − 𝜏2 := − ∈ J. (4.3)

This can be seen by noting that P is invariant under the transformation 𝑥 ↦→ −𝑥. Here we use different
colours to indicate different (hence independent) white noises. As part of the proof of Assumptions 7
and 8, we have to show, respectively, that

Δ−

(
−

)
∈ J ⊗ T− + T− ⊗ J and

�����𝑔𝜂
( )

− 𝑔𝜂
( )����� � 1, (4.4)

where the second statement is uniform over 𝜂 with ‖𝜂‖𝔰 ≤ 𝐶.

Remark 4.12. The reason we have to bound the linear difference, rather than the ‘difference’ with respect
to the group operation, is that these two turn out to be the same in the present example. In general, the
second bound in formula (4.4) does not hold, and should be replaced with

(
𝑓 𝜂 ◦ 𝑔𝜂

)
(𝜏1 − 𝜏2) = 0,

where
�� 𝑓 𝜂 �� � 1. (Here 𝑓 𝜂 = ( 𝑓 𝜂)−1 is the group inverse of the character defined in Assumption 8. Since

𝑓 ↦→ 𝑓 −1 is a uniformly bounded operation on G−, bounding 𝑓 𝜂 and 𝑓 𝜂 are equivalent.) Of course,
boundedness is not quite sufficient, and we will later show the stronger statement of continuity with
respect to ‖·‖𝔰 . (This is not equivalent, since 𝜂 ↦→ 𝑓 𝜂 is not a linear map.)
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Let us first convince ourselves ‘by hand’ that formula (4.4) holds. To see the first statement, it suffices
to note that

Δ−

(
−

)
=

(
−

)
⊗ 1 + 1 ⊗

(
−

)
+ ⊗

(
−

)
and − ∈ J holds with the same argument as before. (In fact both of these trees are individually
elements of J, for symmetry reasons. Actually, in this case one also has ∈ J for symmetry reasons.
Neither of these statements, however, is generic. They would, for instance, not hold if the Poisson kernel
were replaced by a nonsymmetric kernel.) Here we draw a cross into the circle to denote a polynomial
decoration, and a bold edge denotes an edge carrying a derivative decoration. For the second statement
in formula (4.4), one can calculate

𝑔𝜂

(
−

)
= −E𝚷𝜂

(
−

)
(0) + E𝚷𝜂 (0) E𝚷𝜂

(
−

)
(0) = 0. (4.5)

Note that the fact that this expression vanishes identically is not really intrinsic. For instance, the various
Poisson kernels could be associated to different components of the equation, and in principle we could
choose different large-scale cutoffs, which would make this expression nonzero (but it would remain
order 1). This may not seem like a natural thing to do, but it is sometimes unavoidable (compare
Example 4.2).

The goal of this section is to automatise these arguments, drawing only on the information that
Υ̃𝜓 (𝜏1 − 𝜏2) = 0 for any smooth function 𝜓 ∈ C̄∞

𝑐 (D̄[ , , , ] ). We write elements in the domain
as 𝑥 = (𝑥1 , 𝑥2 , 𝑥1 , 𝑥2 ). Let 𝜙 ∈ C∞

𝑐 (D̄) be any smooth, symmetric (under 𝑥 ↦→ −𝑥) test function,
define 𝜙 (𝜀) := 𝜀−3𝜙(𝜀−1·), and let 𝜓𝜀 (𝑥1 , 𝑥2 , 𝑥1 , 𝑥2 ) := 𝜓(𝑥1 , 𝑥2 , 𝑥1 , 𝑥2 )𝜙 (𝜀) (𝑥1 , 𝑥2 ). We also

write �̌�(𝑥1 , 𝑥2 , 𝑥,) := 𝜓(𝑥,, 𝑥,, 𝑥
1 , 𝑥2 ), and we denote by Υ̃�̌� and Υ̃�̌� the quantity defined

analogously to formula (4.1), but where the additional variable 𝑥, corresponds to the node which was
generated by contracting the subtree (in the current examples, the only node without a noise). This
rather ad hoc notation is resolved later on by the introduction of legs. We then arrive at the following
diagram:

Υ̃𝜓
𝜀

− Υ̃𝜓
𝜀

= 0

− −

Υ̃𝜙
(𝜀)

Υ̃�̌� − Υ̃𝜙
(𝜀)

Υ̃�̌� = 0

� 1 � 1

The equality in the first line is the analytic input we are given from formula (4.3). The uniform
bounds on the differences vertically are a consequence of the analytic BPHZ theorem [Hai18] (see also
Proposition 4.49). The equality on the second line is what we infer. Note that in a first step we deduce
only a uniform bound; however, we can make use of the fact that the integration kernels are homogeneous
functions, so that we know a priori that the expressions in the second line are proportional to 𝜀𝛼 for some
homogeneity 𝛼 < 0. Both statements can hold simultaneously only if the quantity vanishes identically.
It then follows in particular that

Υ̃𝜙 Υ̃𝜓 − Υ̃𝜙 Υ̃𝜓 = 0 (4.6)

https://doi.org/10.1017/fmp.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.18


Forum of Mathematics, Pi 45

for any symmetric test function 𝜙, 𝜓 ∈ C∞
𝑐

(
D̄
)

(here we naturally identify C̄∞
𝑐 (D̄[ , ] ) and C̄∞

𝑐 (D̄[ , ] )

with the space of symmetric functions in C∞
𝑐

(
D̄
)
). Note that in general there may be more than one

divergent subtree. We then perform the foregoing strategy with all possible divergent subtrees, by
splitting the multiset [ , , , ] in two parts in all possible ways (the derivation already given would
then correspond to [ , ], [ , ]).

Comparing equations (4.6) and (4.5), and using the fact that the function 𝜙(𝑥 − 𝑦) := E[𝜂(𝑥)𝜂(𝑦)]
is an element of C∞

𝑐

(
D̄
)
, we deduce that

�̂�𝜂

(
−

)
= 0

for any smooth, centred, stationary noise 𝜂. Here, �̂�𝜂 is a character which is defined similarly to the
BPHZ character, but where the large-scale cutoff of the integration kernels is removed and instead a
large-scale cutoff is introduced between any pair of nodes (see Definition 4.17 and formula (4.27)).

Let us review the outline so far from a more algebraic perspective. We have essentially proven that,

− ∈ J ⇒ Δ−𝔦
(

−
)

∈ J ⊗ T̂− + T− ⊗ Ĵ, (4.7)

where Ĵ ⊆ T̂− is an ideal defined analogously to J. (We refrain from giving a precise definition here,
since there are some subtleties – most notably the fact that Υ̃𝜂 is in general not well defined on trees of
positive homogeneity. We refer to Definition 4.54 for the definition of an ideal that mirrors this idea.)
We then use the facts that Δ− = (Id ⊗ p−)Δ−𝔦 and J = p−Ĵ to conclude that J is a Hopf ideal, which
concludes the outline of the proof of Assumption 7. The remaining argument to conclude the outline of
the proof of Assumption 8 is to bound the difference of 𝑔𝜂 and �̂�𝜂 with respect to the group product in
G−, which we do in Section 4.6.

The problems ahead

There are several points that complicate this line of argument in general:

◦ One can have more complicated subdivergences; in particular, one can have divergent subforests
instead of just single trees. To deal with this issue, we introduce a test function for each pair of noises
(Definition 4.42), which will give us the flexibility to trigger any subdivergence by rescaling these
test functions in all possible ways.

◦ A bigger issue is the presence of derivatives hitting the test function. Implementing the foregoing
strategy without a proper algebraic framework leads to significant notational difficulties. Instead,
we opt for a systematic extension of the algebraic framework by introducing the notion of ‘legs’,
against which our test functions are integrated. Formally, we do this via an extension of the regularity
structure (see Section 4.1 for the details). The point here is that legs can have nonvanishing derivative
decorations.

◦ Every leg has a unique partner leg, and we call a tree properly legged (Definition 4.23) if for any pair
of vertices u and v with 𝑢 ≠ 𝑣, and both u and v carrying noises, there exists a unique leg incident to
u such that its partner is incident to v. We ultimately need to understand how this ‘properly legged’
property interacts with the coproduct, which leads to the construction of algebras T pl

− and T̂ ex,pl
− ,

which are related to the algebras T− and T̂ ex
− (we colour them to indicate that they are spaces generated

by trees containing legs; compare Section 4.1). We refer to Section 4.3 for details.
◦ Noises are in general indistinguishable. We need to distinguish them at the algebraic level to carry

out the argument, and only afterwards factor out the necessary ideals given by ‘identifying’ noises
that we made distinguishable (Definition 4.36). (Actually, it suffices for us to break the symmetry at
the level of legs.)
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◦ We need to make precise what exactly we need to subtract in general in order to see the cancellations
inferred. For this we need a general strategy of rescaling the test functions (compare formulas (4.37)
and (4.40)) and a general bound in the spirit of the BPHZ theorem (compare Proposition 4.49). We
draw here on the results of [Hai18] rather than [CH16], since we deal with kernels of unbounded
support.

◦ Finally, we have to show that the evaluation Υ̃𝜂,𝜓𝜏 is well defined, at least on a large enough set of
trees 𝜏. We refer the reader to Theorem 4.19 and Lemma 4.21.

Outline of the section

The plan is now as follows. We enlarge in Section 4.1 the regularity structures T to a regularity structure
T by adding a sufficient number of new types (which we call ‘leg types’ but treat as noise types with
just slightly negative homogeneity), and we allow any number of them (up to a large enough constant)
to be incident to any node u of any tree 𝜏 ∈ T. We then construct spaces T− and T̂ ex

− analogously to T−

and T̂ ex
− . We show that one can remove the large-scale cutoff in the sense that Υ̃𝜂𝜏 exists (at least for

a large class of trees 𝜏) in Section 4.2. The most cumbersome subsection is Section 4.3, in which we
systematically factor out ideals in T− and T̂ ex

− , arriving eventually at the following sequences of spaces:

T−
𝑷�
→ T �

− ⊇ T pl
−

𝑷sym
→ T sym

−
Psym

♠
→ T sym

♠

T̂ ex
−

�̂�
ex,�

→ T̂ ex,�
− ⊇ T̂ ex,pl

−
𝑷ex,sym
→ T̂ ex,sym

− .

The spaces T �
− and T̂ ex

− (see Definition 4.26) are merely auxiliary spaces, and we will mostly be
working with the subspaces T pl

− and T̂ ex,pl
− (see Definition 4.29) formed by properly legged trees. So

far, symmetries of a tree, related to the fact that the same noise type appears multiple times, are not
reflected in the legs, and we remedy this in T sym

− and T̂ ex,sym
− (see Definition 4.36). Finally, dropping

‘nonessential’ legs and identifying trees with nonvanishing derivative decoration on legs, we arrive
at the space T sym

♠ (see Lemma 4.40), which turns out to be isomorphic as a Hopf algebra to T− (see
Lemma 4.41). An analytic result generalising the ‘vertical’ cancellations in the diagram on page 44 will
be derived in Proposition 4.49. A key result is Proposition 4.60, making precise the idea of formula
(4.7) and in particular concluding the proof of Assumption 7 that J is a Hopf ideal. Finally, in Section
4.6 we compare the characters �̂�𝜂 and 𝑔𝜂 and show that their difference is continuous in the limit as 𝜂
approaches a rough limit noise (see Lemmas 4.68 and 4.71).

4.1. Extension of the regularity structure

We assume that we are given a finite set L, disjoint from 𝔏, elements of which we call leg types. From
an algebraic point of view, we treat L as a set of additional noise types, and we extend the homogeneity
assignments � · �𝔰 and |·|𝔰 to 𝕷− := 𝔏− � L by setting �l�𝔰 := 0 and |l|𝔰 := −𝜅 for some 𝜅 > 0 small
enough (to be specified shortly) whenever l ∈ L. From the extended set of types 𝕷 := 𝕷− �𝔏+, we want
to build a regularity structure T ex as in [BHZ19, Section 5.5], for which we specify a rule 𝑹.

Let 𝑀 ∈ N denote the maximum number of edges #𝐸 (𝜏) for any 𝜏 ∈ 𝒯−. We first define the rule �̃�
by setting

�̃�(𝔱) := {𝐴 � 𝐵 : 𝐴 ∈ 𝑅(𝔱) and 𝐵 ⊆ L × {0} is a 𝑠𝑒𝑡 with #𝐵 ≤ 𝑀}, (4.8)

for any 𝔱 ∈ 𝔏+. Here R denotes the rule used to construct the regularity structure T (see Section 2.2).
Note that in formula (4.8) we only allow B to be a proper set (or equivalently a multiset satisfying
𝐵 ≤ 1), so that any tree conforming to �̃� can be built from a tree conforming to R by adding to every
node up to M edges of distinct types in L. Provided that 𝜅 > 0 is small enough, we obtain a normal and
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subcritical [BHZ19, Definition 5.14] rule �̃� in this way, and we denote by 𝑹 its completion [BHZ19,
Proposition 5.21].

Definition 4.13. We denote by T ex (resp., T) the extended (resp., reduced) regularity structure con-
structed as in [BHZ19, Section 5.5] from the rule 𝑹. Furthermore, we denote by T ex

− and T̂ ex
− the

algebras constructed as in [BHZ19, Definitions 5.26, 5.29] starting from the regularity structure T ex.

As in [BHZ19, Proposition 5.35], the space T ex
− forms a Hopf algebra. We will mostly work with the

factor Hopf algebra T− of T ex
− given by neglecting the extended decoration. We write 𝓣−𝓣−𝓣− for the set of

unplanted trees 𝜏 ∈ T of negative homogeneity, so that T− is generated freely as a unital, commutative
algebra from𝓣−𝓣−𝓣−.

For a tree 𝜏 ∈ T ex, we denote by 𝐿L (𝜏) ⊆ 𝐸 (𝜏) the set of leg-type edges – that is, the set of 𝑒 ∈ 𝐸 (𝜏)
such that 𝔱(𝑒) ∈ L – and by 𝐿(𝜏) ⊆ 𝐸 (𝜏) the set of noise-type edges of 𝜏 – that is, the set of 𝑒 ∈ 𝐸 (𝜏)
such 𝔱(𝑒) ∈ 𝔏−. We will often call an edge of leg type simply a leg. We write L(𝜏) ⊆ 𝑁 (𝜏) (resp.,
LL(𝜏) ⊆ 𝑁 (𝜏)) for the set of nodes 𝑢 ∈ 𝑁 (𝜏) that are adjacent to at least one noise-type (resp., leg-type)
edge, and we write L̂(𝜏) ⊆ 𝑁 (𝜏) for the set of nodes 𝑢 ∈ 𝑁 (𝜏) with the property that 𝔬(𝑢) < 0.

Example 4.14. In the following example, taken from the KPZ equation, we have coloured kernel-type
edges 𝑒 ∈ 𝐾 (𝜏) grey (they are bold because they carry a derivative decoration) and noise-type edges
𝑒 ∈ 𝐿(𝜏) blue; drawn legs 𝑒 ∈ 𝐿L (𝜏) as wavy lines; coloured nodes blue if they are elements of L(𝜏);
and drawn nodes as squares (rather than circles) if they are elements of LL(𝜏):

.

This is the only example in this paper in which we make noise-type edges explicit, since their position can
always be inferred by L(𝜏). We will always make legs explicit (note that their position cannot be inferred
from LL(𝜏), as there may be more than one leg incident to the same node). Conversely, since LL (𝜏) can
be inferred from 𝐿L (𝜏), we will not draw them explicitly as boxes in the forthcoming examples.

The space T ex can be identified with the linear subspace of T ex spanned by all trees 𝜏 ∈ T ex

without legs. Similarly, the spaces T̂ ex
− , T ex

− and T− have natural interpretations as subalgebras of T ex
− ,

T̂ ex
− and T−, respectively (in this interpretation the latter two are Hopf subalgebras). Given any tree

𝜏 =
(
𝑇𝔫,𝔬𝔢 , 𝔱

)
∈ T ex, we define a tree 𝜋𝜏 ∈ T ex by simply removing all of its legs. The map 𝜋 extends to

a linear map 𝜋 : T ex → T ex and to an algebra morphism from the algebras T ex
− , T̂ ex

− and T− onto T ex
− ,

T̂ ex
− and T−, respectively.

Finally, we denote by G− the character group of the Hopf algebra T−, which is canonically isomorphic
to the reduced renormalisation group constructed in [BHZ19, Theorem 6.28]. There exists a subgroup
of G− isomorphic to G−, given by the set of those characters that vanish on any tree 𝜏 with 𝐿L (𝜏) ≠ ��.
(The isomorphism 𝜑 : G− ↩→ G− is given explicitly by mapping 𝑔 ∈ G− to a character 𝜑(𝑔) ∈ G− given
by setting 𝜑(𝑔) (𝜏) = 𝑔(𝜏) for 𝜏 ∈ 𝒯− and 𝜑(𝑔) (𝜏) = 0 for 𝜏 ∈ 𝓣−𝓣−𝓣−\𝒯−.)

Remark 4.15. Since we viewT− as a subspace ofT−, the embeddingG− → G− is actually not ‘canonical’,
although the projection G− → G−, given by restricting a character 𝑔 ∈ G− to T−, is canonical. The
construction in the previous paragraph uses indirectly the fact that T− is also naturally isomorphic to a
factor Hopf algebra T−/ker q, where q : T− → T− is defined by killing trees 𝜏 such that 𝐿L (𝜏) ≠ ��.
However, in the sequel we will continue to view T− as a subalgebra of T−.

4.2. Large-scale behaviour of renormalised trees

We now fix a degree assignment deg∞(𝔱) ∈ R− � {−∞} for kernel types 𝔱 ∈ 𝔏+. In order to avoid case
distinctions later on, we also set deg∞(Ξ) := 0 for any noise type Ξ ∈ 𝔏− and deg∞(l) := −∞ for any
leg type l ∈ L. We write K+

∞ for the set of kernel assignments 𝑅 = (𝑅𝔱)𝔱∈𝔏+
such that 𝑅𝔱 : D̄ → R is
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smooth and compactly supported for any 𝔱 ∈ 𝔏+. We endow this space with the topology generated by
the system of seminorms ‖·‖K+ ,𝔱 for 𝔱 ∈ 𝔏+, where the latter is defined as the smallest constant such that��𝐷𝑘𝑅𝔱 (𝑥)

�� ≤ ‖𝑅‖K+ ,𝔱 (1 + |𝑥 |)deg∞ 𝔱 (4.9)

for any 𝑥 ∈ D̄ and 𝑘 ∈ N𝑑 with |𝑘 |𝔰 < 𝑟 . We write K+
0 for the completion of K+

∞ with respect to the
corresponding metric. We extend the notation of formulas (3.1) and (3.2) to the extended regularity
structure, with 𝐿(𝜏) replaced by 𝐿(𝜏) � 𝐿L (𝜏), so that in particular one has K𝐺𝜏 : D̄𝐿 (𝜏)�𝐿L (𝜏) → R
and the integral in formula (3.2) ranges over D̄𝐿 (𝜏)�𝐿L (𝜏) . Furthermore, we introduce the following
space in analogy to Definition 3.2:

Definition 4.16. We write Ψ for the set of all families of test functions (𝜓m)m, indexed by multisets
mwith values in L, such that 𝜓m ∈ C̄∞

𝑐

(
D̄m/g

)
.

With this notation, we now define the following evaluations:

Definition 4.17. We define for any tree 𝜏 = 𝑇𝔫,𝔬𝔢 ∈ T ex, any smooth noise 𝜂 ∈ 𝔐★
∞, any 𝜓 ∈ Ψ and any

large-scale kernel assignment 𝑅 = (𝑅𝔱)𝔱∈𝔏+
∈ K+

∞ the constant

Ῡ𝜂,𝜓𝑅 𝜏 := 〈K𝐾+𝑅𝜏, 〉𝜁
𝜂,𝜓,𝜏 , (4.10)

where 𝜁 𝜂,𝜓,𝜏 ∈ D̄𝐿 (𝜏)�𝐿L (𝜏) is defined by

𝜁 𝜂,𝜓,𝜏 (𝑥) := ���E
∏

𝑢∈𝐿 (𝑇 )

𝜂𝔱 (𝑢) (𝑥𝑢)
� !𝐷𝔢 |𝐿L (𝜏)𝜓 [𝐿L (𝜏) ,𝔱]

(
𝑥𝐿L (𝜏)

)
for any 𝑥 ∈ D̄𝐿 (𝜏)�𝐿L (𝜏) . Moreover, we define the ‘renormalised’ constant by

Υ̂
𝜂,𝜓
𝑅 𝜏 := Ῡ𝜂,𝜓𝑅 𝑀𝑔

𝜂
BPHZ𝜏. (4.11)

Here, we use the notation 𝑔
𝜂
BPHZ ∈ G− for the BPHZ character of the noise 𝜂 in the renormalisation group

G−, which we view naturally as a character in G− as before. We also set Ῡ𝜓𝑅 := Ῡ1,𝜓
𝑅 and Ῡ𝜓 := Ῡ1,𝜓

�̂�−𝐾
.

Remark 4.18. One has 𝑔
𝜂
BPHZ(𝜎) = 0 for any 𝜎 ∈ T− such that 𝐿L (𝜎) ≠ ��, so that 𝑀𝑔

𝜂
BPHZ maps 𝜏 onto

the span of trees 𝜏 with the property that [𝐿(𝜏), 𝔱] = [𝐿(𝜏), 𝔱]. It follows that Υ̂𝜂,𝜓𝑅 𝜏 really only depends
on 𝜓 [𝐿L (𝜏) ,𝔱] . We finally note that these notations do not depend on the extended decoration 𝔬.

Our goal is to show that under some natural assumptions on the degree assignment deg∞, the map
Ῡ𝜂,𝜓𝑅 extends continuously to any large-scale kernel assignment 𝑅 ∈ K+

0 , and Υ̂𝜂,𝜓𝑅 extends continuously
to the set of pairs (𝜂, 𝑅) ∈ 𝔐s

0 ×K+
0 . Such a statement can only be true if we make an assumption on the

degree assignment deg∞ and the positions of the legs, which is in complete analogy to [Hai18, Section 4].
We then consider partitions P of the node set 𝑁 (𝜏) such that #P ≥ 2 and such that there exists 𝑃 ∈ P
with LL(𝜏) ⊆ 𝑃. We call partitions of 𝑁 (𝜏) that satisfy these properties tight from now on. For any
tight partition P, we denote by 𝐾 (P) the set of kernel-type edges 𝑒 ∈ 𝐾 (𝜏) with the property that there
does not exist 𝑃 ∈ P such that 𝑒 ⊆ 𝑃, and we set

deg∞ P :=
∑

𝑒∈𝐾 (P)

deg∞ 𝔱(𝑒) +
∑

𝑢∈𝑁 (𝜏)

|𝔫(𝑢) |𝔰 + |𝔰 | (#P − 1). (4.12)
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Let𝔐★
0 denote the closure of𝔐★

∞ under the norm ‖·‖𝔰 . The key result of this section is the following
theorem:
Theorem 4.19. Let 𝜏 ∈ 𝓣𝓣𝓣ex be such that deg∞ P < 0 for any tight partition P of 𝑁 (𝜏). Then for any
fixed 𝜓 ∈ Ψ and 𝜂 ∈ 𝔐★

0 , the evaluation

𝑅 ↦→ Ῡ𝜂,𝜓𝑅 𝜏 (4.13)

extends continuously to the space K+
0 . Moreover, the evaluation

(𝜂, 𝑅) ↦→ Υ̂
𝜂,𝜓
𝑅 𝜏 (4.14)

extends continuously to the space 𝔐★
0 × K+

0 . Finally, one has the bound���Υ̂𝜂,𝜓𝑅 𝜏
��� � ‖𝜂‖𝔰

���
∏

𝑒∈𝐾 (𝜏)

‖𝑅𝔱 (𝑒) ‖K+ ,𝔱 (𝑒) ,𝑟 + 1� ! (4.15)

for 𝑟 ∈ N any integer larger than − min{|𝜏 |𝔰 : 𝜏 ∈ T}, uniformly over all (𝜂, 𝑅) ∈ 𝔐★
0 × K+

0 .7
Remark 4.20. This theorem should be viewed as a generalisation of [Hai18, Theorem 4.3]. The main
reason why it does not follow directly from that theorem is the presence of higher-order cumulants.
In principle, one could formulate a statement analogous to [Hai18, Theorem 4.3] for Feynman hyper-
graphs which would then imply the statement of Theorem 4.19. However, such a formulation is rather
cumbersome, so we refrain from carrying out this construction.
Proof. This follows very similarly to [Hai18, Theorem 4.3]. See Appendix A.3 for a proof. �

The large-scale kernel assignment that we are interested in is given by 𝑅𝔱 = �̂� 𝔱 − 𝐾𝔱 for any 𝔱 ∈ 𝔏+,
so that we have to choose deg∞ 𝔱 := �𝔱�𝔰 − |𝔰 | for any kernel type 𝔱 ∈ 𝔏+. The next lemma shows that
the assumption of superregularity implies that the condition of Theorem 4.19 holds automatically for a
large class of trees 𝜏 ∈ 𝓣𝓣𝓣ex:
Lemma 4.21. Let 𝜏 ∈ 𝓣𝓣𝓣ex be a tree with �𝜏�+ ≤ 0 and such that L(𝜏) ∪ L̂(𝜏) ⊆ LL(𝜏). Assume
moreover that 𝜏 ∉ V0 (see Section 2.5). Then one has deg∞ P < 0 for any tight partition P of 𝑁 (𝜏).
Proof. Let 𝜏 = 𝑇𝔫𝔢 ∈ 𝓣𝓣𝓣ex, assume first that L̂(𝜏) = ��, so that �𝜏�+ = �𝜏�𝔰 ≤ 0, and let P be a tight
partition of 𝑁 (𝑇). We denote by 𝑃★ ∈ P the set such that LL(𝜏) ⊆ 𝑃★, and therefore, by assumption,
L(𝜏) ⊆ 𝑃★, and we write P★ := P\ {𝑃★}. We need to show that

deg∞(P) :=
∑

𝑒∈𝐾 (P)

deg∞ 𝔱(𝑒) +
∑

𝑢∈𝑁 (𝑇 )

|𝔫(𝑢) |𝔰 + (#P − 1) |𝔰 | < 0.

Any 𝑃 ∈ P★ is a subset of 𝑁 (𝜏) and induces a subgraph 𝐺𝑃 = (𝑉𝑃 , 𝐸𝑃) of 𝜏, where 𝑉𝑃 := 𝑃 and 𝐸𝑃 is
the set of edges 𝑒 ∈ 𝐾 (𝜏) such that 𝑒 ⊆ 𝑃. It is sufficient to consider partitions P that have the property
that this induced subgraph is connected for any 𝑃 ∈ P★; otherwise there exists a nontrivial way to write
𝑃 = 𝑃1 � 𝑃2 such that there does not exist an edge e with the property that 𝑒↑ ∈ 𝑃1 and 𝑒↓ ∈ 𝑃2, or
the other way around. One could then replace P with {𝑃1, 𝑃2} in P to create a tight partition Q with
deg∞(Q) = deg∞(P) + |𝔰 | > deg∞(P). We now claim that it is even sufficient to consider partitions
P with the property that any set 𝑃 ∈ P★ contains only a single vertex. Indeed, assume that 𝑃 ∈ P★
contains more than one vertex. Then P induces a subtree 𝑆 ⊆ 𝑇 that does not contain any 𝑢 ∈ L(𝑇), and
thus one has ∑

𝑒∈𝐾 (𝑇 ) , 𝑒⊆𝑃

deg∞ 𝔱(𝑒) + (#𝑃 − 1) |𝔰 | =
��𝑆0
𝔢

��
𝔰 > 0,

7We set ‖1‖𝑁,𝔠 := 1.
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by assumption. With a virtually identical argument one can assume that the partition P has the property
that there exist a finite number of node-disjoint subtrees 𝑆1, . . . , 𝑆𝑚 of T for some 𝑚 ≥ 1 such that for
any 1 ≤ 𝑖 ≤ 𝑚, one has that 𝐿(𝑆𝑖) ≠ ��, such that 𝐿(𝑇) =

⊔
𝑖≤𝑚 𝐿(𝑆𝑖), and with the property that

𝑃★ =
⊔
𝑖≤𝑚 𝑁 (𝑆𝑖). We also assume that the number of trees is minimal, so that for any 𝑖 ≠ 𝑗 the subgraph

induced by the node set 𝑁 (𝑆𝑖) � 𝑁
(
𝑆 𝑗

)
is not connected. It follows that 𝐾 (P) = 𝐾 (𝑇) \

⊔
𝑖≤𝑚 𝐾 (𝑆𝑖).

A straightforward calculation shows that

�𝑇𝔫𝔢 �𝔰 =
∑

𝑒∈𝐾 (𝑇 )

deg∞ 𝔱(𝑒) +
∑

𝑢∈𝐿 (𝑇 )

�𝔱(𝑢)�𝔰 +
∑

𝑢∈𝑁 (𝑇 )

𝔫(𝑢) + #𝐾 (𝑇) |𝔰 |,

and a similar identity holds for any the subtree 𝑆𝑖 for any 𝑖 ≤ 𝑚. Using the fact that #𝐾 (P) =
#𝐾 (𝑇) −

∑𝑚
𝑖=1 #𝐾 (𝑆𝑖), we get the identity

deg∞(P) = �𝑇𝔫𝔢 �𝔰 −
∑
𝑖≤𝑚

�(𝑆𝑖)
0
𝔢 �𝔰 − #𝐾 (P) |𝔰 | + (#P − 1) |𝔰 |.

Set 𝑄 :=
{
𝑒↑ : 𝑒 ∈ 𝐾 (P)

}
; then our definitions show that

𝑄 =
(
{𝜌(𝑆𝑖) : 𝑖 ≤ 𝑚} � P★

)
\ {𝜌𝑇 },

so that #𝐾 (P) = #𝑄 = 𝑚 + #P − 2, and thus

deg∞(P) = �𝑇𝔫𝔢 �𝔰 −
∑
𝑖≤𝑚

�(𝑆𝑖)
0
𝔢 �𝔰 − (𝑚 − 1) |𝔰 |.

We now use the assumptions of the lemma, which imply on the one hand that �𝑇𝔫𝔢 �𝔰 ≤ 0 and on the
other hand that �(𝑆𝑖)

0
𝔢 �𝔰 ≥ −

|𝔰 |
2 , from which it follows that

deg∞(P) ≤
(
1 −

𝑚

2

)
|𝔰 | ≤ 0, (4.16)

with equality if and only if 𝑚 = 2, �𝜏�𝔰 = 0 and �𝑆𝑖�𝔰 = −
|𝔰 |
2 for any 𝑖 = 1, 2. By assumption, any tree

𝑆 ∈ T such that �𝑆�𝔰 = −
|𝔰 |
2 is equal to some Ξ ∈ 𝔏−, so that #𝐿(𝜏) = 2, and therefore 𝜏 ∈ V0.

Assume now that 𝜏 =
(
𝑇𝔫,𝔬𝔢 , 𝔱

)
∈ 𝓣𝓣𝓣ex is such that L̂(𝜏) ≠ ��. Since �𝜏�+ ≤ 0, by [BHZ19, Lemma

5.25] there exist a tree 𝜏 =
(
𝑇 �̄��̄� , 𝔱

)
∈ 𝓣−𝓣−𝓣− (that is, a tree with vanishing extended decoration such that

�𝜏�𝔰 ≤ 0), a subforest F ∈ div(𝜏) (here div(𝜏) denotes the set of subforests F of 𝜏 with the property
that any connected component S of F is of negative homogeneity; see Appendix A.1), and decorations
𝔫F and 𝔢F as in formula (A.3), with the property that one has

𝜏 =
( (
𝑇/F

) �̄�−𝔫F , [𝔬]F
�̄�+𝔢F

, 𝔱
)
.

(Note that necessarily, 𝜏 has at least one divergent proper subtree, so that #𝐿(𝜏) > 2. In particular, 𝜏 is
not the exceptional case from the first part of the proof.) We let 𝜑F

�̄�
: 𝑉

(
𝑇
)
→ 𝑉 (𝑇) be the map defined

in formula (A.1), and we write 𝜑 := 𝜑F
�̄�
|𝑁 ( �̄�) : 𝑁 (𝜏) → 𝑁 (𝜏) for the restriction of this map to the set

of nodes 𝑁 (𝜏) ⊆ 𝑉 (𝜏).
Let nowP be a tight partition of 𝑁 (𝑇), and write again 𝑃★ ∈ P for the element such thatL(𝜏)∪L̂(𝜏) ⊆

𝑃★. We define a partition Q of 𝑁 (𝜏) by setting

Q :=
{
𝜑−1(𝑃) : 𝑃 ∈ P

}
.
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Since L(𝜏) ⊆ 𝜑−1 (𝑃∗), the partition Q is tight, and by the first part of the proof one has deg∞ Q < 0.
It thus remains to note that deg∞ P ≤ deg∞ Q, which follows from the definition of deg∞ P in formula
(4.12), the fact that one has 𝐾 (P) = 𝐾 (Q), #P = #Q and the fact that by definition,

∑
𝑢∈𝑁 (𝜏) |𝔫(𝑢) |𝔰 =∑

𝑢∈𝑁 ( �̄�) |�̄�(𝑢) − 𝔫F(𝑢) |𝔰 . �

Remark 4.22. The statement fails for trees 𝜏 ∈ V0. For such trees, however, one has Ῡ𝜂,𝜓𝑅 𝜏 = Υ𝜂𝜏 =
−𝑔𝜂 (𝜏) = 0 for any 𝜂 ∈ 𝔐s

∞, where the first equality holds if 𝑅 = 0, and 𝜓 = 1 in a large enough
neighbourhood of the origin (compare Lemma 4.44), and the last equality holds by Assumption 5.
Using the homogeneity of the integration kernels, it is possible to find a sequence 𝑅𝑛 → �̂� − 𝐾 so that
Ῡ𝜂,𝜓𝑅𝑛

vanishes for any n, so that at least for this particular choice of 𝑅𝑛 and 𝜓 a statement analogous to
formula (4.14) holds. We will make use of this fact in the proof of Lemma 4.71.

The statement of Lemma 4.21 does clearly not hold in general for trees 𝜏 ∈ T with positive homo-
geneity if we assume only L(𝜏) ⊆ LL (𝜏). Keeping track of the ‘location’ of contracted subtrees (and
thus a sufficient criterion for the positions at which we have to attach legs) is the only reason we keep
track of the extended decoration 𝔬 instead of working directly with T. As mentioned in Lemma 4.21,
this is irrelevant for trees 𝜏 such that �𝜏�− ≤ 0, so that there is no need to keep the extended decoration
when working with the Hopf algebra T−. It will therefore be convenient for us to work with the two
spaces T̂ ex

− (keeping the extended decoration) and T− (dropping the extended decoration), and we will
view the operator Δ− as acting between these spaces,

Δ− : T̂ ex
− → T− ⊗ T̂ ex

− ,

by dropping the extended decoration on the left component.

4.3. An algebraic construction

We want to work with a Hopf subalgebra (resp., subalgebra) of T− (resp., T̂ ex
− ) generated by trees 𝜏

such that Theorem 4.19 can be applied. In other words, we want to work with trees that contain enough
legs so that the large-scale evaluation is well-defined. Also, we would like to work with trees that are
properly legged (see Definition 4.23). Roughly speaking, we want every leg to have a unique ‘partner’.
For this we assume that we are given a type map i : L → 𝔏− × 𝔏− and an involution L ' l ↦→ l̄ ∈ L
that switches the components of i in the sense that if i(l) = (𝔱, 𝔱′), then i (l̄) = (𝔱′, 𝔱). To avoid case
distinctions, we also assume that l̄ ≠ l.

With this notation, we make the following key definition. Recall the notation [·, ·] for multisets from
Section 2.1.

Definition 4.23. We call a tree 𝜏 ∈ 𝓣𝓣𝓣ex properly legged if �𝜏�+ ≤ 0 and the following properties hold:

1. Any leg type appears at most once – that is, one has [𝐿L (𝜏), 𝔱] ≤ 1.
2. For any noise-type edge 𝑢 ∈ 𝐿(𝜏) and any leg 𝑒 ∈ 𝐿L (𝜏) with 𝑒↓ = 𝑢↓, one has i1(𝔱(𝑒)) = 𝔱(𝑢).
3. For any leg 𝑒 ∈ 𝐿L (𝜏), there exists a leg 𝑒 ∈ 𝐿L (𝜏), which we call the partner of e, with 𝔱(𝑒) = 𝔱(𝑒),

and one has 𝑒↓ ≠ 𝑒↓.
4. For any distinct 𝑢, �̄� ∈ L(𝜏), there exists a unique leg e with 𝑒↓ = 𝑢 and 𝑒↓ = �̄�.
5. For any 𝑢 ∈ L̂(𝜏) and any �̄� ∈ L(𝜏),8 there exists9 a leg 𝑒 ∈ 𝐿L (𝜏) such that 𝑒↓ = 𝑢 and 𝑒↓ = �̄�.

Remark 4.24. The leg e referred to in Definition 4.23(5) is not assumed to be unique (as opposed to
in (4)): Given a tree 𝜏 and a subtree 𝜎 ⊆ 𝜏, then after contracting 𝜎, we obtain a tree 𝜏 = 𝜏/𝜎. Let
𝑤 ∈ L̂(𝜏) be the vertex generated by contracting 𝜎. For any 𝑢 ∈ L(𝜏)\L(𝜎) and any 𝑣 ∈ L(𝜎), there
will be a pair of legs 𝑒, 𝑒 in 𝜏 with 𝑒↓ = 𝑢 and 𝑒↓ = 𝑤.

8Recall that our assumptions imply L(𝜏) ∩ L̂(𝜏) = ��, so that 𝑢 ≠ �̄�.
9Note that we do not impose uniqueness here.
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Example 4.25. Consider the following example of a properly legged tree:

where straight lines denote kernel-type edges, circles denote noises (elements of L(𝜏)) and coloured
coiling edges denote legs. Here, we have coloured legs which are partners with the same colour, but
with different wavy patterns to make them distinguishable. Note that we could remove only the gray
edges without losing the property of being properly legged.

We will mainly work with algebras T pl
− and T̂ ex,pl

− formed by properly legged trees. But if we simply
defined these spaces as the algebras generated by properly legged trees, then they would not be closed
under the action of the coproduct Δ−. The main problem here is that Definition 4.23 enforces the
existence of a partner for any leg 𝑒 ∈ 𝐿L (𝜏), and this property is not preserved under the coproduct. To
circumvent this problem, we will define T pl

− and T̂ ex,pl
− as subalgebras of factor algebras T �

− and T̂ ex,�
− ,

which are defined in the following way:
Definition 4.26. Let I ⊆ T− and Î ⊆ T̂ ex

− denote the ideals generated by the set of trees 𝜏 ∈ T− or
𝜏 ∈ T̂ ex

− , respectively, such that there exists a leg 𝑒 ∈ 𝐿L (𝜏) without a partner. (Recall from Definition
4.23(3) that 𝑒 ∈ 𝐿L (𝜏) is a partner of e if 𝔱(𝑒) = 𝔱(𝑒) and 𝑒↓ ≠ 𝑒↓.) Then we define

T �
− := T−/I and T̂ ex,�

− := T̂ ex
− /Î,

and the canonical projections 𝑷� : T− → T �
− and �̂�

ex,� : T̂ ex
− → T̂ ex,�

− .

Concerning T �
− and T̂ ex,�

− , we can now show the following lemma:
Lemma 4.27. The ideal I forms a Hopf ideal in T−, so that in particular T �

− is a Hopf algebra, and
the factor algebra T̂ ex,�

− forms a comodule over the factor Hopf algebra T �
− .

Proof. The lemma follows once we show the identities

Δ−I ⊆ I ⊗ T− + T− ⊗ I, (4.17)

Δ−Î ⊆ I ⊗ T̂ ex
− + T− ⊗ Î. (4.18)

We show only formula (4.17), since formula (4.18) follows with almost the same proof. Let 𝜏 = 𝑇𝔫𝔢 ∈ I
be a tree and fix a leg 𝑒 ∈ 𝐿L (𝜏) such that all legs 𝑒 ∈ 𝐿L (𝜏) with the property that 𝔱(𝑒) = 𝔱(𝑒)
satisfy 𝑒↓ = 𝑒↓. By equation (A.2) we are left to show that for any forest F ∈ div(𝜏), one has∏
𝑆∈F 𝑆𝔫F+𝜋eF

𝔢 ⊗ (𝑇/F)
𝔫−𝔫F , [𝔬]F
𝔢+𝔢F ∈ I ⊗ T− + T− ⊗ I for any choice of decorations 𝔫F,𝔢F. For this we

distinguish two cases. In the first case, writing F̄ for the set of connected components of F, there exist
𝑆 ∈ F̄ such that 𝑒 ∈ 𝐸 (𝑆). From this it follows that whenever 𝔱(𝑒) = 𝔱(𝑒) for some edge 𝑒 ∈ 𝐸 (𝑆), then
one has 𝑒↓ = 𝑒↓ and thus 𝑆𝔫F+𝜋eF

𝔢 ∈ I. In the second case, one has 𝑒 ∉ 𝐸 (F). In this case it suffices to
note that whenever 𝑒 ∉ 𝐸 (F) is a leg with the property that 𝑒↓ = 𝑒↓ in T, then this identity remains true
in 𝑇/F as well, so that in this case one has (𝑇/F)

𝔫−𝔫F
𝔢+𝔢F , [𝔬]F

∈ I. �

The canonical embedding 𝖎− : T− → T̂ ex
− induces an embedding 𝖎− : T �

− → T̂ ex,�
− . We denote by

𝖏� : T �
− → T− and 𝖏� : T̂ ex,�

− → T̂ ex
− the obvious embeddings, so that the range of 𝖏� is the algebra

generated by trees with the property that any leg has at least one partner. We now have the following
analogue of [BHZ19, Proposition 6.5] in this setting:
Proposition 4.28. There exists a unique algebra homomorphism Ãex,pl

− : T�
− → T̂ex,�

− with the property
that the identity

M
(
Ãex,pl

− ⊗ Id
)
Δ−𝖎− = 1★ (4.19)
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holds on T �
− . Moreover, in terms of the usual twisted antipode Ãex

− , this operator is uniquely determined
by the relation

Ãex,pl
− 𝑷� = �̂�

ex,�Ãex
− (4.20)

on T−, or equivalently by the relation

Ãex,pl
− = �̂�

ex,�Ãex
− 𝖏� (4.21)

on T �
− .

Proof. The fact that equation (4.19) determines a unique algebra homomorphism follows easily via
induction in the number of edges (see also the proof of [BHZ19, Proposition 6.5]). Since 𝑷� is
surjective, equation (4.20) defines a unique operator Ãex,pl

− , so that we are left to show that this operator
also satisfies equation (4.19). For this we use the identities Δ− �̂�

ex,�
= (𝑷� ⊗ �̂�

ex,�
)Δ− on T̂ ex,�

− and
𝖎−𝑷� = �̂�

ex,�
𝖎−, from which it follows that

M
(
Ãex,pl

− ⊗ Id
)
Δ−𝖎−𝑷

� =M
(
Ãex,pl

− 𝑷� ⊗ �̂�
ex,�)

Δ−𝖎−

holds on T �
− . Using equation (4.20), we can rewrite the right-hand side of this identity as

�̂�
ex,� (

M
(
Ãex,pl

− ⊗ Id
)
Δ−𝖎−

)
= 1★,

and since �̂�
ex,� is a surjective homomorphism, the statement follows. The equivalence with equation

(4.21) follows at once from the fact that 𝑷�𝖏� = Id on T �
− . �

Later on we will mostly work with subalgebras T pl
− and T̂ ex,pl

− of T �
− and T̂ ex,�

− , which are generated
by properly legged trees.

Definition 4.29. We denote by T pl
− ⊆ T �

− and T̂ ex,pl
− ⊆ T̂ ex,�

− the subalgebras generated by properly
legged trees.

Remark 4.30. Note that by definition, any tree 𝜏 ∈ T̂ ex,pl
− satisfies �𝜏�+ ≤ 0. By the definition of �𝜏�+

and the coproduct Δ−, one has Δ− : T̂ ex,pl
− → T pl

− ⊗ T̂ ex,pl
− , so that T̂ ex,pl

− is a comodule over T pl
− .

One of the facts that motivate the definition of properly legged trees is that for any tree 𝜏 ∈ T̂ ex,pl
− ,

there exists a one-to-one correspondence between forests F ∈ div(𝜋𝜏) and forests G ∈ div(𝜏) with the
property that F and G give nonvanishing contributions to the coproduct (see equation (4.23)). To state
this correspondence we introduce the following notation: Given a tree 𝜏 ∈ T ex and a forest F ∈ div(𝜋𝜏),
we write F for the forest of 𝜏 induced by the edge set

𝐸
(
F
)

:= 𝐸 (F) �
⊔
𝑆∈F̄

𝐿L (𝑆), (4.22)

with 𝐿L (𝑆) ⊆ 𝐿L (𝑇) defined as the set of legs 𝑒 ∈ 𝐿L (𝑇) with the property that 𝑒↓, 𝑒↓ ∈ 𝑁 (𝑆), where
𝑒 ∈ 𝐿L (𝑇) denotes the partner of e in T as before. Here and later, we write F̄ for the set of connected
components of F. We sometimes write F[𝜏] if we want to emphasise the tree 𝜏.

https://doi.org/10.1017/fmp.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.18


54 Martin Hairer and Philipp Schönbauer

With this notation, we have the following lemma, the proof of which is postponed to Appendix A.2:

Lemma 4.31. The space T pl
− forms a Hopf subalgebra of T �

− , and T̂ ex,pl
− forms a comodule over T pl

− . In
particular, one has Ãex,pl

− : T pl
− → T̂ ex,pl

− . Moreover, one has 𝖎− : T pl
− → T̂ ex,pl

− . Finally, the coproduct
Δ− : T̂ ex,pl

− → T pl
− ⊗ T̂ ex,pl

− is explicitly given by

Δ−𝜏 =
∑

F∈div(𝜋𝜏)

∑
𝔫F ,eF

1
eF!

(
𝔫
𝔫F

) ∏
𝑆∈F

𝑆
𝔫F+𝜋eF
𝔢 ⊗

(
𝑇/F

)𝔫−𝔫F , [𝔬]F
𝔢+𝔢F , (4.23)

for any tree 𝜏 = 𝑇𝔫,𝔬𝔢 ∈ T̂ ex,pl
− .

We will work with embeddings 𝜄 : T− → T pl
− with the property that any tree 𝜏 ∈ T− is mapped onto

a tree 𝜄𝜏 ∈ T pl
− with the property that 𝜋𝜄𝜏 = 𝜏, and 𝜄𝜏 is in some sense as simple as possible with this

property. There is some freedom as to how to construct such embeddings, and many of the statements
to come do not depend on the choice of embedding, as long as certain conditions are met, which we
summarise in the following definition. We choose this way, rather than simply fixing such an embedding,
because it will be convenient in the coming proofs to have some flexibility in this choice.

Definition 4.32. We call an algebra monomorphism 𝜄 : T− → T pl
− an admissible embedding if all of the

following properties hold for any 𝜏 ∈ 𝒯−:

◦ The tree 𝜄𝜏 is constructed by attaching legs to 𝜏 – that is, one has 𝜋𝜄 = Id on T−.
◦ There are only legs attached to nodes in L(𝜏) – that is, one has LL(𝜄𝜏) = L(𝜄𝜏).
◦ The derivative decoration vanishes on legs – that is, all legs 𝑒 ∈ 𝐿L (𝜏) satisfy 𝔢(𝑒) = 0.

We denote by Tad
− the subalgebra of T pl

− generated by all elements of the form 𝜄𝜏 for some admissible
embedding 𝜄 and some 𝜏 ∈ T−. Note that Tad

− is not closed under the coproduct, so that in particular Tad
−

does not form a Hopf algebra. We will write T̂ex,ad
− ⊆ T̂ ex,pl

− for the smallest subalgebra of T̂ ex,pl
− with

the property that Δ−𝖎−Tad
− ⊆ T pl

− ⊗ T̂ex,ad
− . It follows from the definition of Tad

− and equation (4.23) that
one actually has

Δ−𝖎− : Tad
− → Tad

− ⊗ T̂ ex,ad
− .

Example 4.33. The following is an example of an admissible embedding:

↦→ .

The construction so far does not mirror the fact that noise types might appear multiple times on a
given tree. In such a situation, the cumulants built between noises satisfy certain symmetry constraints,
and we want to mirror these symmetries at the level of the legs. To this end, we perform the following
construction:

Definition 4.34. We denote by 𝐺L the group of all permutations 𝜎 of L such that i is invariant under 𝜎
and with the property that 𝜎(l) = 𝜎 (l̄) for any l ∈ L.

We will often abuse notation and view elements 𝜎 of 𝐺L as maps 𝜎 : 𝔏 � L→ 𝔏 � L by extending
𝜎 as the identity on 𝔏. There exists an action S of 𝐺L onto T pl

− and T̂ ex,pl
− given by linearly and

multiplicatively extending the map (𝑔, (𝜏, 𝔱)) ↦→ S𝑔 (𝜏, 𝔱) := (𝜏,S𝑔𝔱), and this action has the property
that S𝑔 is an algebra automorphism on T̂ ex,pl

− and a Hopf algebra automorphism on T pl
− . It will be useful

to denote for l1, l2 ∈ L with i(l1) = i(l2) by l1 ↔ l2 ∈ 𝐺L the group element given by sending l1
to l2, l̄1 to l̄2 (and vice versa), and letting (l1 ↔ l2)(𝔱) := 𝔱 for any 𝔱 ∈ L\ {l1, l2, l̄1, l̄2}. Note that
elements of the form l1 ↔ l2 generate 𝐺L.
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Example 4.35. As an example, with 𝑔 =
(

↔
)

one has

S𝑔 = .

With this notation we introduce the following definition:

Definition 4.36. We denote by 𝓢𝓢𝓢 ⊆ T pl
− and �̂�𝓢𝓢 ⊆ T̂ ex,pl

− the ideals generated by all elements of the
form S𝑔𝜏 − 𝜏 for some 𝜏 ∈ T pl

− and 𝜏 ∈ T̂ ex,pl
− , respectively, for some 𝑔 ∈ 𝐺L.

We then denote by

T̂ ex,sym
− := T̂ ex,pl

− /�̂�𝓢𝓢 and T sym
− := T pl

− /𝓢𝓢𝓢

the factor algebras with the canonical projections 𝑷ex,sym : T̂ ex,pl
− → T̂ ex,sym

− and 𝑷sym : T pl
− → T sym

− .

As before, we define the natural embedding 𝖎sym
− : T sym

− → T̂ ex,sym
− induced by 𝖎−. We have the

following lemma:

Lemma 4.37. The ideal 𝓢𝓢𝓢 ⊆ T pl
− forms a Hopf ideal in T pl

− , so that in particular the factor algebra
T sym
− is a factor Hopf algebra. The algebra T̂ ex,sym

− is a comodule over T sym
− .

Proof. This follows from the facts that S𝑔 is a comodule and a Hopf algebra automorphism on T̂ ex,pl
−

and T pl
− , respectively. �

It will sometimes be convenient to view basis vectors 𝜏 ∈ T sym
− (resp., 𝜏 ∈ T̂ ex,sym

− ) as basis vectors
𝜏 ∈ T pl

− (resp., 𝜏 ∈ T pl
− ). For this we simply fix, once and for all, a right inverse 𝝓sym : T sym

− → T pl
−

(resp., 𝝓sym : T̂ ex,sym
− → T̂ ex,pl

− ) of the canonical projection, with the property that 𝝓sym maps trees
onto trees. Concerning the twisted antipode, we have the following analogue of Proposition 4.28:

Proposition 4.38. There exists a unique algebra homomorphism Ãsym
− : T sym

− → T̂ ex,sym
− such that the

identity

M
(
Ãsym

− ⊗ Id
)
Δ−𝖎− = 1★ (4.24)

holds on T sym
− . Moreover, in terms of the operator Ãex,pl

− , this operator is uniquely determined by the
relation

Ãsym
− 𝑷sym = 𝑷ex,symÃex,pl

− (4.25)

on T pl
− .

Proof. The proof is identical to the proof of Proposition 4.28. �

Finally, we have the following result:

Lemma 4.39. The map 𝜄sym := 𝑷sym𝜄 : T− → T sym
− is an algebra monomorphism and independent of

the choice of admissible embedding 𝜄 : T− → T pl
− .

Proof. The fact that 𝜄sym is independent of the admissible embedding follows directly from the definition.
By definition, 𝜄sym is a homomorphism of algebras, and the fact that 𝜄sym is one to one follows from the
fact that𝓢𝓢𝓢 ⊆ ker 𝜋. �

4.3.1. Hopf algebra isomorphism
We will now factor out a final ideal from T sym

− to obtain a factor Hopf algebra T sym
♠ which is isomorphic

as a Hopf algebra to T−. There are two reasons why T sym
− is not already isomorphic to T−. The first is

that trees may contain more legs than necessary to be properly legged, thus making T sym
− larger than T−.
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The second reason is that legs may have nonvanishing derivative decoration, and thus the decoration of
trees in T sym

− is richer than in T−.
To tackle the first issue, we denote for any tree 𝜏 ∈ T pl

− byQ𝜏 the tree obtained from 𝜏 by removing all
legs which are not needed in order for 𝜏 to be properly legged. More precisely, suppose that 𝜏 =

(
𝑇𝔫𝔢 , 𝔱

)
is a properly legged tree. Then there exists (by the definition of properly legged trees) for any pair of
distinct vertices 𝑢, 𝑣 ∈ L(𝜏) a leg 𝑒 ∈ 𝐿L (𝜏) such that 𝑒↓ = 𝑢 and 𝑒↓ = 𝑣. We then call e and 𝑒 essential
legs, since we cannot remove them from 𝜏 if we want the resulting tree to be properly legged. On the
other hand, any leg 𝑒 ∈ 𝐿L (𝜏) such that either 𝑒↓ ∉ L(𝜏) or 𝑒↓ ∉ L(𝜏) is called superfluous, and we can
remove it, together with its partner, while remaining properly legged. We then set Q𝜏 :=

(
𝑇𝔫𝔢 , 𝔱

)
, where

𝑇 ⊆ 𝑇 denotes the subtree of T obtained by removing all superfluous legs, and we extend Q to a linear
and multiplicative map, so that Q : T pl

− → Tad
− becomes an algebra homomorphism. (Note that Q acts

as the identity on the image of any admissible embedding 𝜄 : T− → T pl
− .) Composing to the left with

the natural projection T pl
− → T sym

− and to the right with 𝝓sym : T sym
− ↩→ T pl

− , we obtain an algebra
homomorphism Q : T sym

− → T sym
− .

Similarly, we write P0 : T pl
− → T pl

− for the multiplicative projection that kills trees with nonvanishing
derivative decoration on legs, formally given by

P0(𝜏) :=

{
𝜏 if 𝔢(𝑒) = 0 for all 𝑒 ∈ 𝐿L (𝜏),

0 otherwise,

for any tree 𝜏 ∈ T pl
− . As before, we use the same symbol for the map P0 : T sym

− → T sym
− given by

composing P0 with the natural projection and the embedding 𝝓sym.
Finally, we denote by Q0 : T pl

− → T pl
− the multiplicative projection given by Q0 = QP0. (Note that

the order of the operators matters here.) With this notation we now have the following straightforward
result, the proof of which is postponed to Appendix A.2:
Lemma 4.40. The ideal kerQ0 ⊂ T sym

− is a Hopf ideal, so that in particular T sym
♠ = T sym

− /kerQ0 is a
Hopf algebra.

We now recall the projection 𝜋 : T− → T− given on a tree 𝜏 by simply removing all legs from 𝜏,
which we naturally view as a projection 𝜋 : T sym

♠ → T−. Conversely, composing the embedding 𝜄sym :
T− → T sym

− of Lemma 4.39 with the canonical projection Psym
♠ : T sym

− → T sym
♠ yields an embedding

T− → T sym
♠ . The next lemma shows that these two maps are actually Hopf algebra isomorphisms:

Lemma 4.41. The maps

𝜋 : T sym
♠ → T− and 𝝋 := Psym

♠ 𝜄sym : T− → T sym
♠

are Hopf algebra isomorphisms, and one has 𝝋 = 𝜋−1.
Proof. By construction, the map 𝜋𝝋 is the identity on T−. It is not hard to see that for any tree 𝜏 ∈ T−,
the tree 𝝋𝜏 ∈ T sym

♠ is the unique tree in T sym
♠ with the property that 𝜋𝜎 = 𝜏. Note for this that any tree

𝜎 ∈ T sym
♠ with the property that 𝜋𝜎 = 𝜏 is the image of 𝜏 under an admissible embedding. The claim

then follows from Lemma 4.39. It follows that 𝜋 : T sym
♠ → T− is an algebra isomorphism with inverse

given by 𝝋. The fact that these maps are Hopf algebra isomorphisms follows from the explicit formulas
for the coproducts in equations (4.23) and (A.2), respectively. �

It will be useful to introduce the notation P♠ := Psym
♠ 𝑷sym : T pl

− → T sym
♠ for the canonical projection.

Also, for later use we point out that the projection P0 is also well defined on T̂ ex,pl
− and T̂ ex,sym

− . (Note,
however, that Q is not!) Note also that one actually has Q0 : T pl

− → Tad
− , and Q0 is the identity on Tad

− .

4.3.2. Evaluations and characters
We start by rephrasing the statement of Theorem 4.19 into a form that is more suited to our analysis.
First we introduce the following terminology: We say that a typed set (𝐴, 𝔱) with 𝔱 : 𝐴 → L is properly
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typed if 𝔱 is injective and such that every 𝑎 ∈ 𝐴 has a partner �̄� ∈ 𝐴 such that 𝔱(�̄�) = 𝔱(𝑎). We also call a
subset 𝐴 ⊆ L properly typed if for any l ∈ 𝐴, one has l̄ ∈ 𝐴. A multiset mwith values in L is properly
typed if it is a properly typed set. Note that (𝐿L (𝜏), 𝔱) is properly typed for any properly legged tree 𝜏.
For the next definition, we fix �̄� > max𝜏∈𝒯−

#𝐾 (𝜏), and fix an element �̄� ∈ Ψ such that �̄�m(𝑥m) = 1
for any 𝑥m ∈ D̄d(m) such that

��𝑥𝑝 − 𝑥𝑞
��
𝔰 ≤ �̄� for any 𝑝, 𝑞 ∈ d(m).

Definition 4.42. We denote by 𝔑 the set of all families (𝜙l)l∈L of smooth functions with the property
that 𝜙l ∈ C∞

𝑐

(
D̄/g

)
and 𝜙l = 𝜙l̄(−·) for any l ∈ L. We also impose that 𝜙l is supported in a centred

scaled ball or radius �̄� around the origin. Any such family 𝜙 ∈ 𝔑 determines an element 𝜙 ∈ Ψ given by

𝜙𝐴(𝑥𝐴) := �̄�𝐴(𝑥𝐴)
∏

{l,l̄}⊆𝐴

𝜙l (𝑥l − 𝑥l̄) , (4.26)

for a properly typed set 𝐴 ⊆ L. We simply set 𝜙m := 0 if m is not properly typed.

In formula (4.26) there is one factor for leg type l and its partner l̄. Note that the right-hand side is
well defined, since 𝜙l = 𝜙l̄ (−·). Without the function 𝜓, one would not have 𝜙 ∈ Ψ, since 𝜙 would not
be compactly supported in the differences of its arguments. Note, however, that �̄� plays no role in the
definition of the evaluation Ῡ𝜂, �̂�𝑅 , since by formulas (4.10) and (3.1), only the function

(𝑥𝑢)𝑢∈LL ↦→

∫
𝑑𝑥𝐿L (𝜏)𝜙

(
𝑥𝐿L (𝜏)

) ∏
𝑒∈𝐿L (𝜏)

𝛿0
(
𝑥𝑒 − 𝑥𝑒↓

)
enters the definition of Ῡ𝜂, �̂�𝑅 , and by the support properties of 𝜙l this expression does not depend on the
choice of �̄� for any properly legged tree 𝜏. Finally, �̄� is chosen such that one can find a tuple 𝜙 ∈ 𝔑 with
the property that equation (4.31) holds (recall that the truncated integration kernels 𝐾𝔱 are supported in
the centred ball of radius 1). We first have the following consequence of Theorem 4.19:

Corollary 4.43. Let 𝜏 ∈ T ex be a properly legged tree, and set 𝜙 ∈ 𝔑. Then for any 𝜂 ∈ 𝔐★
∞, the

evaluation 𝑅 ↦→ Ῡ𝜂, �̂�𝑅 𝜏 extends continuously to K+
0 , and the evaluation (𝜂, 𝑅) ↦→ Υ̂

𝜂, �̂�
𝑅 𝜏 defined in

formula (4.14) extends continuously to the space 𝔐★
0 × K+

0 .

We will abuse notation a bit and simply write Υ̂𝜂,𝜙𝑅 𝜏 := Υ̂𝜂, �̂�𝑅 𝜏, and similarly for Ῡ𝜂,𝜙𝑅 , Ῡ𝜙𝑅 and Ῡ𝜙 .
Given a smooth noise 𝜂 ∈ 𝔐★

∞, an element 𝜙 ∈ 𝔑 and a large-scale kernel assignment 𝑅 ∈ K+
0 , we

want to define a character 𝒈
𝜼,𝝓
𝑹 on T pl

− which is defined analogously to the BPHZ character 𝑔
𝜂
BPHZ, but

where the kernel assignment in the evaluations is replaced by 𝐾 + 𝑅, and where we introduce a cutoff
according to 𝜙.

To this end, we first define a character on T̂ ex,pl
− by linearly and multiplicatively extending the

evaluation Ῡ𝜂,𝜙𝑅 . We then define a character 𝒈𝜼,𝝓𝑹 on T pl
− via the identity

𝒈
𝜼,𝝓
𝑹 (𝜏) := Ῡ𝜂,𝜙𝑅 Ãex,pl

− 𝜏. (4.27)

Let 𝔑sym be defined as the set of families 𝜙 ∈ 𝔑 which are invariant under 𝐺L in the sense that
𝜙𝑔 (l) = 𝜙l for any 𝑔 ∈ 𝐺L. This definition ensures that one has the identity

Ῡ𝜂,𝜙𝑅 S𝑔 = Ῡ𝜂,𝜙𝑅

for every 𝑔 ∈ 𝐺L, and hence the character Ῡ𝜂,𝜙𝑅 vanishes on the ideal�̂�𝓢𝓢 which we used in Definition 4.36
to define the factor algebra T̂ ex,sym

− . It follows that Ῡ𝜂,𝜙𝑅 is well defined on T̂ ex,sym
− for any 𝜙 ∈ 𝔑sym,
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and thus we can define a character 𝒈𝜼,𝝓𝑹 on T sym
− via the identity

𝒈
𝜼,𝝓
𝑹 (𝜏) := Ῡ𝜂,𝜙𝑅 Ãsym

− 𝜏. (4.28)

(Comparing this with formula (4.27) and Proposition 4.38, one has 𝒈
𝜼,𝝓
𝑹 𝑷sym = 𝒈

𝜼,𝝓
𝑹 on T pl

− .)
The following lemma shows the relation between the characters 𝒈

𝜼,𝝓
0 on T pl

− on the one hand, and
the usual BPHZ character 𝑔𝜂BPHZ on T− on the other hand:
Lemma 4.44. Set 𝜙 ∈ 𝔑 and assume that for any l ∈ L, one has that 𝜙l = 1 in a large enough
neighbourhood of the origin. Then for any 𝜂 ∈ 𝔐∞, one has the identities

𝒈
𝜼,𝝓
0 = 𝑔𝜂𝜋𝑷0 and 𝒈

𝜼,𝝓
0 𝜄 = 𝑔

𝜂
BPHZ (4.29)

on T pl
− and T−, respectively, for any admissible embedding 𝜄 : T− → T pl

− .
Moreover, one has

Ῡ𝜂,𝜙𝑅 𝑀𝑔𝜂 𝖏� = Ῡ𝜂,𝜙𝑅 𝑀𝒈
𝜼,𝝓
0 (4.30)

on T̂ ex,pl
− . Here on the left-hand side we view G− ⊆ G− as in Section 4.1.

Proof. Let 𝜙 ∈ 𝔑 be such that for any l ∈ L, the test function 𝜙l is 1 in a neighbourhood of the origin
which is large enough so that one has, for any smooth noise 𝜂 ∈ 𝔐∞, the identity

Ῡ𝜂,𝜙0 𝜏 = Υ𝜂𝜋𝜏 (4.31)

for any tree 𝜏 ∈ T̂ ex,pl
− , with the property that the derivative decoration 𝔢 vanishes on the set of legs

𝐿L (𝜏).
We first show equation (4.29). Note that with the same arguments that show equation (4.31), it also

follows that one has Ῡ𝜂,𝜙0 𝜏 = 0 for any tree 𝜏 ∈ T̂ ex,pl
− with the property that the derivative decoration

𝔢 does not vanish identically on the set of legs. Writing 𝑷0 : T pl
− → T pl

− and �̂�
0 : T̂ ex,pl

− → T̂ ex,pl
− for

the multiplicative projections onto the respective subalgebra generated by trees 𝜏 ∈ T pl
− and 𝜏 ∈ T̂ ex,pl

− ,
respectively, with the property that the decoration 𝔢 vanishes identically on the set of legs of 𝜏, the two
previous observations are equivalent to the identity

Ῡ𝜂,𝜙0 = Ῡ𝜂,𝜙0 �̂�
0
= Ῡ𝜂𝜋�̂�

0 (4.32)

on T̂ ex,pl
− .

Noting that one has 𝜋𝑷0𝜄 = Id on T−, we are left to show that 𝒈𝜼,𝝓0 = 𝑔𝜂𝜋𝑷0 on T pl
− , which, with the

aid of equation (4.32) and the definition of the respective character, follows once we show the identity

𝜋�̂�
0Ãex,pl

− = Ãex
− 𝜋𝑷0

on T pl
− . In order to see this, apply the operator on either side of this identity to some tree 𝜏 and proceed

inductively in the number of edges of 𝜏. We then have the identities

Ãex
− 𝜋𝑷0𝜏 = −M

(
Ãex

− ⊗ Id
)
(Δ−𝔦 − Id ⊗ 1)𝜋𝑷0𝜏

= −M
(
Ãex

− ⊗ Id
) (

𝜋𝑷0 ⊗ 𝜋�̂�
0)

(Δ−𝖎− − Id ⊗ 1)𝜏

= −𝜋�̂�
0M

(
Ãex,pl

− ⊗ Id
)
(Δ−𝖎− − Id ⊗ 1)𝜏 = 𝜋�̂�

0Ãex,pl
− 𝜏,

and the claim follows.
We now show equation (4.30). Denote by q : T− → T− the algebra homomorphism such that for any

tree 𝜏 ∈ T−, one has q𝜏 = 𝜋𝜏 if 𝐿L (𝜏) = �� and q𝜏 = 0 otherwise. Furthermore, denote by Q : T− → T−
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the multiplicative projection which on a tree 𝜏 ∈ T− acts by removing all legs 𝑒 ∈ 𝐿L (𝜏) without a
partner and such that 𝔢(𝑒) = 0, and set Q0 := �̂�

ex,�Q. Then one has

Ῡ𝜂,𝜙𝑅 𝑀𝑔𝜂 𝖏� =
(
𝑔𝜂q ⊗ Ῡ𝜂,𝜙𝑅

)
Δ−𝖏

� =
(
𝑔𝜂q ⊗ Ῡ𝜂,𝜙𝑅 Q0

)
Δ−𝖏

� (4.33)

on T̂ ex,pl
− . The first equality is a consequence of the embedding G− ⊆ G− (compare in Section 4.1). The

second equality is a consequence of the fact that the only legs e appearing in the right component of this
tensor product which do not have a partner are such that there exists a leg 𝑒 with 𝔱(𝑒) = 𝔱(𝑒) and 𝑒↓ = 𝑒↓.
Since 𝜙 = 1 in a neighbourhood of the origin, if the derivative decoration of these legs is zero they do
not contribute to the evaluation Ῡ𝜂,𝜙𝑅 , whereas in the case that the derivative decoration does not vanish,
they kill the evaluation Ῡ𝜂,𝜙𝑅 . Either way, inserting the projection Q0 does not change equation (4.33).

Next we note that one has

Ῡ𝜂,𝜙𝑅 𝑀𝒈
𝜼,𝝓
0 =

(
𝑔𝜂𝜋P0 ⊗ Ῡ𝜂,𝜙𝑅

)
Δ− (4.34)

on T̂ ex,pl
− , where we used equation (4.29), and combining equations (4.33) and (4.34), we are left to

show that

(q ⊗ Q0)Δ−𝖏
� = (𝜋P0 ⊗ Id)Δ− (4.35)

on T̂ ex,pl
− .

For this we use the forest expansion of Δ− on T̂ ex
− given by equation (A.2) and on T̂ ex,pl

− given by
equation (4.23). First, due to the projection q on the right-hand side of equation (4.35), the first sum in
equation (A.2) can be restricted to F ∈ div(𝜋𝜏). The sum over all polynomial decorations is already
identical, but equation (A.2) includes a sum over edge decoration put on legs 𝑒 ∈ 𝐿L

(
F
)
, where F is

as in formula (4.22). Any term where 𝔢F does not vanish on such legs gets killed by Q0, so that we can
restrict the sum over 𝔢F in equation (A.2) to 𝔢F as in equation (4.23).

Now fix F ∈ div(𝜋𝜏) and decorations 𝔫F and 𝔢F. We show that∏
𝑆∈F

𝑆
𝔫F+𝜋eF
𝔢 ⊗ Q0 (𝑇/F)

𝔫−𝔫F , [𝔬]F
𝔢+𝔢F =

∏
𝑆∈F

𝜋P0𝑆
𝔫F+𝜋eF
𝔢 ⊗

(
𝑇/F

)𝔫−𝔫F , [𝔬]F
𝔢+𝔢F

, (4.36)

which concludes the proof.
If there exists a leg 𝑒 ∈ 𝐿L

(
F
)

with 𝔢(𝑒) ≠ 0, then both sides of equation (4.36) vanish. On the other
hand, if 𝔢(𝑒) = 0 for all legs 𝑒 ∈ 𝐿L

(
F
)
, then one can remove the projection P0 from the right-hand

side of equation (4.36), which then becomes∏
𝑆∈F

𝑆
𝔫+𝜋eF
𝔢 ⊗

(
𝑇/F

)𝔫F−𝔫F , [𝔬]F
𝔢+𝔢F

,

so that we are left to show that

Q0(𝑇/F)
𝔫−𝔫F , [𝔬]F
𝔢+𝔢F =

(
𝑇/F

)𝔫F−𝔫F , [𝔬]F
𝔢+𝔢F

,

which is a consequence of the definition of Q0. �

4.4. An analytic result

In this section we are going to show an analytic result, Proposition 4.49, which we will then use as a
black box in the next section. Our goal is to study how the evaluations Ῡ𝜂,𝜙𝑅 𝜏 for 𝜙 ∈ 𝔑 behave when the
smooth functions 𝜙l for l ∈ L are rescaled to small scales. More concretely, assume that we are given a
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degree assignment deg : L → R− ∪ {◦} that is invariant under conjugation. For any family 𝜙 ∈ 𝔑, we
define a rescaled family 𝜙𝜀 ∈ 𝔑 by setting

𝜙𝜀l :=

{
𝜀2 deg(l)𝒮 [𝜀 ]𝜙l if deg(l) ∈ R−,

𝜙l if deg(l) = ◦,
(4.37)

for any l ∈ L and 𝜀 > 0. Here, we define the rescaling operator 𝒮 [𝜀 ] by setting(
𝒮 [𝜀 ]𝜑

)
(𝑥) := 𝜑

(
𝜀−𝔰𝑥

)
for any 𝜑 ∈ C∞

𝑐

(
D̄
)
.

We will now describe a particular way to choose degree assignments deg : L→ R− ∪ {◦}. We fix an
arbitrary homogeneity assignment |||·|||𝔰 on 𝔏− with the property that one has |Ξ|𝔰 < |||Ξ|||𝔰 < �Ξ�𝔰 for
any noise type Ξ ∈ 𝔏−. For any set I ⊆ L of leg types which is closed under conjugation, we define a
degree assignment degI : L→ R− ∪ {◦} by setting

degI(l) :=
1
2
(
|||i1 (l) |||𝔰 + |||i2 (l) |||𝔰

)
− 1

2 +

√
1
4 + #I

if l ∈ I, (4.38)

and degI(l) := ◦ if l ∉ I. The factor in formula (4.38) is chosen in such a way that one has for any tree
𝜏 ∈ Tad

− the identity ∑
l∈I

degI (l) =
∑

𝑒∈𝐿 (𝜏)

|||𝔱(𝑒) |||, (4.39)

with I = {𝔱(𝑒) : 𝑒 ∈ 𝐿L (𝜏)} the set of leg types appearing in 𝜏. Let us sketch the argument for why
equation (4.39) is true. Since 𝜏 ∈ Tad

− , there are no superfluous legs in 𝜏, so that #I = #𝐿(𝜏) (#𝐿(𝜏) −1).
It follows that the denominator in formula (4.38) is simply given by #𝐿(𝜏) − 1, which is equal to{
𝑒 ∈ 𝐿L (𝜏) : 𝑒↓ = 𝑢

}
for any 𝑢 ∈ L(𝜏), and one has∑
l∈I

degI(l) =
∑

𝑢∈𝐿 (𝜏)

∑
𝑒∈𝐿L (𝜏):𝑒↓=𝑢↓

|||𝔱(𝑢) |||𝔰
#𝐿(𝜏) − 1

=
∑

𝑒∈𝐿 (𝜏)

|||𝔱(𝑒) |||.

More generally, assume that we are given a system 𝔓 of nonempty, disjoint subsets of L such that
each I ∈ 𝔓 is invariant under conjugation (we allow 𝔓 = ��, but we impose �� ∉ 𝔓). Then we define a
degree assignment deg𝔓 by setting

deg𝔓 :=
∑
I∈𝔓

degI, (4.40)

with the convention that 𝛼 + ◦ := 𝛼 for any 𝛼 ∈ R− ∪ {◦}. We write P for the set of all systems𝔓.
We define for any 𝔓 ∈ P, any smooth tuple 𝜙 ∈ 𝔑 and any large-scale kernel assignment 𝑅 ∈ K+

0 a
character ℎ

𝜙
𝔓,𝑅 on T pl

− by setting

ℎ
𝜙
𝔓,𝑅𝜏 := −

∑
I∈𝔓

Ῡ𝜙𝑅𝑃I𝜏 (4.41)

for any tree 𝜏 ∈ T pl
− and extending this linearly and multiplicatively. Here, we introduce the linear (but

not multiplicative!) projections 𝑃I : T pl
− → T pl

− onto the subspace of T pl
− spanned by all trees 𝜏 ∈ Tad

−
with the property that 𝔱(𝐿L(𝜏)) = I. In analogy to earlier, we write ℎ

𝜙
𝔓 := ℎ

𝜙

𝔓,�̂�−𝐾
.
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Remark 4.45. We could make 𝑃I multiplicative without changing formula (4.41). However, we will
later introduce the notation 𝑃𝔓, where 𝔓 is a system of subsets of L, in a similar way, projecting onto
a subspace spanned by products of trees (see equation (4.52)). At this point we really want to consider
the linear and not multiplicative projection, so we choose the definition introduced to be consistent.

The goal of the present section is to obtain bounds on the quantity(
ℎ
𝜙𝜀

𝔓 ⊗ Ῡ𝜙
𝜀
)
Δ−𝜏

as 𝜀 → 0 for any 𝜏 ∈ Tad
− , where 𝜙𝜀 is defined as in formula (4.37) for the degree assignment deg𝔓.

Example 4.46. Set 𝔓 := {{ , }, { , }}, and consider the following example from the generalised
KPZ equation:

(
ℎ
𝜙𝜀

𝔓 ⊗ Ῡ𝜙
𝜀
)
Δ− = Ῡ𝜙

𝜀
− Ῡ𝜙

𝜀
Ῡ𝜙

𝜀

−
∑

e∈{ , , , }

Ῡ𝜙
𝜀

Ῡ𝜙
𝜀
𝐷e .

Here 𝐷 , etc., is a shortcut for putting a derivative decoration (0, 1) on the respective edge. We also
colour a node u blue if it contains an X-decoration – that is, 𝔫(𝑢) = (0, 1). One has #{ , } = 2 so that
formula (4.38)) gives deg𝔓( ) = −

|𝔰 |
2 − 𝜅. It follows that

Ῡ𝜙
𝜀

� 𝜀−1−2𝜅 , Ῡ𝜙
𝜀

� 𝜀−2𝜅 ,

as 𝜀 → 0. Note that the counterterms precisely cancel out the subdivergence in the big tree. The fact that
one has { , } ∈ 𝔓 changes nothing, since there is no subtree of negative homogeneity in the image of
𝑃{ , }.

There are some technical subtleties in the proof that require us to put certain assumptions on the
test tuple 𝜙 in order for good bounds to hold, and we summarise these assumptions in the following
definition:

Definition 4.47. Given a system 𝔓 ∈ P, and 𝛿 > 0, we define the set 𝔑(𝔓, 𝛿) ⊆ 𝔑 as the set of 𝜙 ∈ 𝔑
such that both of the following properties hold for any l ∈ L:

◦ If l ∉
⊔
𝔓, then one has that 𝜙l = 0 in the 𝛿-ball of the origin.

◦ If deg𝔓l ≤ −
|𝔰 |
2 , then one has that

∫
𝜙l(𝑥)𝑑𝑥 = 0.

We write 𝔑(𝔓) for the union of 𝔑(𝔓, 𝛿) over 𝛿 > 0.

Let us briefly comment why these assumptions will play a role later on. The first assumption ensures
that under rescaling 𝜙 as in formula (4.37), all subtrees 𝜎 of a tree 𝜏 ∈ Tad

− that trigger a divergence have
the property that 𝔱(𝐿L (𝜎)) ∈ 𝔓. Without this assumption, one would have to consider additionally any
subtree 𝜎 with the property that 𝔱(𝐿L (𝜎)) can be written as 𝔱(𝐿L (𝜎)) =

⊔
𝑖≤𝑚 I𝑖 for some sets I𝑖 ∈ 𝔓.

In particular, this assumption means that we never have to deal with nested divergences. The second
assumption simply ensures that the test functions 𝜙𝜀 converge to 0 in the distributional sense under the
rescaling (4.37). One always has 2 deg𝔍 l > −|𝔰 | − 1 for any l ∈ L, which follows from the assumption
that �Ξ�𝔰 ≥ −

|𝔰 |
2 for any Ξ ∈ 𝔏−.

In order to state the next result, we need a final piece of notation. Let 𝜏 ∈ Tad
− be a tree. Given

𝑀 ⊆ L(𝜏), we denote by L(𝜏, 𝑀) the set of leg types 𝔱(𝑒) ∈ L with 𝑒 ∈ 𝐿L (𝜏) such that both e and 𝑒
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are incident to M. (Note in particular that L(𝜏, 𝑀) is closed under conjugation.) We also write Λ(𝜏) for
the set of all systems M of disjoint, nonempty subsets of L(𝜏). (Note that one has �� ∈ Λ(𝜏), but for
any M ∈ Λ(𝜏), one has �� ∉M.)
Definition 4.48. We write P(𝜏) for the set of all𝔓 ∈ P of the form

𝔓 = {L(𝜏, 𝑀) : 𝑀 ∈ M} (4.42)

for some M ∈ Λ(𝜏).

With these notations, we will show the following statement:
Proposition 4.49. Let 𝜏 ∈ Tad

− be an admissible tree, let 𝔓 ∈ P(𝜏) and let 𝜙 ∈ 𝔑(𝔓) be a tuple of
smooth functions. Define the rescaled family 𝜙𝜀 as in formula (4.37) for the degree assignment deg𝔓
defined in formula (4.40). Finally, let 𝑅, 𝑅′ ∈

{
0, �̂� − 𝐾

}
be large-scale kernel assignments. Then there

exists 𝛽 > 0 such that one has the bound���(ℎ𝜙𝔓,𝑅 ⊗ Ῡ𝜙
𝜀

𝑅′

)
Δ−𝖎−𝜏

��� � 𝜀𝛽 (4.43)

uniformly over 𝜀 > 0.

We will show Proposition 4.49 by applying the results of [Hai18], which ultimately comes down to
comparing the character h with the BPHZ character for a suitable space of Feynman diagrams. Since
this proof is largely technical, we postpone it to Appendix B.

4.5. The ideal J is a Hopf ideal

We will construct an ideal J in T pl
− that is related to the ideal J given in Definition 3.3 via the projection

𝜋 (Lemma 4.58). We will work with the space Vec𝔑 of formal linear combinations of elements of 𝔑.
The notation (4.26) can be linearly extended to an operator ·̂ : Vec𝔑 → Ψ, where Ψ is as in Definition
4.16.
Remark 4.50. For a fixed properly typed set 𝐴 ⊆ L, the set

{
𝜙𝐴 : 𝜙 ∈ Vec𝔑

}
is dense in C̄∞

𝑐

(
D̄𝐴/g

)
(say with respect to the topology of C𝑘 , for any 𝑘 > 0). Note, however, that the definition of 𝜙 puts
nontrivial constraints between 𝜙𝐴 and 𝜙𝐵 whenever 𝐴 ⊆ 𝐵.
Definition 4.51. Given a linear combination 𝜙 ∈ Vec𝔑, say 𝜙 =

∑
𝑖≤𝑟 𝑐𝑖𝜙𝑖 with 𝑐𝑖 ∈ R and 𝜙𝑖 ∈ 𝔑, we

define the character Ῡ𝜙 on T̂ ex,pl
− by setting

Ῡ𝜙𝜏 :=
∑
𝑖≤𝑟

𝑐𝑖Ῡ
𝜙𝑖𝜏,

for any tree 𝜏 ∈ T̂ ex,pl
− , and extending this linearly and multiplicatively.

We now fix a partition 𝒫 of the set of leg types L with the property that for any fixed 𝑃 ∈ 𝒫, the
noise type 𝔱(𝑃) := i1 (l) ∈ 𝔏− does not depend on the representative l ∈ 𝑃. We then introduce the
following terminology:

Definition 4.52. We call a tree 𝜏 ∈ T pl
− or 𝜏 ∈ T̂ ex,pl

− good if there exists an injection 𝜁 : L(𝜏) → 𝒫

with the property that for any leg 𝑒 ∈ 𝐿L (𝜏) with 𝑒↓ ∈ L(𝜏), one has 𝔱(𝑒) ∈ 𝜁
(
𝑒↓

)
. We write T pl

− [𝒫]

and T̂ ex,pl
− [𝒫] for the subalgebras generated by good trees.

We can (and will) assume without loss of generality that L is large enough and 𝒫 is such that there
exists an admissible embedding 𝜄 : T− → T pl

− mapping any tree 𝜏 ∈ T− onto a good tree 𝜄𝜏 ∈ T pl
− . We

also note that these subalgebras are stable under the coproduct – namely, one has

Δ− : T pl
− [𝒫] → T pl

− [𝒫] ⊗ T pl
− [𝒫]
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and

Δ− : T̂ ex,pl
− [𝒫] → T pl

− [𝒫] ⊗ T̂ ex,pl
− [𝒫] .

Moreover, the following simple lemma will be helpful, which contains the motivation for the preceding
definition:

Lemma 4.53. Assume that 𝜏, 𝜏 ∈ Tad
− are good trees such that 𝔱(𝐿L (𝜏)) = 𝔱(𝐿L (𝜏)). Then P(𝜏) = P(𝜏),

where P(𝜏) is as in Definition 4.48.

Proof. Let 𝜁 : L(𝜏) → 𝒫 and 𝜁 : L(𝜏) → 𝒫 be the injections used in the definition of good trees.
Observe that the condition of the lemma implies that 𝜁 and 𝜁 have the same range, so that 𝜂 := 𝜁−1 ◦ 𝜁
defines a bijection from L(𝜏) to L(𝜏). This induces a bijection fromΛ(𝜏) toΛ(𝜏), and the result follows
immediately from Definition 4.48. �

With this notation, we define the following ideals:

Definition 4.54. We define J ⊆ T pl
− as the ideal generated by all 𝜎 ∈ T pl

− [𝒫] with the property that

Ῡ𝜙Q0𝜎 = 0 for any 𝜙 ∈ Vec𝔑, (4.44)

with Q0 as in Lemma 4.40. We also let Jad ⊆ T pl
− denote the ideal generated by all 𝜎 ∈ T pl

− [𝒫] ∩ Tad
−

such that equation (4.44) is satisfied.
Finally, we define Ĵ ⊆ T̂ ex,pl

− as the ideal generated by all 𝜎 ∈ T̂ ex,pl
− [𝒫] with the property that

Ῡ𝜙𝜎 = 0 for any 𝜙 ∈ Vec𝔑. (4.45)

Note that these ideals depend on 𝒫, but we think of 𝒫 as fixed from now on and hide this dependence
in the notation. One has Q0J = Q0Jad, and since P♠ = P♠Q0 on T pl

− , one has the identity

Jsym
♠ := P♠J = P♠Jad (4.46)

as ideals on T sym
♠ .

Remark 4.55. We use Q0𝜎 instead of just 𝜎 in equation (4.44) to ensure that formula (4.46) holds. If
Ῡ𝜙 (𝜏 + 𝜏) = 0 for two trees 𝜏, 𝜏 and all 𝜙 ∈ Vec𝔑, we easily infer that 𝜏 and 𝜏 contain the same leg
types (unless the evaluation vanishes on both trees individually), but there is no reason for 𝜏 and 𝜏 to
contain the same ‘essential leg types’ (i.e., the set of types of essential legs), so that there is no obvious
relation between Q0𝜏 and Q0𝜏. We cannot use Q0 in equation (4.45), since this projection is not well
defined on T̂ ex,pl

− . In particular, it does not hold that J = p−Ĵ. However, if 𝜏 =
∑
𝑖 𝑐𝑖𝜏𝑖 ∈ Ĵ is a linear

combination of trees with |𝜏𝑖 |− < 0, and we know a priori that all the 𝜏𝑖 contain the same essential leg
types, then we can conclude that p−𝜏 ∈ J.

We use 𝜙 ∈ Vec𝔑 in the preceding definition rather than 𝜙 ∈ 𝔑 so that Lemma A.2 can be applied,
which ensures that the ideals J and Ĵ are generated by linear combinations of trees (see Lemma 4.57).
Note that if 𝜎 ∈ T pl

− or 𝜎 ∈ T̂ ex,pl
− is a linear combination of trees, then equation (4.44) for all 𝜙 ∈ 𝔑 is

equivalent to equation (4.44) for all 𝜙 ∈ Vec𝔑. More generally, one has the following:

Lemma 4.56. Let 𝜎 ∈ T̂ ex,pl
− (resp., 𝜎 ∈ T pl

− ) be of the form

𝜎 =
∑
𝑖≤𝑟

𝑐𝑖
∏
𝑗≤𝑚

𝜏𝑖, 𝑗 (4.47)

for some collection of trees 𝜏𝑖, 𝑗 ∈ T̂ ex,pl
− (resp., 𝜏𝑖, 𝑗 ∈ T pl

− ) and some 𝑚, 𝑟 ≥ 1. Assume that the multisets
𝔪𝑖, 𝑗 :=

[
𝐿L

(
𝜏𝑖, 𝑗

)
, 𝔱
]

of leg types have the following two properties:
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1. For fixed 𝑗 ≤ 𝑚, the trees 𝜏𝑖, 𝑗 contain the same leg types for any 𝑖 ≤ 𝑟 – that is, one has that
𝔪 𝑗 := 𝔪𝑖, 𝑗 is independent of 𝑖 ≤ 𝑟 .

2. Any leg type appears at most once – that is, one has that
∑
𝑗≤𝑚𝔪 𝑗 ≤ 1 (in other words, the multisets

𝔪 𝑗 are really sets, and one has 𝔪 𝑗 ∩𝔪𝑘 = �� for any 𝑗 ≠ 𝑘).

If equation (4.45) (resp., equation (4.44)) holds for 𝜎 for any 𝜙 ∈ 𝔑, then one has 𝜎 ∈ Ĵ (resp.,
𝜎 ∈ J).

Proof. We show only the statement for J; the one for Ĵ follows in the same way. Assume without loss
of generality that Q0𝜎 = 𝜎. Let 𝑙0 ≥ 1 and let 𝜙 =

∑
𝑙≤𝑙0 𝛾𝑙𝜙

𝑙 for some 𝛾𝑙 ∈ R and 𝜙𝑙 ∈ 𝔑 for any
𝑙 ≤ 𝑙0. Given a finite sequence 𝛼 : [𝑚] → [𝑙0], we define the tuple 𝜙𝛼 ∈ 𝔑 by setting

𝜙𝛼l :=

{
𝜙
𝛼𝑗

l if l ∈ 𝔪 𝑗 , 𝑗 ≤ 𝑚,

0 otherwise,

for any l ∈ L. Note that this is well defined, since it follows from Lemma 4.56(2) that the relation
l ∈ 𝔪 𝑗 holds for at most one 𝑗 ≤ 𝑚. It follows from a simple application of the binomial expansion and
the representation (4.47) that one has the identity

Ῡ𝜙𝜎 =
∑
𝑖≤𝑟

𝑐𝑖
∏
𝑗≤𝑚

∑
𝑙≤𝑙0

𝛾𝑙Ῡ
𝜙𝑙
𝜏𝑖, 𝑗 =

∑
𝑖≤𝑟

𝑐𝑖
∑

𝛼:[𝑚]→[𝑙0 ]

∏
𝑗≤𝑚

𝛾𝛼𝑗 Ῡ
𝜙𝛼𝑗

𝜏𝑖, 𝑗 =
∑

𝛼:[𝑚]→[𝑙0 ]

Ῡ𝜙
𝛼
𝜎.

In the last equality we used the fact that one has Ῡ𝜙
𝛼𝑗
𝜏𝑖, 𝑗 = Ῡ𝜙

𝛼
𝜏𝑖, 𝑗 for any 𝑖 ≤ 𝑟 and 𝑗 ≤ 𝑚. �

The next lemma is crucial, since it shows that the ideals J, Ĵ and Jad are generated by linear
combinations of trees:

Lemma 4.57. The ideals J (Ĵ, Jad) are generated by all 𝜎 ∈ T pl
− [𝒫]

(𝜎 ∈ T̂ ex,pl
− [𝒫], 𝜎 ∈ T pl

− [𝒫] ∩ Tad
− ), such that 𝜎 can be written as a linear combination of

good trees and such that equation (4.44) holds for any 𝜙 ∈ 𝔑.

Proof. This follows from Lemma A.2 applied to the algebras T pl
− [𝒫] (T̂ ex,pl

− [𝒫], T pl
− [𝒫] ∩Tad

− ). Note
that, for example, the set

{
Ῡ𝜙Q0 : 𝜙 ∈ Vec𝔑

}
is indeed a linear space of linear functionals when

restricted to Vec(𝓣−𝓣−𝓣− ∩ T pl
− [𝒫]). This was the motivation for using Vec𝔑 in the definition of these

ideals. �

We now have the following lemma:

Lemma 4.58. Let J be the ideal defined in Definition 3.3. Then one has the identity

J = 𝜋Jsym
♠ = 𝜋Jad. (4.48)

Proof. Since 𝜋 is an algebra homomorphism and both ideals are generated by linear combinations of
trees (for Jsym

♠ this follows from Lemma 4.58 and formula (4.46); for J it follows from Definition 3.3),
it suffices to show that for any linear combination of trees 𝜎 ∈ T sym

♠ , one has 𝜎 ∈ Jsym
♠ if and only if

𝜋𝜎 ∈ J.
Let first 𝜎 ∈ T pl

− [𝒫]∩Tad
− be, as in Lemma 4.57, a linear combination of good trees 𝜎 =

∑
𝑖∈𝐼 𝑐𝑖𝜎𝑖 ∈

Jad such that equation (4.44) holds. We assume without loss of generality that Q0𝜎 = 𝜎.
We first claim that it suffices to consider 𝜎 such that the set of leg types 𝐿 := [𝐿L (𝜏𝑖), 𝔱] does not

depend on 𝑖 ∈ 𝐼. Indeed, assume that the claim holds for all 𝜎 with this property and let 𝜎 =
∑
𝑖∈𝐼 𝑐𝑖𝜎𝑖 ∈

Jad be as before a linear combination of trees, but assume that [𝐿L (𝜏𝑖), 𝔱] is not independent of 𝑖 ∈ 𝐼.
We claim that there exists a proper nonempty subset 𝐽 ⊆ 𝐼 such that

∑
𝑗∈𝐽 𝑐 𝑗𝜎𝑗 ∈ Jad, from which the

result follows by induction. For this let l◦ ∈ L, let 𝐽 := {𝑖 ∈ 𝐼 : l◦ ∈ 𝐿L (𝜎𝑖)} and assume that 𝐼 ≠ 𝐽 ≠ ��.
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Consider for any family 𝜙 ∈ 𝔑 the family 𝜙𝜆, 𝜆 > 0, defined by setting 𝜙𝜆l◦ := 𝜆𝜙l◦ , 𝜙𝜆
l̄◦

:= 𝜆𝜙l̄◦ and
𝜙𝜆l := 𝜙l for any l ∈ L \ {l◦, l̄◦}. It follows that

Ῡ𝜙
𝜆
𝜎𝑖 = Ῡ

𝜙𝜎𝑖 , Ῡ𝜙
𝜆
𝜎𝑗 → 0,

as 𝜆 → 0, for any 𝑖 ∈ 𝐼 \ 𝐽 and 𝑗 ∈ 𝐽, which implies that
∑
𝑗∈𝐽 𝑐 𝑗𝜎𝑗 ∈ Jad.

Hence, we also have that [𝐿(𝜏𝑖), 𝔱] is independent if 𝑖 ∈ 𝐼. Let now 𝜁𝑖 : L(𝜏𝑖) → 𝒫 be the injection
as in Definition 4.52, denote by 𝒬 its range (which is independent of i) and write as before 𝔱(𝑃) ∈ 𝔏−

for the ‘type’ of 𝑃 ∈ 𝒫. Let 𝐻 ⊆ 𝐺L be the subgroup of those 𝑔 ∈ 𝐺L with the property that 𝑔(l) = l
for any l ∉ 𝐿. For l ∈ L, let 𝑃(l) ∈ 𝒫 be such that l ∈ 𝑃(l). One has m = [𝒬, 𝔱], so that for any
𝜙 ∈ 𝔑 we can define a function 𝜓𝜙 ∈ C̄∞

𝑐

(
D̄m/g

)
by

𝜓𝜙 (𝑥𝒬) :=
∑
𝑔∈𝐻

∏
l,l̄∈𝐿

𝜙𝑔 (l)

(
𝑥𝑃 (l) − 𝑥𝑃 (l̄)

)
. (4.49)

Recall that in the definition of multisets of the form [𝒬, 𝔱], we ‘forget’ the domain 𝒬, so that one has
indeed [𝒬, 𝔱] = [𝐿(𝜏𝑖), 𝔱] for any 𝑖 ∈ 𝐼. Furthermore, 𝜓𝜙 is invariant under those perturbations of 𝒬
which leave the noise type 𝔱(𝑃) invariant for any 𝑃 ∈ 𝒬. Hence 𝜓𝜙 can indeed be viewed as having
the domain D̄m. Finally, in the product on the right-hand side of formula (4.49), we have one (and only
one) factor for each pair leg l and its partner l̄. Since by definition g commutes with conjugation and
𝜙l = 𝜙l̄(−·), there is no ambiguity in this notation.

We claim that the linear space Y generated by functions of the form 𝜓𝜙 for some 𝜙 ∈ 𝔑 is dense in
the space X of functions 𝜓 ∈ C̄∞

𝑐

(
D̄m/g

)
which are supported in the set of 𝑥d(m) with

��𝑥𝑝 − 𝑥𝑞
�� ≤ �̄�

for any 𝑝, 𝑞 ∈ d(m) with respect to uniform convergence. Then Y is the linear space generated by
functions 𝜓 ∈ 𝑋 such that there exist functions 𝜓Ξ,Ξ̃ ∈ C∞

𝑐

(
D̄/g

)
with

𝜓(𝑥m) =
∏

(Ξ,𝑘) ,(Ξ̃,𝑙) ∈d(m) , (Ξ,𝑘)≠(Ξ̃,𝑙)

𝜓Ξ,Ξ̃

(
𝑥 (Ξ,𝑘) − 𝑥(Ξ̃,𝑙)

)
.

The claim now follows from Arzelá and Ascoli’s theorem.
For any fixed compact 𝐾 ⊆ D̄m and any 𝜏 ∈ T−, the evaluation 𝜓 ↦→ Υ̃𝜓𝜏 is continuous on the

subspace of those 𝜓 ∈ C̄∞
𝑐

(
D̄m

)
with supp𝜓 ⊆ 𝐾 with respect to uniform convergence. This follows

from the second part of Assumption 2, which implies a bound on the small scales, and Lemma 4.21 and
[Hai18, Section 4], which imply a bound on the large scales. It now suffices to show Υ̃𝜓

𝜙
𝜋𝜎 = 0 for

any 𝜙 ∈ 𝔑. This follows from

Υ̃𝜓
𝜙
𝜋𝜎 = Ῡ𝜙

∑
𝑔∈𝐻

S𝑔𝜎 = 0,

so that 𝜋𝜎 ∈ J.
The converse direction follows in almost the same way. Let𝜎 =

∑
𝑖∈𝐼 𝑐𝑖𝜎𝑖 ∈ J be a linear combination

of trees and let 𝜄 : T− → T pl
− be an admissible embedding taking values in the set of good trees. Assume

without loss of generality that the set of leg types 𝐿 := 𝐿L (𝜄𝜎𝑖) does not depend on i, and let 𝐻 ⊆ 𝐺L
be as before. It then suffices to show that

Ῡ𝜙
∑
𝑔∈𝐻

S𝑔𝜄𝜎 = 0

for any 𝜙 ∈ 𝔑. Reversing the previous arguments, we see that

Ῡ𝜙
∑
𝑔∈𝐻

S𝑔𝜄𝜎 = Ῡ𝜓
𝜙
𝜎 = 0,

which concludes the proof. �
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We want to use Proposition 4.49. For this we need the following technical lemma, which shows that
the ideals J and Ĵ can alternatively be defined by considering only 𝜙 ∈ 𝔑(𝔓) for some 𝔓 ∈ P, where
𝔑(𝔓) is as in Definition 4.47:

Lemma 4.59. Set 𝜏 ∈ T pl
− [𝒫] (𝜏 ∈ T pl

− [𝒫] ∩ Tad
− , 𝜏 ∈ T̂ ex,pl

− [𝒫]) and assume that 𝜏 can be written as
a linear combination of trees 𝜏 =

∑𝑟
𝑖=1 𝑐𝑖𝜏𝑖 with 𝑟 ≥ 1, 𝑐𝑖 ∈ R and trees 𝜏𝑖 such that I := [𝐿L (𝜏𝑖), 𝔱] is

independent of 𝑖 ≤ 𝑟 . Assume that there exists some system𝔓 ∈ P such that Ῡ𝜙Q0𝜏 = 0 (resp., Ῡ𝜙𝜏 = 0
if 𝜏 ∈ T̂ ex,pl

− [𝒫]) for any 𝜙 ∈ 𝔑(𝔓). Then one has 𝜏 ∈ J(𝜏 ∈ Jad, 𝜏 ∈ Ĵ).

Proof. We show only the statement about J.
By Lemma 4.56, we need to show that equation (4.44) holds for any 𝜙 ∈ 𝔑. For this we recall the

definition of Ῡ𝜙 (formulas (4.26) and (4.10)). It suffices to consider the case that the 𝜏𝑖s contain only
essential legs, and we naturally identify the sets of legs 𝐿L (𝜏𝑖) with I for any 𝑖 ∈ 𝐼. This identification
induces a natural identification of the sets of noise-type edges 𝐿(𝜏𝑖) with a subset𝒬 ⊆ 𝒫 as in the proof
of Lemma 4.58. Then for any 𝑃,𝑄 ∈ 𝒬 with 𝑃 ≠ 𝑄, there exists a unique leg type l(𝑃,𝑄) ∈ I such
that l(𝑃,𝑄) ∈ 𝑃 and l̄(𝑃,𝑄) ∈ 𝑄. Conversely, for any leg type l ∈ I there exists a unique 𝑃(l) ∈ 𝒬

such that l ∈ 𝑃(l).
For 𝜑 ∈ C̄∞

𝑐

(
D̄I/g

)
, let Π𝜑 ∈ C̄∞

𝑐

(
D̄𝒬/g

)
be defined by setting

Π𝜑 (𝑥𝒬) :=
∫

𝑑𝑥I𝜑 (𝑥𝒬)
∏
l∈I

𝛿
(
𝑥l − 𝑥𝑃 (l)

)
.

It follows that

0 = Ῡ𝜙𝜏 =
〈
K�̂� 𝜏, 𝐷𝔢 |I𝜙I

〉
=

〈
K�̂� 𝜋𝜏,Π𝐷𝔢 |I𝜙I

〉
for any 𝜙 ∈ 𝔑(𝔓). We need to show that this identity holds for any 𝜙 ∈ 𝔑.

Assume first that #I > 2. We first claim that one has
〈
K�̂� 𝜋𝜏,Π𝜙I

〉
= 0 for any 𝜙 ∈ 𝔑(𝔓) – that is,

one can get rid of the derivative decoration. Indeed, let 𝑅 > 0 be such that supp 𝜙l is included in the
centred ball of radius R for any l ∈ I. Note that since K�̂� 𝜋𝜏 is homogeneous we may assume that R is
as small as we want, so that in particular, we may assume that 2𝑅 ≤ �̄�. Fixing l∗ ∈ I, we see that for any
𝜙 ∈ C∞

𝑐

(
D̄/g

)
such that 𝜙 vanishes inside the ball of radius 2𝑅, one has Π𝐷𝔢 |I𝜙I = Π

(
𝐷𝔢 |I𝜙I + 𝜙

∗
I

)
,

where 𝜙∗
l∗ := 𝜙 and 𝜙∗

l := 𝜙l for l ≠ l∗. Since any smooth function 𝜓 which is compactly supported
in the centred ball of radius R agrees with a function of the form 𝐷𝔢 |I𝜙l + 𝜙 (for 𝜙 as before) inside
the ball of radius 2𝑅, the claim follows. With precisely the same argument we can remove the second
constraint coming from Definition 4.47, so that the equality

〈
K�̂� 𝜋𝜏,Π𝜙I

〉
= 0 holds for any 𝜙 ∈ 𝔑

such that 𝜙l vanishes in a neighbourhood of the origin. At this point it remains to note that K�̂� 𝜋𝜏 is a
locally integrable function, so the condition that the 𝜙𝔩s vanish around the origin can be removed by a
limit argument in 𝐿∞

(
D̄
)
.

The remaining case I = {l0, l̄0} ∈ 𝔓, so that deg𝔓l0 ≤ −
|𝔰 |
2 , needs a slightly different argument.

Using a simple rescaling argument, it is clear that it suffices to consider the case that 𝛼 := �𝜏𝑖�𝔰 < 0
is independent of 𝑖 ≤ 𝑟 . (Note that in the case 𝛼 = 0, one has Ῡ𝜙𝜏 = 0 by Assumption 5, so that there
is nothing to show.) Our integration kernels are homogeneous, so that we can write

〈
K�̂� 𝜏, 𝐷𝔢 |I𝜙I

〉
=∫

�̃� (𝑥)𝜙𝔩0 (𝑥)𝑑𝑥 for some function �̃� ∈ C∞
(
D̄ \ {0}

)
satisfying �̃� (𝜆𝑥) = 𝜆𝛼𝐾 (𝑥) for all 𝜆 > 0,

𝑥 ∈ D̄\{0}. (Here we have removed the derivative decoration by an integration by parts.) Since 𝛼 > −|𝔰 |,
the function �̃� is locally integrable, and we remove the constraint that 𝜙l0 vanishes around the origin by
a limit argument in 𝐿∞

(
D̄
)
. We still have the constraint

∫
𝜙l0 = 0 coming from Definition 4.47, which

implies that �̃� is a constant, and since 𝛼 < 0, this actually implies that �̃� = 0, as required. �
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With these preliminaries we can now show the following proposition, which is the main result of this
section:

Proposition 4.60. One has the identities

Δ−𝖎−Jad ⊆
(
Jad ⊗ T̂ ex,pl

−

)
+
(
T pl
− ⊗ Ĵ

)
(4.50)

Δ−Jad ⊆
(
Jad ⊗ T pl

−

)
+
(
T pl
− ⊗ J

)
. (4.51)

Proof. Let 𝜏 =
∑𝑟
𝑖=1 𝑐𝑖𝜏𝑖 ∈ Jad be a linear combination of trees with 𝜏𝑖 ∈ T pl

− [𝒫] ∩ Tad
− and 𝑐𝑖 ∈ R for

𝑖 ≤ 𝑟 . As before, we can assume without loss of generality that the trees 𝜏𝑖 are such that the set of leg
types 𝐿 := 𝔱(𝐿L (𝜏𝑖)) is independent of 𝑖 ≤ 𝑟 , and thus so is P̄ := P(𝜏𝑖) (recall equation (4.42) for the
definition of this set). By the definition of the coproduct Δ−, it follows that one has the identity

Δ−𝖎−𝜏 =
���
∑
𝔓∈P̄

𝑃𝔓 ⊗ Id� !Δ−𝖎−𝜏. (4.52)

Here 𝑃𝔓 is the linear (but not multiplicative) projection of Tpl
− onto the linear subspace Tpl

− [𝔓] spanned
by all products of trees of the form 𝜏 =

∏
I∈𝔓 𝜏I with 𝜏I ∈ rng 𝑃I (that is, 𝔱(𝐿L(𝜏I)) = I). The projection

𝑃𝔓 is uniquely defined if we specify additionally that it diagonalises on the basis (in the sense of linear
spaces) B ⊆ Tpl

− containing 1 and all possible products of trees.
The crucial step is to show that for any fixed 𝔓 ∈ P̄ and any fixed 𝜙𝐿 ∈ 𝔑(𝔓) and 𝜙𝑅 ∈ 𝔑(𝔓),

one has

𝔄𝜙
𝐿 ,𝜙𝑅

𝜏 :=
(
Ῡ𝜙

𝐿
⊗ Ῡ𝜙

𝑅
) (

𝑃𝔓 ⊗ Id
)
Δ−𝖎−𝜏 = 0. (4.53)

Actually, since no leg type appears in both the left and the right factors of this tensor product simulta-
neously, it is enough to show this claim for 𝜙𝐿 = 𝜙𝑅 ∈ 𝔑(𝔓).

More precisely: Assume we have shown this special case. Then we construct a tuple 𝜙 ∈ 𝔑(𝔓) by
setting 𝜙l := 𝜙𝐿l if there exists 𝑃 ∈ 𝔓 such that one has l ∈ 𝑃, and 𝜙l := 𝜙𝑅l otherwise. It follows that
𝜙 ∈ 𝔑(𝔓), and one has the identity

𝔄𝜙𝜏 = 𝔄𝜙
𝐿 ,𝜙𝑅

𝜏,

where 𝔄𝜙 := 𝔄𝜙,𝜙 , so that formula (4.53) follows indeed from the special case 𝜙𝐿 = 𝜙𝑅. In order to
continue, we fix a family 𝜙 ∈ 𝔑(𝔓). For 𝜀 > 0 we define a rescaled family 𝜙𝜀 ∈ 𝔑(𝔓) as in formula
(4.37) for the degree assignment deg𝔓 defined as in formula (4.40). With this notation, we define a
function 𝑓 : (0, 1] → R by setting

𝑓 (𝜀) := 𝔄𝜙
𝜀
𝜏

for any 𝜀 ∈ (0, 1]. The proof of formula (4.53) is finished once we show that 𝑓 (1) = 0.

Lemma 4.61. One has

| 𝑓 (𝜀) | ≥ | 𝑓 (1) | (4.54)

for 𝜀 > 0 small enough.

Proof. We first note that one can write

𝑓 (𝜀) = 𝔄𝜙
𝜀 ,𝜙𝜏.

https://doi.org/10.1017/fmp.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.18


68 Martin Hairer and Philipp Schönbauer

This follows from the fact that there is a projection 𝑃𝔓 hitting the left component of formula (4.50),
which ensures that no leg type l ∈

⋃
𝔓 appears in the right component, together with the definition

of deg𝔓 in formula (4.40). On the other hand, by a simple change of variables one can exploit the
homogeneity of the kernels �̂� , which implies that

Ῡ𝜙
𝜀
𝜎 = 𝜀�𝜎�𝔰 Ῡ𝜙𝜎

for any fixed tree 𝜎 ∈ rng 𝑃I for any I ∈ 𝔓. This is a consequence of the definition of 𝑃I after formula
(4.41) and deg𝔓. As a consequence, 𝑓 (𝜀) can be written as a finite sum of terms

∑
𝑗≤𝐽 𝑓 𝑗 (𝜀) such that

𝑓 𝑗 (𝜀) = 𝜀𝛾 𝑗 𝑓 𝑗 (1) for some 𝛾 𝑗 ≤ 0 and 𝜀 > 0, from which the statement of the lemma easily follows. �

We now proceed to show equation (4.52) by induction over #𝔓. For #𝔓 = 0, one has the identity(
𝑃𝔓 ⊗ Id

)
Δ−𝖎−𝜏 = 1 ⊗ 𝖎−𝜏, so that formula (4.53) follows from the fact that 𝜏 ∈ Jad. Let now #𝔓 ≥ 1

and assume that formula (4.53) holds for any𝔔 with𝔔 � 𝔓. Then, using the induction hypothesis, we
can rewrite 𝑓 (𝜀) as

𝑓 (𝜀) =
∑
𝔔⊆𝔓

(−1)#𝔔
(
Ῡ𝜙

𝜀
⊗ Ῡ𝜙

𝜀
)
(𝑃𝔔 ⊗ Id) Δ−𝖎−𝜏 =

(
ℎ
𝜙𝜀

𝔓 ⊗ Ῡ𝜙
𝜀
)
Δ−𝖎−𝜏, (4.55)

where ℎ
𝜙𝜀

𝔓 denotes the character on T pl
− defined in formula (4.41) (compare also formula (B.15)). Since

𝜙 ∈ 𝔑(𝔓) by assumption, we conclude from Proposition 4.49 that there exists 𝛽 > 0 such that one has
the estimate

| 𝑓 (𝜀) | � 𝜀𝛽

uniformly over 𝜀 ∈ (0, 1). Comparing this with formula (4.54), it follows at once that one has 𝑓 (1) = 0,
and this concludes the proof of formula (4.53).

Since the left factor of formula (4.53) is an element of Tad
− , one also has(

Ῡ𝜙
𝐿Q0 ⊗ Ῡ𝜙

𝑅
) (

𝑃𝔓 ⊗ Id
)
Δ−𝖎−𝜏 = 0. (4.56)

To see formula (4.50), we draw on the following simple lemma:

Lemma 4.62. Let X and Y be linear spaces and let ( 𝑓𝑖)𝑖∈𝐼 and
(
𝑔 𝑗

)
𝑗∈𝐽 be families of linear functionals

on X and Y, respectively, for some index sets I and J. Then one has⋂
𝑖, 𝑗

ker
(
𝑓𝑖 ⊗ 𝑔 𝑗

)
=

(⋂
𝑖

ker 𝑓𝑖

)
⊗ 𝑌 + 𝑋 ⊗

(⋂
𝑗

ker 𝑔 𝑗

)
as subspaces of the algebraic tensor product 𝑋 ⊗ 𝑌 .

Proof. Denote the right- and left-hand sides by R and L, respectively. Let first 𝑧 ∈ 𝑅. Then by definition
we can write 𝑧 = 𝑧1 + 𝑧2, with ( 𝑓𝑖 ⊗ Id) (𝑧1) =

(
Id ⊗ 𝑔 𝑗

)
(𝑧2) = 0 for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽. It follows that(

𝑓𝑖 ⊗ 𝑔 𝑗
)
(𝑧𝑘 ) = 0 for all 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 and 𝑘 = 1, 2, and thus 𝑧 ∈ 𝐿.

Let now 𝑧 =
∑𝐾
𝑘=1 𝑥𝑘 ⊗ 𝑦𝑘 ∈ 𝐿. We proceed inductively in K. For 𝐾 = 1, one has 𝑓𝑖 (𝑥1)𝑔 𝑗 (𝑦1) = 0

for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽. Thus either 𝑓𝑖 (𝑥1) = 0 for all 𝑖 ∈ 𝐼 or 𝑔 𝑗 (𝑦1) = 0 for all 𝑗 ∈ 𝐽, and hence
𝑥1 ⊗ 𝑦1 ∈ 𝑅. For 𝐾 > 0 we can assume that 𝑥𝐾 ⊗ 𝑦𝐾 ∉ 𝐿. In particular, there exists 𝑖◦ ∈ 𝐼 such that
𝑓𝑖◦ (𝑥𝐾 ) ≠ 0. Define 𝑏𝑘 := 𝑓𝑖◦ (𝑥𝑘 )

𝑓𝑖◦ (𝑥𝐾 )
, so that by assumption one has

𝐾∑
𝑘=1

𝑏𝑘𝑔 𝑗 (𝑦𝑘 ) = 0 for all 𝑗 ∈ 𝐽. (4.57)
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We can write

𝑧 =
𝐾−1∑
𝑘=1

(𝑥𝑘 − 𝑏𝑘𝑥𝐾 ) ⊗ 𝑦𝑘 + 𝑥𝐾 ⊗

(
𝐾∑
𝑘=1

𝑏𝑘 𝑦𝑘

)
.

From equation (4.57) we deduce 𝑥𝐾 ⊗
(∑𝐾

𝑘=1 𝑏𝑘 𝑦𝑘

)
∈ 𝑅 ⊆ 𝐿, so that

∑𝐾−1
𝑘=1 (𝑥𝑘 − 𝑏𝑘𝑥𝐾 ) ⊗ 𝑦𝑘 ∈ 𝐿.

We conclude using the induction hypothesis. �

Applying this lemma to the families of linear functionals on T pl
− and T̂ ex,pl

− – given by Ῡ𝜙Q0 and
Ῡ𝜙 , respectively, where 𝜙 ranges over 𝔑(𝔓) (and recalling Lemma 4.59) – we conclude that formula
(4.50) is a consequence of equation (4.56).

In order to see formula (4.51), we now use the identity

Δ− = (Id ⊗ p−)Δ−𝖎−

on T pl
− . We still fix𝔓 ∈ P̄. For l ∈ L, denote by 𝑃(l) ∈ 𝒫 the set such that l ∈ 𝑃(l) (recall from before

Definition 4.52 that 𝒫 is a partition of the set of leg types). Let L★ denote the set of leg types l ∈ 𝐿
with the property that l, l̄ ∉

⋃
l′ ∈

⋃
𝔓 𝑃(l′). It follows that the right factor of

(
𝑃𝔓 ⊗ p−

)
Δ−𝖎−𝜏 takes

values in the algebra generated by trees 𝜎 such that the set of essential leg types of 𝜎 is given by L★.
Letting 𝜙 → 𝜙𝜀 , where we rescale 𝜙 as in formula (4.37) for the degree assignment degL

★
, shows that(

Ῡ𝜙 ⊗ Ῡ𝜙
) (
Q0𝑃𝔓 ⊗ p−

)
Δ−𝖎−𝜏 = 0 (4.58)

for any 𝜙 ∈ 𝔑.
Finally, letting 𝜙l → 1 for any l ∈ I := L \ (L★ ∪

⋃
𝔓), we can show that(

Ῡ𝜙 ⊗ Ῡ𝜙
) (
Q0𝑃𝔓 ⊗ Q0p−

)
Δ−𝖎−𝜏 = 0. (4.59)

Indeed, recall that Q0 = QP0. From Assumption 2 it follows that divergent subtrees 𝜎 never touch
noise-type edges e – that is, one has either 𝑒 ∈ 𝐿(𝜎) or 𝑒↓ ∉ 𝑁 (𝜎). It follows from this that the
coproduct never produces a derivative decoration on noise-type edges. In precisely the same way, we
see that the coproduct does not produce a derivative decoration on essential legs on the right-hand side.
Hence every tree on the right-hand side of

(
𝑃𝔓 ⊗ (Id − P0)p−

)
Δ−𝖎−𝜏 contains at least one nonessential

leg e such that 𝔢(𝑒) > 0. Assume now that 𝜙l ≡ 1 in a neighbourhood of the origin for l ∈ I, and define
𝜙𝜀,𝑁l := 𝜙𝜀l

(
𝑁−1·

)
for l ∈ I and 𝜙𝜀,𝑁l := 𝜙𝜀l for l ∈ L\I. We see that(
Ῡ𝜙

𝜀,𝑁
⊗ Ῡ𝜙

𝜀,𝑁
) (
Q0𝑃𝔓 ⊗ (Id − P0)p−

)
Δ−𝖎−𝜏 → 0 as 𝑁 → ∞.

In exactly the same way, we see that(
Ῡ𝜙

𝜀,𝑁
⊗ Ῡ𝜙

𝜀,𝑁
) (
Q0𝑃𝔓 ⊗ (Id − Q)P0p−

)
Δ−𝖎−𝜏 → 0.

On the other hand, the quantity(
Ῡ𝜙

𝜀,𝑁
⊗ Ῡ𝜙

𝜀,𝑁
) (
Q0𝑃𝔓 ⊗ 𝑨p−

)
Δ−𝖎−𝜏

for 𝑨 ∈ {Id,Q0} is independent of 𝑁 ∈ N (for 𝑨 = Id this quantity vanishes, by equation (4.58); for
𝑨 = Q0, the independence of N follows because the projectionQ0 removes nonessential legs on the right
factor, but these are the only ones that come with a type which we rescale). This concludes the proof. �
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Finally, the key result of this section is the following corollary, which finishes the proof of
Assumption 7:

Corollary 4.63. The ideal J is a Hopf ideal in T−.

Proof. By Lemma 4.58, it suffices to show that Jsym
♠ is a Hopf ideal in T sym

♠ . This in turn follows from
formula (4.51) and the identity (4.46). �

4.6. Rigidities between renormalisation constants

In this section we are going to prove Assumption 8. We first build for any smooth shifted noise 𝜂 ∈ 𝔐∞

characters �̂�𝜂 ∈ H and 𝑓 𝜂 ∈ G− such that 𝑔𝜂 = 𝑓 𝜂 ◦ �̂�𝜂 . Recall that H is the annihilator of the ideal J
defined in Definition 3.3. We also recall for this the notation introduced in Section 4.2, which we will
use heavily in this section. As before, we always set deg∞ 𝔱 := �𝔱�𝔰 − |𝔰 | for any kernel type 𝔱 ∈ 𝔏+,
and we fix from now on the homogeneous large-scale kernel assignment 𝑅𝔱 := �̂� 𝔱 − 𝐾𝔱 for any 𝔱 ∈ 𝔏+.
Recall that with this definition, one has (𝑅𝔱)𝔱∈𝔏+

∈ K+
0 .

Furthermore, we fix a smooth, compactly supported function 𝜑 ∈ C∞
𝑐

(
D̄/g

)
, symmetric under g,

such that 𝜑 ≡ 1 in a neighbourhood of the origin. Given this function 𝜑, we build an element 𝜙 ∈ 𝔑sym
by setting 𝜙l = 𝜑 for any l ∈ L.

With this notation we introduce for any smooth noise 𝜂 ∈ 𝔐∞ a character �̂�𝜂 ∈ G− by setting

�̂�𝜂 := 𝒈
𝜼,𝝓
𝑹 𝜄sym,

where 𝒈
𝜼,𝝓
𝑹 is the character on T sym

− defined in formula (4.28), and we define 𝑓 𝜂 ∈ G− by

𝑔𝜂 = 𝑓 𝜂 ◦ �̂�𝜂 . (4.60)

One has the identity �̂�𝜂 = 𝒈
𝜼,𝝓
𝑹 𝜄, where 𝒈

𝜼,𝝓
𝑹 is as in formula (4.27) for any admissible embedding

𝜄 : T− → T pl
− . We assume that 𝜑 ≡ 1 holds in a large enough neighbourhood of the origin, so that

Lemma 4.44 applies.

Lemma 4.64. For any smooth shifted noise 𝜂 ∈ 𝔐s
∞, one has that �̂�𝜂 ∈ H, where H denotes the

annihilator of J (see Definition 3.3).

Proof. Fix an admissible embedding 𝜄 : T− → T pl
− . We have to show that �̂�𝜂 = 𝒈

𝜼,𝝓
𝑹 𝜄 vanishes on J,

so that it suffices to show that 𝒈
𝜼,𝝓
𝑹 vanishes on 𝜄J ⊆ T pl

− . Recalling that J = 𝜋P♠Jad, we see that
𝑷sym𝜄J = 𝑷symJad, and since the character 𝒈𝜼,𝝓𝑹 is invariant under the symmetry group 𝐺L, it suffices
to show that 𝒈𝜼,𝝓𝑹 vanishes on Jad. For this we use the fact that Ãex,pl

− Jad ⊆ Ĵ (compare Proposition
4.60), and the fact that by definition the character Ῡ𝜂,𝜙𝑅 vanishes on Ĵ. �

We are left to show that the map 𝜂 ↦→ 𝑓 𝜂 extends continuously to 𝜂 ∈ 𝔐s
0. A possible approach to

show such a statement would be to use an inductive argument in the number of edges of a tree 𝜏 ∈ T−,
and the fact that we can rewrite the definition of 𝑓 𝜂 in equation (4.60) as

𝑓 𝜂𝜏 = 𝑔𝜂𝜏 − ( 𝑓 𝜂 ⊗ �̂�𝜂) (Δ− − Id ⊗ 1)𝜏. (4.61)

One could then exploit the properties of the coproduct, from which it follows that the character 𝑓 𝜂 on
the right-hand side of equation (4.61) gets hit only by trees that have strictly fewer edges than 𝜏, so
that one could try to match the diverging terms coming from 𝑔𝜂 and �̂�𝜂 on the right-hand side. At this
point, however, this approach leads to relatively complicated expressions, and our arguments are greatly
simplified by bounding the linearised expression and using an integration argument.
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We first recast the problem into a problem of characters acting on T sym
− .

Lemma 4.65. For 𝜂 ∈ 𝔐s
∞, let 𝒇𝜼 be the character of T sym

− defined by

𝒇
𝜼
◦ 𝒈

𝜼,𝝓
0 = 𝒈

𝜼,𝝓
𝑹 . (4.62)

If the map 𝜂 ↦→ 𝒇
𝜼 extends continuously to 𝔐s

0, then so does the map 𝜂 ↦→ 𝑓 𝜂 .

Proof. For 𝜂 ∈ 𝔐s
∞, let 𝑓 𝜂 := ( 𝑓 𝜂)−1, where the inverse is taken in the character group G− of T−.

The operation of taking inverses is a homeomorphism of G−, so that it suffices to show that 𝑓 𝜂 extends
continuously to 𝔐s

0. We claim that one has 𝒇
𝜼
𝜄sym = 𝑓 𝜂 , which concludes the proof, since the map

Gsym
− → G−, 𝒈 ↦→ 𝒈𝜄sym, is continuous. To see this claim, we are left to show that 𝒇

𝜼
𝜄sym ◦ 𝑔𝜂 = �̂�𝜂 .

Recall that one has

𝑓 𝜂 ◦ 𝑔𝜂 = �̂�𝜂 and �̂�𝜂 = 𝒈
𝜼,𝝓
𝑹 𝜄sym, 𝑔𝜂 = 𝒈

𝜼,𝝓
0 𝜄sym, (4.63)

so that we are left to show that(
𝒇
𝜼
⊗ 𝒈

𝜼,𝝓
0

)
(𝜄sym ⊗ 𝜄sym) Δ− =

(
𝒇
𝜼
⊗ 𝒈

𝜼,𝝓
0

)
Δ−𝜄

sym. (4.64)

Note that this identity does not follow immediately, since 𝜄sym is not a Hopf algebra homomorphism.
However, using Lemmas 4.40 and 4.41, we can show that

Δ−𝜄
sym ∈ (𝜄sym ⊗ 𝜄sym) Δ− + kerQ0 ⊗ T sym

− + T sym
− ⊗ kerQ0. (4.65)

Indeed, note first that kerQ0 = ker Psym
♠ , so that with Lemma 4.62 we are left to show that(

Psym
♠ ⊗ Psym

♠
)
(Δ−𝜄

sym − (𝜄sym ⊗ 𝜄sym) Δ−) = 0 on T sym
− . By Lemma 4.41, the map Psym

♠ 𝜄sym is a
Hopf isomorphism, and by Lemma 4.40 and the definition of a Hopf factor algebra, one has(
Psym
♠ ⊗ Psym

♠
)
Δ− = Δ−Psym

♠ on T sym
− , and hence formula (4.65) follows.

We now show equation (4.64), which concludes the proof. By the definition of admissible embeddings,
the definition of Δ− and Q0, one has (Q0 ⊗ Id)Δ−𝜄

sym = Δ−𝜄
sym on T−, so that we deduce from

formula (4.65) the stronger inclusion Δ−𝜄
sym ∈ (𝜄sym ⊗ 𝜄sym) Δ− + T sym

− ⊗ kerQ0. It remains to note
that kerQ0 ⊆ ker 𝒈𝜼,𝝓0 , which follows because we chose 𝜙 = 1 in a large neighbourhood of the origin
(compare Lemma 4.44). �

In order to continue, we define for 𝑟 > 0 the family of large-scale integration kernels 𝑅 (𝑟 ) = (𝑅 (𝑟 )
𝔱 )𝔱∈𝔏+

by setting

𝑅 (𝑟 )
𝔱 (𝑥) := �̂� 𝔱𝜙

(
(𝑟 + 1)−𝔰 ·

)
− 𝐾𝔱

for any 𝔱 ∈ 𝔏+, where 𝜙 is as in Section 2.2.2. This particular way of removing the cutoff has the
advantage that 𝑅 (𝑟 )

𝔱 + 𝐾𝔱 = �̂� 𝔱𝜙 ((𝑟 + 1)−𝔰 ·) for any 𝑟 > 0, which will be helpful in the proof of
Lemma 4.71. We also denote by 𝒈

𝜼
𝒓 the character of T sym

− defined by

𝒈
𝜼
𝒓 := 𝒈

𝜼,𝝓

𝑹 (𝒓) .

Note that one has lim𝑟→0 𝑅 (𝑟 ) = 0 and lim𝑟→∞ 𝑅 (𝑟 ) = 𝑅, so that it follows from Corollary 4.43 that one
has 𝒈

𝜼
𝒓 → 𝒈

𝜼
𝑹 as 𝑟 → ∞ for any fixed 𝜂 ∈ 𝔐∞. We define the character 𝒇

𝜼
𝒓 analogously via the identity

𝒇
𝜼
𝒓 ◦ 𝒈

𝜼
0 = 𝒈

𝜼
𝒓 . It follows from the continuity of the group operation that one has 𝒇

𝜼
0 = 1★ and 𝒇

𝜼
𝒓 → 𝒇𝜼

as 𝑟 → ∞. Moreover, it follows easily from the fact both 𝑅𝔱 and 𝜙 are smooth that the maps 𝑟 ↦→ 𝒈
𝜼
𝒓

and 𝑟 ↦→ 𝒇
𝜼
𝒓 are smooth functions in 𝑟 > 0 for any fixed smooth noises 𝜂 ∈ 𝔐s

∞. We are going to study
a differential equation that 𝒇

𝜼
𝒓 satisfies for 𝑟 > 0. To this end, we introduce the following notation:
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Definition 4.66. We call a linear map 𝑘 : T sym
− → R an infinitesimal character if for any 𝜏1, 𝜏2 ∈ T sym

− ,
one has 𝑘 (𝜏1𝜏2) = 1∗(𝜏1)𝑘 (𝜏2) + 𝑘 (𝜏1)1∗(𝜏2).

Note that an infinitesimal character k vanishes on elements which are not linear combination of trees.
In particular, one has 𝑘 (1) = 0, where 1 is the unity for multiplication. We extend the operation ◦ to
act on any pair of linear maps 𝑔, ℎ : T sym

− → R by setting 𝑔 ◦ ℎ := (𝑔 ⊗ ℎ)Δ , where Δ denotes the
coproduct of the Hopf algebra T sym

− . With this definition, 𝑔 ◦ ℎ is in particular well defined whenever
g and h are characters or infinitesimal characters, and in the case that both are infinitesimal characters,
then 𝑔 ◦ ℎ − ℎ ◦ 𝑔 is again an infinitesimal character. The following is well known:

Lemma 4.67. Let 𝔤 denote the space of infinitesimal characters of T sym
− , and define the bilinear map

[·, ·] : 𝔤×𝔤 → 𝔤 by [𝑘, 𝑙] := 𝑘 ◦ 𝑙 − 𝑙 ◦ 𝑘. Then 𝔤 is the Lie algebra of the character group Gsym
− of T sym

− .

Proof. See, for instance, [BDS18, Theorem 3.9]. �

It is well known that the Lie algebra 𝔤 is naturally isomorphic to the tangent space 𝑇1★Gsym
− of Gsym

− at
the counit 1★ ∈ Gsym

− , and for fixed ℎ ∈ Gsym
− , both right and left translations 𝑘 ↦→ 𝑘 ◦ ℎ and 𝑘 ↦→ ℎ ◦ 𝑘

induce isomorphisms between 𝔤 and the tangent space of Gsym
− at h. We are going to study the differential

equation

𝜕𝑟 𝒇
𝜼
𝒓 = 𝒌

𝜼
𝒓 ◦ 𝒇

𝜼
𝒓 , for 𝑟 > 0, (4.66)

with initial condition 𝒇
𝜼
0 := 1★. Note that the identity (4.66) defines an infinitesimal character 𝒌𝜼𝒓 ∈ 𝖌sym

− .
The reason for studying equation (4.66) is the following lemma:

Lemma 4.68. Assume that for any fixed 𝜂 ∈ 𝔐s
∞, the map 𝑟 ↦→ 𝒌

𝜼
𝒓 is an element of 𝐿1 (0,∞), and

assume that this map extends to a continuous map 𝜂 ↦→ 𝒌
𝜼
· from 𝔐s

0 into 𝐿1 (0,∞). Then the map
𝜂 ↦→ 𝒇𝜼 extends continuously to 𝔐s

0.

Proof. Let ‖·‖ denote a norm on 𝔤 and let 𝑑 (·, ·) be the induced metric on T sym
− . Then one has, for any

𝜂, 𝜂 ∈ 𝔐∞, the estimate

𝑑
(
𝒇𝜼 , 𝒇 �̃�

)
≤ exp

(∫ ∞

0

���𝒌𝜼𝒓 − 𝒌
�̃�
𝒓

��� 𝑑𝑟) ,
from which the statement follows immediately from the assumption of the lemma. �

Fix from now on a rough noise 𝜂 ∈ 𝔐s
0 and let 𝜂𝜀 ∈ 𝔐s

∞ be any sequence such that 𝜂𝜀 → 𝜂 in𝔐s
0 as

𝜀 → 0. We will use the simplified notation 𝒈𝜺𝒓 := 𝒈
𝜼𝜺 ,𝝓
𝒓 , 𝒌𝜺𝒓 := 𝒌

𝜼𝜺

𝒓 and similar for the other characters.
By Lebesgue’s theorem it is sufficient to show that the sequence 𝒌𝜺𝒓 converges as 𝜀 → 0 for any fixed
𝑟 > 0, as well as the estimate

∫ ∞

0 sup𝜀>0
��𝒌𝜺𝒓 ��𝑛×𝑛 𝑑𝑟 < ∞. This is equivalent to showing that there exist

infinitesimal characters 𝒌𝒓 ∈ 𝖌sym
− such that one has

∀𝑟 > 0 : 𝒌𝜺𝒓 (𝜏) → 𝒌𝒓 (𝜏) as 𝜀 → 0 and
∫ ∞

0
sup
𝜀>0

��𝒌𝜺𝒓 (𝜏)�� 𝑑𝑟 < ∞ (4.67)

for all 𝜏 ∈ T sym
− . In the remainder of this section we show formula (4.67), which completes the proof.

For simplicity, we are going to write
=

Υ𝜀𝑟 := Ῡ𝜂
𝜀 ,𝜙

𝑅 (𝑟 )

for the character on T̂ ex,sym
− from now on. With this notation, we have the following representation of

the infinitesimal character 𝒌𝜺𝒓 :
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Lemma 4.69. One has the identity

𝒌𝜺𝒓 (𝜏) = −
(
𝒌𝜺𝒓 ⊗

=

Υ𝜀𝑟 𝑀
𝒈𝜺𝒓
)
(Δ−𝖎− − Id ⊗ 1)𝜏 −

(
𝒈𝜺𝒓 ⊗ 𝜕𝑟

=

Υ𝜀𝑟
)
Δ−𝖎−𝜏

for any tree 𝜏 ∈ T sym
− .

Remark 4.70. The significance of this formula is that the right-hand side depends only on the character
𝒌𝜺𝝉 on proper subtrees of 𝜏. This identity is thus well adapted to an inductive argument; see the proofs
of expressions (4.69) and (4.70).

Proof. The key point is that by the definition of the character 𝒈𝜺𝒓 in T sym
− and the definition of the twisted

antipode Ãsym
− , one has

=

Υ𝜀𝑟 𝑀
𝒈𝜺𝒓 𝖎sym

− = 0 (4.68)

on T sym
− for any 𝑟 > 0, where we use the usual notation 𝑀𝑔 := (𝑔 ⊗ Id)Δex

− on T̂ ex,sym
− for any character

g of T sym
− . Differentiating equation (4.68) with respect to r, one obtains

0 = 𝜕𝑟

(
=

Υ𝜀𝑟 𝑀
𝒈𝜺𝒓 𝖎sym

−

)
=

(
𝜕𝑟 𝒈

𝜺
𝒓 ⊗

=

Υ𝜀𝑟
)
Δ−𝖎− +

(
𝒈𝜺𝒓 ⊗ 𝜕𝑟

=

Υ𝜀𝑟
)
Δ−𝖎−

=
(
𝒌𝜺𝒓 ⊗

=

Υ𝜀𝑟 𝑀
𝒈𝜺𝒓
)
Δ−𝖎− +

(
𝒈𝜺𝒓 ⊗ 𝜕𝑟

=

Υ𝜀𝑟
)
Δ−𝖎−

on T sym
− . In the last equality we use the fact that

𝜕𝑟 𝒈
𝜺
𝒓 = 𝜕𝑟

(
𝒇 𝜺𝒓 ◦ 𝒈𝜺0

)
= 𝒌𝜺𝒓 ◦ 𝒇 𝜺𝒓 ◦ 𝒈𝜺0 = 𝒌𝜺𝒓 ◦ 𝒈𝜺𝒓 .

�

As a consequence, we have the following sufficient condition for formula (4.67) to hold:

Lemma 4.71. Let 𝜏 ∈ T sym
− be a tree and assume that formula (4.67) holds on the Hopf subalgebra

T sym
− [𝜏] generated by all trees 𝜎 ∈ T sym

− with strictly fewer edges than 𝜏. Then one has that(
𝒈𝜺𝒓 ⊗ 𝜕𝑟

=

Υ𝜀𝑟
)
Δ−𝖎−𝜏 (4.69)

converges to a finite limit 𝜀 → 0 for any 𝑟 > 0, and its supremum over 𝜀 ∈ (0, 1) is moreover bounded
in 𝐿1 (0,∞) as a function in r. Furthermore, for any properly legged tree 𝜎 ∈ T̂ ex,sym

− with |𝜎 |+ < 0
and with strictly fewer edges than 𝜏, one has that

=

Υ𝜀𝑟 𝑀
𝒈𝜺𝒓 𝜎 (4.70)

converges to a finite limit as 𝜀 → 0, and is moreover bounded uniformly in 𝑟 > 0 and 𝜀 ∈ (0, 1). In
particular, formula (4.67) holds for 𝜏.

Remark 4.72. The relative simplicity of expressions (4.69) and (4.70) over the corresponding expres-
sions one would get in the strategy outlined in equation (4.61) is the main motivation for choosing this
approach.

Proof. Using Lemma 4.69, it is clear that expressions (4.69) and (4.70) imply formula (4.67). Note
that in expression (4.70) it is sufficient to consider 𝜎 with strictly fewer edges than 𝜏, since 𝒌𝜺𝒓 is an
infinitesimal character and vanishes on the unit element 1.
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In order to see the converse, we first show expression (4.70). Recall that the large-scale integration
kernels 𝐾 (𝑟 ) converge to �̂� − 𝐾 in K+

0 as 𝑟 → ∞, and the smooth noises 𝜂𝜀 converge to 𝜂 in 𝔐s
0 as

𝜀 → 0. Since 𝜎 is properly legged by assumption, the convergence of the expression

lim
𝜀→0

=

Υ𝜀𝑟 𝑀
𝒈𝜺0 𝜎

and the uniform boundedness of
=

Υ𝜀𝑟 𝑀
𝒈𝜺0 𝜎 in 𝜀 > 0 and 𝑟 > 0 are a consequence of Theorem 4.19,

Lemma 4.21 and equation (4.30). (If 𝜎 ∈ V0, then this expression vanishes for any 𝜀, 𝑟 > 0.) The
remaining obstacle is therefore the presence of the character 𝒈𝜺𝒓 instead of 𝒈𝜺0 in expression (4.70).
However, by definition one has 𝒇 𝜺𝒓 ◦ 𝒈𝜺0 = 𝒈𝜺𝒓 , so that it suffices to show that the character 𝒇 𝜺𝒓 restricted to
T sym
− [𝜏] is uniformly bounded in 𝜀, 𝑟 > 0 and converges as 𝜀 → 0 to a finite limit. This is a consequence

of formula (4.67), which holds on T sym
− [𝜏] by assumption.

In order to derive the bound (4.69), we make the following construction: Consider the extended set
of kernel types �̄�+ := 𝔏+ � 𝜕𝔏+, where 𝜕𝔏+ := {𝜕𝔱 : 𝔱 ∈ 𝔏+} is a disjoint copy of 𝔏+. We let |𝜕𝔱 |𝔰 := |𝔱 |𝔰
for any 𝔱 ∈ 𝔏+, and we extend the rule R to a rule �̄� by allowing any kernel type 𝔱 to be replaced by 𝜕𝔱.
We denote by T ex, Tsym

− and T̂ ex,sym
− the respective spaces constructed in Section 4.2 starting from the

rule �̄�. Finally, we introduce a linear operator D : T ex → T ex by setting for any tree 𝜏 =
(
𝑇𝔫,𝔬𝔢 , 𝔱

)
D𝜏 :=

∑
𝑒∈𝐾 (𝑇 )

(
𝑇𝔫,𝔬𝔢 , 𝜕𝑒𝔱

)
,

where 𝜕𝑒𝔱 : 𝐾 (𝑇) � 𝐿(𝑇) → �̄�+ �𝔏− is defined by setting (𝜕𝑒𝔱) 𝑓 := 𝔱 𝑓 for any 𝑓 ∈ 𝐾 (𝑇)\{𝑒} � 𝐿(𝑇),
and (𝜕𝑒𝔱)𝑒 := 𝜕𝔱𝑒. We extend this to a linear operator D : T̂ ex,sym

− → T̂ ex,sym
− by imposing that the

Leibnitz rule D(𝜏𝜎) = D(𝜏)𝜎 + 𝜏D(𝜎) holds.
Finally, we define the kernel assignments 𝐾𝜕𝔱 = 0 and 𝑅 (𝑟 )

𝜕𝔱 := 𝜕𝑟𝑅
(𝑟 )
𝔱 for any 𝔱 ∈ 𝔏+, and we write

again
=

Υ𝜀𝑟 := Ῡ𝜂
𝜀 ,𝜙

𝑅 (𝑟 )
for the character on T̂ ex,sym

− . It follows that expression (4.69) is equal to

=

Υ𝜀𝑟 𝑀
𝒈𝜺𝒓 D𝜏,

where we view 𝒈𝜺𝒓 as a character on Tsym
− by setting 𝒈𝜺𝒓 (𝜏) := 0 for any tree 𝜏 ∈ Tsym

− which contains an
edge 𝑒 ∈ 𝐾 (𝜏) such that 𝔱(𝑒) ∈ 𝜕𝔏+.

Using the induction hypothesis and an argument identical to before (using the identity 𝒇 𝜺𝒓 ◦ 𝒈𝜺0 = 𝒈𝜺𝒓
and the fact that by formula (4.67), the sequence 𝒇 𝜺𝒓 is bounded), it is now sufficient to bound

=

Υ𝜀𝑟 𝑀
𝒈𝜺0 D𝜏,

which is again bounded uniformly in 𝜀 > 0 and 𝑟 > 0 as a consequence of Theorem 4.19. It remains
to show that this expression is absolutely integrable over 𝑟 ∈ (0,∞) and that this integral is uniformly
bounded in 𝜀 > 0. For this, note that D𝜏 satisfies the conditions of Theorem 4.19 with the degree
assignment deg∞ 𝜕𝔱 := deg∞ 𝔱 := |𝔱 |𝔰 − |𝔰 | = �𝔱�𝔰 − |𝔰 | − 𝜅 for 𝔱 ∈ 𝔏+. With this degree assignment,
however, it follows that one has

���𝑅 (𝑟 )
𝜕𝔱

���
K+ ,𝜕𝔱

� 𝑟−𝜅−1 ∧ 1 uniformly in 𝑟 > 0, and we conclude with
formula (4.15). �

5. The construction of the shift

We fix a character ℎ ∈ 𝑓 𝜉 ◦H, and we finally construct a sequence 𝜁𝛿 ∈ 𝔐s
∞ for 𝛿 > 0 such that formulas

(3.5) and (3.6) hold. Let us first motivate the construction to follow. The convergence in formula (3.5)
requires us to choose 𝜁𝛿 in such a way that for any 𝔱 ∈ 𝔏−, one has

𝜉𝔱 + (𝜁𝛿)𝔱 → 0 (5.1)
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in 𝔐s
0. This could simply be accomplished by setting (𝜁𝛿)𝔱 = −𝜉 𝛿𝔱 , where 𝜉 𝛿 is a 𝛿-regularisation of

𝜉. However, with this choice there is no hope of satisfying equation (3.6) as well. At this point we
make the observation that introducing a perturbation of −𝜉 𝛿𝔱 , which lives on scales much smaller than
𝛿, may not destroy the convergence (5.1). On the other hand, such small-scale perturbations of −𝜉 𝛿𝔱
generate resonances in expressions of the type of equation (3.6), and the fact that a tree 𝜏 has negative
homogeneity implies that perturbations weak enough not to destroy formula (5.1) might at the same
time give nonvanishing contributions to equation (3.6).

Let us briefly compare this idea to the strategy used in [CF18] to show a support theorem for
the 2D multiplicative heat equation with purely spatial white noise, known as the 2D PAM equation.
Although the setup in that paper differs slightly from ours (those authors use the theory of paracontrolled
distributions rather than regularity structures, and hard cutoffs of the noise in Fourier space rather than
regularisations via convolution), the spirits of the two approaches are similar. At this stage the authors
of [CF18] use deterministic perturbations of −𝜉 𝛿 at a fixed frequency in order to generate the required
resonances. Deterministic perturbations do not fall in our setting, since we assume our noises to be
stationary and centred (one could of course use randomly shifted oscillations at a fixed frequency, but
this does not seem to generalise well). There are two major reasons why we prefer to use perturbations
which are random instead of deterministic.

The first reason concerns the type of expression one gets when calculating expected values in the
form of equation (3.6). By considering random stationary shifts, we ensure that these expressions are
constant (as opposed to space-time dependent). Moreover, by choosing the shift to be non-Gaussian,
we have freedom to control the cumulants built between the original noise and the shift. This will be
crucial in controlling the expected value of all 𝜏 ∈ 𝔗− (see Definition 3.18) simultaneously.

The second reason concerns the bound of variances of the shifted model, once the expectation can
be controlled. This argument was carried out in Proposition 3.20. The proof of this proposition uses
crucially the results of [CH16], which in turn requires the shift to be stationary and centred.

Both of these points were carried out in [CF18] by hand, and the success of this strategy seems to
rely heavily on the fact that the corresponding regularity structure is relatively simple (in particular, the
set 𝔗− contains only a single tree).

5.1. Enlarging the regularity structure

Following the foregoing discussion, we will choose the shift 𝜁𝛿 = −𝜉 𝛿+𝑘 𝛿 for some random perturbation
𝑘 𝛿 living on scales much smaller than 𝛿. The random smooth function 𝑘 𝛿 in turn will be written as a
sum over functions 𝑘 𝛿

(Ξ,𝜏) , where (Ξ, 𝜏) runs over all pairs of noise types Ξ ∈ 𝔏− and trees 𝜏 ∈ 𝔗− with
the property that Ξ ∈ 𝔱(𝐿(𝜏)). In order to keep the notation clean, we will introduce an extended set of
noise types as follows: For any type Ξ ∈ 𝔏−, we let Ξ̃ be a new symbol such that Ξ̃ ∉ 𝔏−. We then define
for any type Ξ ∈ 𝔏− the set (recall that 𝔏− ⊆ J if one identifies elements of 𝔏− with elements of T− –
see Definition 3.3 – so that 𝜏 ∈ 𝔗− implies |𝐿(𝜏) | ≥ 2)

𝕷− [Ξ] :=
{
Ξ, Ξ̃

}
∪ {(Ξ, 𝜏) : 𝜏 ∈ 𝔗− such that ∃𝑢 ∈ 𝐿(𝜏) with 𝔱(𝑢) = Ξ}. (5.2)

Consider then the construction given in [CCHS20, Section 5], in particular the class of natural
transformations considered in their Remark 5.18, the direct sum decompositions of their Section 5.3
and the construction of regularity structures and associated spaces in their Sections 5.5–5.8. Recall that
the purpose of this construction is the following: Take a set of types 𝔏 and a rule R as before, as well as
a ‘space assignment’ V, namely a collection of finite-dimensional vector spaces 𝑉Ξ, one for every type
Ξ ∈ 𝔏. Then [CCHS20, Section 5.6] describes a way of using this data to build regularity structures
T, T ex, spaces T+, T−, and so on, which is analogous to the construction of [BHZ19] but with a copy
of 𝑉Ξ ‘attached’ to every edge of type Ξ, so that a tree 𝜏 now is not a basis vector of T but defines a
subspace T[𝜏] that is isomorphic to a suitable symmetrisation of

⊗
𝑒∈𝐸 𝑉𝔱 (𝑒) , where E denotes the edge

set of 𝜏 and 𝔱(𝑒) is the type of an edge e. (Symmetrisation is needed, for example, for 𝜏 = Ξ2, which is

https://doi.org/10.1017/fmp.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.18


76 Martin Hairer and Philipp Schönbauer

isomorphic to the symmetric tensor product 𝑉Ξ ⊗𝑠 𝑉Ξ.) The ‘classical’ construction of these spaces is
then obtained as the special case of the space assignment R which simply assigns R to every type.

The construction is functorial in the sense that one constructs ‘abstract’ counterparts T, T+ and so on
of the spaces T, T+ and so on, as well as of the various linear maps Δ , Δ+ and so on between them as
objects and morphisms of a monoidal category of ‘symmetric structures’. Every space assignment V then
yields a functor F𝑉 mapping the abstract objects to their ‘concrete’ counterparts. Furthermore, given
two vector-space assignments V and W, as well as a collection of linear maps 𝐴Ξ : 𝑉Ξ → 𝑊Ξ, [CCHS20,
Remark 5.18] yields a natural transformation from F𝑉 to F𝑊 . In other words, for any ‘abstract’ space A,
A determines a linear map 𝐴 : F𝑉 (A) → F𝑊 (A) (note the symbol overload here) intertwining F𝑉 ( 𝑓 )
and F𝑊 ( 𝑓 ) for any morphism 𝑓 : A1 → A2.

Note now that formula (5.2) yields a vector-space assignment V by setting 𝑉Ξ = R𝕷− [Ξ] for Ξ ∈ 𝔏−

and𝑉Ξ = R for Ξ ∈ 𝔏+. We henceforth use the convention that T = F𝑉 (T), and similarly for T−, T ex and
so on. For every Ξ ∈ 𝔏−, we have a natural embedding 𝜄Ξ : R → 𝑉Ξ mapping 1 to Ξ, so that the natural
transformation of [CCHS20, Remark 5.18] yields natural embeddings 𝜄 : T → T and so on, which we
henceforth simply write as T ⊂ T and so on. We also write 𝜄∗Ξ : 𝑉Ξ → R for the ‘adjoint’ obtained by
mapping Ξ to 1 and all elements of 𝕷− [Ξ] \ {Ξ} to 0. Similarly, this yields projections 𝜄∗ : T → T and
so on. In particular, 𝜄∗ yields an embedding G− ↩→ G− obtained by mapping any G− ' ℓ : T− → R to
ℓ ◦ 𝜄∗ ∈ G−.

One important remark is given by the ‘direct sum decomposition’ verified in [CCHS20, Section 5.3].
When combined with the construction of [CCHS20, Sections 5.5, 5.6], it yields a canonical identification
of T (and T−, T ex and so on) with the regularity structure built from the set of symbols𝕷− =

⊔
Ξ∈𝔏 𝕷− [Ξ]

with the rule 𝑹 obtained from R by allowing the replacement of any given instance of Ξ by an arbitrary
element of 𝕷− [Ξ].

Our construction comes with a natural ‘summation map’ 𝒮Ξ : R → 𝑉Ξ given by

𝒮Ξ1 =
∑

𝕷− [Ξ], (5.3)

which yields linear maps 𝒮 : T → T and so on that also commute with all the operations built in
[CCHS20, Sections 5.5, 5.6], so for example

(𝒮 ⊗ 𝒮)Δ = Δ𝒮, (𝒮 ⊗ 𝒮)Δ− = Δ−𝒮 (5.4)

and so on. Similarly, we have its ‘adjoint’ 𝒮∗ : T → T defined from the linear maps 𝒮∗
Ξ : 𝑉Ξ → R

mapping every element of 𝕷− [Ξ] to 1. It will be convenient to write 𝒮[𝜏] for the collection of those
canonical basis vectors 𝜏 ∈ T such that 𝒮∗𝜏 = 𝜏.

We denote by 𝕸s
∞ := 𝔐s

∞(𝕷−) the set of smooth noises as in Definitions 2.13 and 2.20, and
𝕸s

0 := 𝔐s
0 (𝕷−) for its closure under the norm (2.21). Since Vec(𝕷−) �

⊕
Ξ∈𝔏 𝑉Ξ, we can define

𝒮∗ : 𝕸s
∞ → 𝔐∞ by 𝒮∗𝜂 = 𝜂 ◦𝒮, and similarly for 𝜄∗.

The following lemma connects the construction of this section to the discussion of the previous
section:

Lemma 5.1. Let 𝜉 ∈ 𝔐∞ be a smooth noise, let 𝜂 ∈ 𝕸s
∞ be a smooth noise extending 𝜉 in the sense

that 𝜄∗𝜂 = 𝜉 and let 𝜁 ∈ 𝔐∞ be defined by 𝜁 := 𝒮∗𝜂 − 𝜉. Then one has, for any 𝜏 ∈ T,(
𝑇𝜁 �̂�

𝜉
)
𝜏 = 𝚷 𝜉+𝜁𝑀𝑔𝜉

𝜏 = 𝚷𝜂𝒮𝑀𝑔𝜉
𝜏. (5.5)

Proof. This follows from Theorem 2.4. �

We will show that there exists a double sequence 𝜂𝜀, 𝛿 ∈ 𝕸s
∞, 𝜀, 𝛿 > 0, of smooth, random noises

with the property that 𝜂𝜀, 𝛿 extends 𝜉 𝜀; one has 𝒮∗𝜂𝜀, 𝛿 → 0 in 𝕸s
0 in the limit 𝜀 → 0 and 𝛿 → 0; and

one has lim𝛿→0 lim𝜀→0 Υ𝜂
𝜀,𝛿

𝑀𝑔𝜀
𝒮𝜏 = ℎ(𝜏) for any 𝜏 ∈ 𝔗−. Setting 𝜁 := 𝒮∗𝜂 − 𝜉 then concludes the

proof of Proposition 3.20.
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We now identify those trees 𝜎 ∈ 𝒮[𝜏] that have the property that their expected value depends
linearly on the shift. They will give the dominating contribution to Υ𝜂𝜀,𝛿

𝑀𝑔𝜀
𝒮𝜏.

Definition 5.2. For any 𝜏 ∈ 𝔗−, we define 𝒮↑[𝜏] as the set of 𝜎 ∈ 𝒮[𝜏] such that there exists a
noise-type edge 𝑢 ∈ 𝐿(𝜎) such that

◦ one has 𝔱(𝑢) = (Ξ, 𝜏) for some Ξ ∈ 𝔏− and 𝜏 ∈ 𝔗− with 𝜏 ∼ 𝜏, and
◦ for any noise-type edge 𝑣 ∈ 𝐿(𝜎)\{𝑢}, one has 𝔱(𝑣) ∈ 𝔏−.

Recall Definition 3.17 for the definition of the equivalence relation ∼ used here. We also set 𝒮↓[𝜏] :=
𝒮[𝜏]\

(
𝒮↑[𝜏] � {𝜏}

)
. With this notation, we define

𝒮↑𝜏 :=
∑

𝜎∈𝒮↑ [𝜏 ]

𝜎 and 𝒮↓𝜏 :=
∑

𝜎∈𝒮↓ [𝜏 ]

𝜎.

Note that one has the identity 𝒮 = 𝒮↑ +𝒮↓ + Id.

Example 5.3. We visualise this construction on the example of the tree from the generalised KPZ

equation. Here the set 𝒮
[ ]

is given by

, , , , , , , , , , , , , , , .

Here a leaf drawn as square is a placeholder for an element in 𝕷− [ ]\{ }, and similar for and .
Hence every tree drawn here (except the first one) is really a placeholder for a finite family of trees. The

set 𝒮↑

[ ]
is then given by

, , , ,

where now runs only over extended noise types 𝚵 ∈ 𝕷− [ ] of the form 𝚵 = ( , 𝜏), where 𝜏 ∈ 𝔗− is
a tree with exactly two noises of type and two noises of type (and no other noises); and similar for

and

5.2. Construction of the shift as Wiener chaos

We will choose the perturbation 𝜂𝜀, 𝛿
(Ξ,𝜏) in a homogeneous Wiener chaos of fixed order, so that 𝜂𝜀, 𝛿

(Ξ,𝜏) is
determined by specifying a kernel 𝐾 𝜀, 𝛿

(Ξ,𝜏) . (To clarify the idea behind the construction to follow, consider
Example 1.20).

The kernels will be constructed by fixing a smooth, compactly supported function and rescaling it to
scales much smaller than 𝛿 at some homogeneity 𝖘(Ξ) (see formulas (5.8) and (5.9)). It will be crucial
that we choose this homogeneity 𝖘(Ξ) carefully in such a way that shifted trees 𝜎 as in Example 1.20
(i.e., where exactly one noise Ξ of some tree 𝜏 ∈ 𝔗− is replaced by (Ξ, 𝜏)) have just slightly negative
homogeneity. For this, we fix 𝜅 > 0 small enough and we define a homogeneity assignment 𝖘 : 𝕷 → R
in the following way:

Definition 5.4. Set 𝖘(Ξ) := 𝖘
(
Ξ̃
)

:= 𝔰(Ξ) for any noise type Ξ ∈ 𝔏−, and 𝖘(𝔱) := 𝔰(𝔱) for any kernel
type 𝔱 ∈ 𝔏+. For any noise type of the form (Ξ, 𝜏) ∈ 𝕷−, set

𝖘(Ξ, 𝜏) := 𝔰(Ξ) − �𝜏�𝔰 − 𝜅.
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We now have two homogeneity assignments 𝔰 and 𝖘, with 𝖘 ≥ 𝔰 − 𝜅 on 𝕷−. For any 𝜀 > 0 and 𝛿 > 0,
we are going to define a random smooth noise 𝜂𝜀, 𝛿 ∈ 𝕸s

∞ satisfying the following:

◦ For any noise type Ξ ∈ 𝔏−, one has 𝜂𝜀, 𝛿Ξ = 𝜉 𝜀Ξ and 𝜂𝜀, 𝛿
Ξ̃

= −𝜉 𝛿Ξ .
◦ For any noise type 𝚵 ∈ 𝕷−\𝔏−, the noise 𝜂𝜀, 𝛿𝚵 is independent of 𝜀.
◦ For any noise type of the form (Ξ, 𝜏), the noise 𝜂𝜀, 𝛿

(Ξ,𝜏) is a random centred stationary smooth
function that takes values in the m(Ξ, 𝜏)th homogeneous Wiener chaos with respect to 𝜉, where
m(Ξ, 𝜏) := [𝐿(𝜏), 𝔱]\{Ξ}. (Note that [𝐿(𝜏), 𝔱]\{Ξ} denotes the multiset where exactly one instance
of Ξ is removed from [𝐿(𝜏), 𝔱].)

We also write m(Ξ) = m
(
Ξ̃
)

:= {Ξ} for any Ξ ∈ 𝔏−. We now define for any (Ξ, 𝜏) ∈ 𝕷− a smooth
kernel 𝐾 𝛿

(Ξ,𝜏) ∈ Y𝑚(𝜏)
∞ , where 𝑚(𝜏) := #𝐿(𝜏) − 1, depending only on 𝛿 > 0 (compare equation (2.13)

for the notation used here). We define 𝐾 𝛿
(Ξ,𝜏) by rescaling a fixed kernel Φ(Ξ,𝜏) ∈ Y𝑚(𝜏)

∞ , independent
of 𝛿 > 0, which will be determined in Lemma 5.10. In order to avoid case distinctions, we also define
for any noise type Ξ ∈ 𝔏− the kernels

ΦΞ := 𝜌, ΦΞ̃ := −𝜌,

so that ΦΞ,ΦΞ̃ ∈ Y1
∞. Recall that 𝜌 is a compactly supported smooth cutoff function integrating to one.

Before we choose the kernels Φ(Ξ,𝜏) , we describe how we rescale them in order to obtain the kernels
𝐾 𝛿

(Ξ,𝜏) . Let us first define for any 𝑛 ≥ 1, any scale 𝜆 > 0 and any homogeneity 𝛼 ∈ R the rescaling
operator S(𝜆, 𝛼) : Y𝑛∞ → Y𝑛∞:

S(𝜆, 𝛼) (𝐾0 ⊗ · · · ⊗ 𝐾𝑛) := 𝜆𝛼−|𝔰 | (𝐾0
(
𝜆−𝔰 ·

)
⊗ · · · ⊗ 𝐾𝑛

(
𝜆−𝔰 ·

) )
. (5.6)

Note that U𝐾 transforms as

(US(𝜆, 𝛼)𝐾) (𝑥1, . . . , 𝑥𝑛) = 𝜆𝛼 (U𝐾)
(
𝜆−𝔰𝑥1, . . . , 𝜆

−𝔰𝑥𝑛
)

for any 𝐾 ∈ Y𝑛∞.
The correct homogeneity to rescale a kernel Φ(Ξ,𝜏) so that the random variable 𝜂𝜀, 𝛿

(Ξ,𝜏) is of order 1
for the homogeneity 𝖘(Ξ, 𝜏) is given by

𝛼(Ξ,𝜏) := 𝖘(Ξ, 𝜏) − 𝑚(𝜏)
|𝔰 |
2

(5.7)

for any (Ξ, 𝜏) ∈ 𝕷−. (Recall that 𝑚(𝜏) = #𝐿(𝜏) − 1.) This follows from the fact that the co-
variance of 𝜂𝜀, 𝛿

(Ξ,𝜏) is given by
���E [

𝜂𝜀, 𝛿
(Ξ,𝜏) (𝑧)𝜂

𝜀, 𝛿
(Ξ,𝜏) (𝑧)

] ��� = ���∫ 𝑑𝑥𝐾 𝛿
(Ξ,𝜏) (𝑧, 𝑥)𝐾

𝛿
(Ξ,𝜏) (𝑧, 𝑥)

��� � |𝑧 −

𝑧 |2𝛼(Ξ,𝜏) +𝑚(𝜏) |𝔰 | .We will later choose for any 𝛿 > 0 and any tree 𝜏 ∈ 𝔗− a scale 𝜆𝛿𝜏 ∈ (0, 1) and a
real constant 𝑎𝛿𝜏 ∈ R. Set A := R𝔗− and denote by Λ̃† the set of scales 𝜆 ∈ (0, 1)𝔗−�{★,†} such that 𝜆𝜏
depends only on the equivalence class [𝜏]∼ of 𝜏. (This property will be useful in the proof of Lemma
5.10.) For fixed scales 𝜆𝜏 ∈ Λ̃ and constants 𝑎𝜏 ∈ Λ̃†, we now make the following definition:

Definition 5.5. For any (𝑎, 𝜆) ∈ A × Λ̃† and any (Ξ, 𝜏) ∈ 𝕷− with �𝜏�𝔰 < 0, we define the kernel

𝐾𝑎,𝜆
(Ξ,𝜏) := 𝑎𝜏S

(
𝜆𝜏 , 𝛼(Ξ,𝜏)

)
Φ(Ξ,𝜏) . (5.8)
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For �𝜏�𝔰 = 0 we use a slightly different definition

𝐾𝑎,𝜆
(Ξ,𝜏) := 𝑎𝜏

1
𝑁𝜆𝜏

𝑁 𝜆
𝜏 −1∑
𝑘=0

2−𝜅𝑘S
(
2−𝑘𝜆𝜏 , 𝛼(Ξ,𝜏)

)
Φ(Ξ,𝜏) , (5.9)

where 𝑁𝜆𝜏 is the smallest integer larger then (𝜆𝜏)
−1.

We also set

𝐾𝑎,𝜆Ξ := S(𝜀,−|𝔰 |)𝜌 and 𝐾𝑎,𝜆
Ξ̃

:= S(𝛿,−|𝔰 |)𝜌, (5.10)

where we write 𝛿 := 𝜆★ and 𝜀 := 𝜆†.

Remark 5.6. We include 𝜀 and 𝛿 in the data 𝜆 in order to avoid case distinctions in some expressions to
follow. Sometimes it will be useful to make 𝜀 explicit. In these cases we write 𝜂𝜀,𝑎,𝜆 and 𝐾 𝜀,𝑎,𝜆, with
𝑎 ∈ A and 𝜆 ∈ Λ̃ := (0, 1)𝔗−�{★}.

Example 5.7. To understand formula (5.9), consider first a tree 𝜏 ∈ 𝔗− with �𝜏�𝔰 < 0, and assume
for simplicity that 𝜏 does not contain any divergent proper subtree. Consider two trees 𝜏, 𝜏 ∈ 𝒮[𝜏],
where in 𝜏 (resp., 𝜏) exactly one noise type Ξ (resp., two noise types Ξ, Ξ̃) is replaced by (Ξ, 𝜏) (resp.,
(Ξ, 𝜏), (Ξ̃, 𝜏)), so that in the notation of Definition 5.2, one has 𝜏 ∈ 𝒮↑[𝜏] and 𝜏 ∈ 𝒮↓[𝜏]. It then
follows from a simple scaling argument and formula (5.8) that one has���Υ𝜂𝜀,𝑎,𝜆

𝜏
��� � 𝑎𝜏𝜆

−𝜅
𝜏 and

���Υ𝜂𝜀,𝑎,𝜆
𝜏
��� � 𝑎2

𝜏 . (5.11)

The second bound follows from the fact that |𝜏 |𝖘 > 0. We will choose 𝑎𝜏 such that Υ𝜂𝜀,𝑎,𝜆
𝜏 is of order

1 as 𝜆𝜏 → 0, and hence 𝑎𝜏 � 𝜆𝜅𝜏 . Thus, one has Υ𝜂𝜀,𝑎,𝜆
𝜏 → 0.

This argument uses crucially the fact that |𝜏 |𝖘 > 0, which fails in the case that �𝜏�𝔰 = 0, where one
has �𝜏�𝖘 = −𝜅 and �𝜏�𝖘 = −2𝜅. It follows that if we simply defined 𝐾𝑎,𝜆

(Ξ,𝜏) via formula (5.8) in this
case, we would get that |Υ𝜂

𝜀,𝑎,𝜆
𝜏 | is of order 1. In order to continue, we ‘spread out’ the kernel 𝐾𝑎,𝜆

(Ξ,𝜏)
in frequency space via formula (5.9). One can readily check that the first relation in formula (5.11) still
holds, while for the second relation essentially only the resonant terms contribute (compare the proof
of Lemma 5.23, where this is made precise), and we obtain the bound

���Υ𝜂𝜀,𝑎,𝜆
𝜏
��� � 𝑎2

𝜏(
𝑁𝜆𝜏

)2

𝑁 𝜆
𝜏 −1∑
𝑘=0

2−2𝜅𝑘
(
22𝜅𝑘𝜆2

𝜏

)
�

(
𝑁𝜆𝜏

)−1
,

which converges to 0 as 𝑁𝜆𝜏 → ∞.

We are now given a family of kernels 𝐾𝑎,𝜆𝚵 ∈ Y𝑚(𝚵)
∞ and a multiset m(𝚵) for any noise type 𝚵 ∈ 𝕷−,

where 𝑚(𝚵) := #m(𝚵). (Think of m(𝚵) = m(Ξ, 𝜏) as being defined as discussed after Definition
5.4.) With this notation we now make the following definition, for which we recall Definition 2.13:

Definition 5.8. Let 𝔎𝑎,𝜆 ∈ 𝔜𝑁∞ be defined by setting
(
𝔎𝑎,𝜆

)𝚵
m := 𝐾𝑎,𝜆𝚵 Im=m(𝚵) for any multiset 𝚵 with

values in 𝔏− and any 𝚵 ∈ 𝕷−. We then define the smooth noises 𝜂𝑎,𝜆 ∈ 𝕸s
∞ by setting, for any noise

type 𝚵 ∈ 𝕷−,

𝜂𝑎,𝜆𝚵 := 𝐽 (𝔎𝑎,𝜆). (5.12)
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From formula (2.20) it follows that 𝜂𝑎,𝜆𝚵 = 𝐽m(𝚵) (U𝐾𝑎,𝜆𝚵 ). Recall from equation (2.16) that the
operator U is given by

U𝐾 (𝑥1, . . . , 𝑥𝑛) =
∫

D̄
𝑑𝑦𝐾0(𝑦)𝐾1(𝑥1 − 𝑦) · · ·𝐾𝑛 (𝑥𝑛 − 𝑦). (5.13)

The following is then a simple consequence of this definition:

Lemma 5.9. For any (𝑎, 𝜆) ∈ Λ̃† and any Ξ ∈ 𝔏−, one has 𝜂𝑎,𝜆Ξ = 𝜉 𝜀Ξ and 𝜂𝑎,𝜆
Ξ̃

= −𝜉 𝛿Ξ .

In order to determine our shift, we are left to choose for any (Ξ, 𝜏) ∈ 𝕷− a compactly supported
kernel Φ(Ξ,𝜏) , and for any 𝛿 > 𝜀 > 0 a choice of parameters (𝑎, 𝜆) ∈ A × Λ̃† with 𝜆† = 𝜀 and 𝜆★ = 𝛿.

The following lemma determines a choice of smooth kernels Φ(Ξ,𝔱) :

Lemma 5.10. Let 𝒮↑ be the operator from Definition 5.2 and let 𝑔𝜀 be the BPHZ character for the noise
𝜉 𝜀 as in Section 2.2.3, which we view as an element of G− as in Section 5.1. Then there exists a choice
of kernels Φ(Ξ,𝜏) ∈ Ys,𝑚(𝜏)

∞,★ for any (Ξ, 𝜏) ∈ 𝕷− such that the following holds: For any tree 𝜏 ∈ 𝔗− and
any 𝐶 > 0, one has the identity

lim
𝜀→0

Υ𝜂
𝜀,𝑎,𝜆

𝑀𝑔𝜀
𝒮↑𝜏 = 𝑎𝜏 (𝜆𝜏)

−𝜅 + 𝑜
(
(𝜆𝜏)

−𝜅 ) ,
where the constant 𝑜

(
(𝜆𝛿𝜏 )

−𝜅
)

is such that(
𝜆𝛿𝜏

) 𝜅
𝑜

((
𝜆𝛿𝜏

)−𝜅 )
→ 0

as 𝜆𝜏 → 0 uniformly over 𝜆 ∈ Λ̃ and 𝑎 ∈ A, with |𝑎 |∞ < 𝐶.

Proof. Fix for the entire proof an equivalence class Θ ∈ 𝔗−/∼. Set 𝜏 ∈ Θ and 𝜎 =
(
𝑆𝔫𝔢 , 𝔱

)
∈ 𝒮↑[𝜏], and

let 𝑤 ∈ 𝐿(𝜎) be the unique noise-type edge such that 𝔱(𝑤) = (Ξ, 𝜏) for some Ξ ∈ 𝔏− and some 𝜏 ∈ Θ.
It follows that

Υ𝜂
𝜀,𝑎,𝜆

𝑀𝑔𝜀
𝜎 = Υ𝜂

𝜀,𝑎,𝜆
𝜎

=
∫

D̄𝐿 (𝜏)

𝑑𝑥 (K𝐾 𝜏)
(
(𝑥𝑢)𝑢∈𝐿 (𝜏)

)
E𝑐

[((
𝜉 𝜀𝔱 (𝑢) (𝑥𝑢)

)
𝑢∈𝐿 (𝜏)\{𝑤 }

, 𝜂𝜀,𝑎,𝜆
(Ξ, �̃�) (𝑥𝑤 )

)]
.

(Both equalities are consequences of the fact that 𝜂𝜀,𝑎,𝜆𝔱 (𝑤)
is in a homogeneous Wiener chaos of order

𝑚(𝜏) = #𝐿(𝜏) − 1.) In the limit 𝜀 → 0, we obtain∫
D̄𝐿 (𝜏)

𝑑𝑥 (K𝐾 𝜏)
(
(𝑥𝑢)𝑢∈𝐿 (𝜏)

)
E𝑐

[ (
𝜉𝔱 (𝑢) (𝑥𝑢)

)
𝑢∈𝐿 (𝜏)\{𝑤 }

, 𝐼m(Ξ,𝜏)

(
U𝐾𝑎,𝜆

(Ξ, �̃�) (𝑥𝑤 , ·)
)]

.

For �𝜏� < 0 this expression is equal to

𝑎 �̃�𝜁𝜏,Ξ

∫
D̄𝐿 (𝜏)

𝑑𝑥 (K𝐾 𝜏) (𝑥)S
(
𝜆𝜏 , 𝛼(Ξ,𝜏)

)
UΦ(Ξ, �̃�)

(
𝑥𝑤 ; 𝑥 ◦ 𝜙−1

)
, (5.14)

where we use the facts that 𝜆𝜏 = 𝜆 �̃� and 𝛼(Ξ,𝜏) = 𝛼(Ξ, �̃�) , where 𝜁𝜏,Ξ ∈ N denotes a symmetry
factor and where 𝜙 : 𝐿(𝜏)\{𝑤} → d(m(Ξ, 𝜏)) denotes an arbitrary bijection with the property that
𝔱(𝑢) = 𝜙1(𝑢) for any 𝑢 ∈ 𝐿(𝜏)\{𝑤}. It follows from the definition of m(Ξ, 𝜏) that such a bijection
exists, and from the symmetry properties ofΦ(Ξ, �̃�) that the integral is independent of this choice. (Here
we assume without loss of generality that Φ(Ξ,𝜏) is symmetric under all permutations of [𝑚(𝜏)] which
leave the noise type 𝔱 invariant, where 𝔱 : [𝑚(𝜏)] → 𝔏− is the unique order-preserving map such that
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[[𝑚(𝜏)], 𝔱] = m(Ξ, 𝜏).) Recall now the definition of 𝛼(Ξ,𝜏) from formula (5.7), and note that after a
change of integration 𝑥 → 𝜆𝔰𝜏𝑥, we obtain the expression

𝑎 �̃�𝜁𝜏,Ξ(𝜆𝜏)
−𝜅

∫
D̄𝐿 (𝜏)

𝑑𝑥
(
K𝐾 (𝑅) 𝜏

)
(𝑥)UΦ(Ξ, �̃�)

(
𝑥𝑤 ; 𝑥 ◦ 𝜙−1

)
,

where 𝑅 = (𝜆𝜏)
−1 and the assignment 𝐾 (𝑅) is given by 𝐾 (𝑅)

𝔱 (𝑥) = 𝑅 |𝔰 |− |𝔱 |𝔰𝐾𝔱 (𝑅
−𝔰𝑥) for any 𝔱 ∈ 𝔏+.

As 𝜆𝜏 → 0, the integral in the last expression converges to∫
D̄𝐿 (𝜏)

𝑑𝑥
(
K�̂� 𝜏

)
(𝑥)UΦ(Ξ, �̃�)

(
𝑥𝑤 ; 𝑥 ◦ 𝜙−1

)
. (5.15)

(The integrand is absolutely integrable. The fact that this integral is finite on small scales is easy to
see; the bound on large scales follows from the assumption that UΦ(Ξ, �̃�) is compactly supported and
Lemma 4.21. One could also see this directly from a simple power-counting argument, or equivalently
from [Hai18, Theorem 4.3].)

For �𝜏� = 0, expression (5.15) follows almost identically. Indeed, in this case expression (5.14)
should be replaced by

𝑎 �̃�𝜁𝜏,Ξ
1
𝑁𝜆𝜏

𝑁 𝜆
𝜏 −1∑
𝑘=0

2−𝜅𝑘

∫
D̄𝐿 (𝜏)

𝑑𝑥 (K𝐾 𝜏) (𝑥)S
(
2−𝑘𝜆𝜏 , 𝛼(Ξ,𝜏)

)
UΦ(Ξ, �̃�)

(
𝑥𝑤 ; 𝑥 ◦ 𝜙−1

)
, (5.16)

which as before gives 𝑎 �̃�𝜁𝜏,Ξ(𝜆𝜏)
−𝜅 times an integral expression which converges to

1
𝑁𝜆𝜏

𝑁 𝜆
𝜏 −1∑
𝑘=0

2−𝜅𝑘2𝜅𝑘
∫

D̄𝐿 (𝜏)

𝑑𝑥
(
K�̂� 𝜏

)
(𝑥)UΦ(Ξ, �̃�)

(
𝑥𝑤 ; 𝑥 ◦ 𝜙−1

)
, (5.17)

so that we recover expression (5.15).
It remains to argue that there exists a choice of Φ(Ξ,𝜏) ∈ Ys,𝑚(𝜏)

∞,★ for any (Ξ, 𝜏) ∈ 𝕷− such that for
any 𝜏, 𝜏 ∈ 𝔗− with 𝜏 ∼ 𝜏, the expression in expression (5.15) is equal to 𝜁−1

𝜏,Ξ𝛿𝜏, �̃� . For this we recall
that J∩ Vec𝔗− = {0} by Definition 3.18. Moreover, the space of functions of the form UΦ ∈ C̄∞

𝑐

(
D̄m

)
for Φ ∈ Ys,𝑚(𝜏)

∞,★ which is symmetric under permutations of [𝑚] which preserve the noise type in the
same sense as before is dense in C̄∞

𝑐

(
D̄m/g

)
. The claim now follows from the definition of the ideal J

in Definition 3.3. �

Finally, we want to bound the norm
��𝜂𝑎,𝜆���̃� for homogeneity assignments �̃� : 𝕷− → R− (compare

formula (2.21)). As long as �̃� ≤ 𝖘, with 𝖘 as in Definition 5.4, we obtain a bound uniformly in 𝜆 ∈ Λ̃†. If
this condition is violated, a uniform bound of this form is in general not true. However, it is still possible
to derive a bound on this quantity in terms of the scales 𝜆𝜏 in the following way:

Lemma 5.11. Let �̃� : 𝕷− → R− be a homogeneity assignment. For any scale 𝜆 ∈ Λ̃†, we define the
quantity

𝜆 (�̃�) := min {𝜆𝚵 : 𝚵 ∈ 𝕷−, �̃�(𝚵) > 𝖘(𝚵)} ∧ 1.

For any natural number 𝑁 ∈ N and any 𝜆 > 0, there exists a constant 𝐶𝑁
(
𝜆
)
> 0 such that the

following holds: For any 𝐴 > 0, one has the bound��𝜂𝑎,𝜆���̃� ≤ 𝐶𝑁
(
𝜆 (�̃�)

)
(5.18)

uniformly for 𝜆 ∈ Λ̃† and 𝑎𝜏 ∈ R, with the property that |𝑎 |∞ < 𝐴.
In particular, the convergence (3.5) holds, provided that 𝑎 ( 𝛿)

𝜏 → 0 as 𝛿 → 0 for any 𝜏 ∈ 𝔗−.
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Proof. We have to bound ‖𝐾𝑎,𝜆𝚵 ‖�̃� (𝚵)−𝑚(𝚵)
|𝔰 |
2

for any 𝚵 ∈ 𝕷−, and ‖𝔎𝑎,𝜆‖var (compare formula (2.18)).
Fix 𝚵 = (Ξ, 𝜏) ∈ 𝕷− and assume first that �𝜏�𝔰 < 0. We treat only the slightly more difficult case
𝑚(𝜏) ≥ 2 in detail. We show bounds uniform in �̄� as in formula (2.14), so that �̄�𝑖 ∈ R−, 𝑖 = 0, . . . , 𝑚(𝚵),
is such that �̄�0 > −|𝔰 | − 1, �̄�𝑖 > −|𝔰 | and

∑
𝑖≥0 �̄�𝑖 = �̃�(𝚵) −𝑚(𝚵)

|𝔰 |
2 − |𝔰 |. For the purpose of this proof,

we assume for notational simplicity that Φ(Ξ,𝜏) is a simple tensor product (in general, it is a linear
combination of such terms, but since the number of summands does not change under rescaling, one can
repeat the argument given here for each summand individually). Write Φ(Ξ,𝜏) := Φ0 ⊗ · · · ⊗Φ𝑛, so that

𝐾𝑎,𝜆𝚵 = 𝑎𝜏𝜆
𝛼(Ξ,𝜏) − |𝔰 |
𝜏 Φ0

(
𝜆−𝔰 ·

)
⊗ · · · ⊗ Φ𝑛

(
𝜆−𝔰 ·

)
.

Since
∫

(Φ𝑎,𝜆𝚵 )0 = 0 by definition, one has ‖(𝐾𝑎,𝜆𝚵 )0‖�̄�0 � 𝜆−�̄�0 , and for 𝑖 ≥ 1 one has ‖(𝐾𝑎,𝜆𝚵 )0‖�̄�𝑖 �
𝜆−�̄�𝑖 , both uniformly over all �̄� as before. It follows that���𝐾𝑎,𝜆𝚵

���
�̃� (𝚵)−𝑚(𝜏) |𝔰 |

2

� 𝜆
−�̃� (𝚵)+𝑚(𝜏) |𝔰 |

2 +|𝔰 |+𝛼(Ξ,𝜏) − |𝔰 |
𝜏 = 𝜆𝖘 (Ξ,𝜏)−�̃� (Ξ,𝜏)𝜏 .

Since 𝖘(Ξ, 𝜏) − �̃�(Ξ, 𝜏) < 0 implies 𝜆𝜏 > 𝜆 (�̃�), the required bound follows.
In the case that �𝜏�𝔰 = 0, one proceeds in the same way, using the fact that

∑
𝑘≥0 2−𝜅𝑘 is finite.

Finally, bounding the ‘variances’ (2.19) is a simple exercise using the facts that (Φ𝑎,𝜆𝚵 )0 integrates to
zero and 2𝖘 ≥ −|𝔰 | − 2𝜅 − 2𝜅 > −|𝔰 | − 1. �

5.3. A recursive strategy for choosing 𝜆𝜀, 𝛿𝔱

Our shift 𝜁𝛿 is defined up to specifying a sequence of constants 𝑎𝛿 ∈ A and a sequence of scales 𝜆𝛿 ∈ Λ̃
with 𝜆𝛿★ = 𝛿 for any 𝛿 > 0.

The constants 𝑎𝛿𝜏 will be chosen in the subsequent section as solutions to a fixed point problem which
we will show has a solution, provided that the scales 𝜆𝛿𝜏 are chosen in a good way. We will choose
the scales 𝜆𝛿𝜏 depending only on the homogeneity �𝜏�𝔰 and the number of leaves of 𝜏. (In particular,
the scale depends only on the equivalence class [𝜏]∼ of 𝜏, so that 𝜆𝛿 ∈ Λ̃.) To this end, we write
i(𝜏) :=

(
�𝜏�𝔰 , #𝐿(𝜏)

)
, and we define the set

I := {i(𝜏) : 𝜏 ∈ 𝔗−} .

On I we define the total order

(𝛾, 𝑙) ≤ (𝛽, 𝑟)

if and only if either 𝛾 < 𝛽 or 𝛾 = 𝛽 and 𝑙 ≥ 𝑟 . (Note the reversed direction of the second inequality!)

Example 5.12. Consider as an example the KPZ equation, where one has

𝒯− =

{
, , , , , ,

}
.

By the definition of J, one has 𝔗− =

{
, , ,

}
, and I =

{
(−1, 2),

(
− 1

2 , 3
)
, (0, 4)

}
.

It will also be convenient to introduce the set I★ := I∪ {★}, where we extend the total order ≤ to I★
by setting i ≤ ★ for any i ∈ I. As before, we always set 𝜆𝛿★ := 𝛿 for any 𝛿 > 0.

The arguments showing the existence of a solution to the fixed point problem we will be looking
at (compare equation (5.25)) will in general only hold if one chooses the scales 𝜆𝛿

i(𝜏)
such that 𝜆𝛿

(𝛾,𝑙)
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is ‘small enough’ compared to 𝜆𝛿
(𝛽,𝑟 )

whenever (𝛾, 𝑙) ≤ (𝛽, 𝑟). In order to make the arguments more
systematic, we introduce the set

Λ :=
{
𝜆 ∈ (0, 1)I

★
: i < j implies 𝜆i < 𝜆j

}
. (5.19)

We will view Λ as a subset of Λ̃ by setting 𝜆𝜏 := 𝜆i(𝜏) for any 𝜏 ∈ 𝔗− and any 𝜆 ∈ Λ.

Remark 5.13. It follows that in our notation we have 𝜆𝛿𝜏 = 𝜆𝛿
(Ξ,𝜏) = 𝜆𝛿

i(𝜏)
for any 𝜏 ∈ 𝔗− and any

Ξ ∈ 𝔏− such that (Ξ, 𝜏) ∈ 𝕷−.

We also introduce a bit of notation for general finite totally ordered sets (𝐼, ≤). For notational
convenience, we formulate statements for (𝐼, ≤) = ([𝑀], ≤), where 𝑀 ∈ N is given by 𝑀 = #𝐼.

Definition 5.14. Let ([𝑀], ≤) be a finite totally ordered set and let 𝑆 = 𝑆(𝜆) be any statement depending
on 𝜆 ∈ (0, 1)𝑀 . We define recursively in the number of elements M the notion of an attainable statement.
If 𝑀 = 1, then we call S an attainable statement if there exists �̄�1 > 0 such that 𝑆(𝜆1) holds for any
𝜆1 ∈

(
0, �̄�1

)
. For 𝑀 ≥ 2 and any fixed 𝜆𝑀 > 0, we denote by (𝑆 | 𝜆𝑀 ) (𝜆𝑖1 , . . . , 𝜆𝑀−1) the statement

depending on 𝜆1, . . . , 𝜆𝑀−1 defined by

(𝑆 | 𝜆𝑀 ) (𝜆1, . . . , 𝜆𝑀−1) ⇐⇒ 𝑆(𝜆1, . . . , 𝜆𝑀 ).

We then call the statement S attainable if there exists �̄�𝑀 > 0 such that for any 𝜆𝑀 < �̄�𝑀 , the statement
(𝑆 | 𝜆𝑀 ) is attainable.

We will often use the following lemma, which is a direct consequence of the definition of attainable
statements:

Lemma 5.15. Let I be a finite, totally ordered set and let 𝑅, 𝑆 be attainable statements on I. Then the
conjunction 𝑅 ∧ 𝑆 is attainable.

The strategy of the following sections will be as follows: We will show various lemmas whose
statements are attainable statements for the family 𝜆 ∈ (0, 1)I★ . These (finitely many) statements in
conjunction imply that equation (5.25) can be solved, so that the existence of a solution is an attainable
statement. This in particular implies that there exists a choice of scales 𝜆𝛿 ∈ Λ for any 𝛿 > 0 small
enough such that the statement holds true, and this concludes the proof.

5.4. A fixed point argument

Our goal is to find a family
(
𝑎𝛿 , 𝜆𝛿

)
∈ A × Λ for 𝛿 > 0, converging to 0 as 𝛿 → 0, such that

lim
𝛿→0

lim
𝜀→0

Υ𝜂
𝜀 (𝑎𝛿 ,𝜆𝛿)𝑀𝑔𝜀

𝒮𝜏 = ℎ(𝜏)

for any 𝜏 ∈ 𝔗−. Here and later, we write 𝜂𝜀 (𝑎, 𝜆) := 𝜂𝜀,𝑎,𝜆 in order to make some expressions more
readable. For 𝜏 ∈ 𝒯− we introduce the function 𝐹𝜏 : A × Λ → R by setting

𝐹𝜏 (𝑎, 𝜆) := lim
𝜀→0

Υ𝜂
𝜀 (𝑎,𝜆)𝑀𝑔𝜀

𝒮𝜏. (5.20)

Note that restricted to 𝜏 ∈ 𝔗−, we obtain a map

𝐹 : A × Λ → A.

We also define the functions 𝐹↑ and 𝐹↓ in the same way, with 𝒮 replaced by 𝒮↑ and 𝒮↓, respectively
(see Definition 5.2). Since𝒮 = 𝒮↑+𝒮↓+ Id andΥ𝜂𝜀 (𝑎,𝜆)𝑀𝑔𝜀

𝜏 = 0 for any 𝜏 ∈ 𝒯− one has 𝐹 = 𝐹↑+𝐹↓.
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Remark 5.16. For fixed (𝑎, 𝜆) ∈ A × Λ̃, the noise 𝜂𝜀𝚵 (𝑎, 𝜆) is independent of 𝜀 unless 𝚵 ∈ 𝔏−. On the
other hand, the expression 𝑀𝑔𝜀

𝒮𝜏 coincides with the BPHZ renormalisation, if the homogeneity of the
noise types 𝚵 ∈ 𝕷− \ 𝔏− is viewed as zero (or more precisely, as −𝜅 for some 𝜅 small enough; compare
Lemma 5.21 for a precise statement). In this sense, the right-hand side of formula (5.20) is just the
expectation of 𝚷𝜏(0), where 𝚷 denotes the BPHZ-renormalised (in the sense of the previous sentence)
canonical lift of 𝜂𝜀 (𝑎, 𝜆). It follows in particular that the right-hand side of formula (5.20) is indeed
convergent.

Note, however, that this expression does not vanish. This is not a contradiction to the characterisation
[BHZ19, Equation 6.25] of the BPHZ character, since with respect to the homogeneity constructed in
the previous paragraph, 𝒮 does not leave homogeneity invariant. In fact, any tree 𝜎 ∈ 𝒮[𝜏]\{𝜏} is of
positive homogeneity in this sense. The identity [BHZ19, Equation 6.25], on the other hand, is only
guaranteed to hold for trees of negative homogeneity.

Our intuition behind this definition is that 𝐹↓
𝜏 should be small compared to 𝐹↑

𝜏 , in the sense that a
statement of the form 𝐹↓

𝜏 (𝑎, 𝜆) � 𝐹↑
𝜏 (𝑎, 𝜆) is an attainable statement. It turns out that this is not quite

true, since in general there will be subdivergences of 𝜏 that cause 𝐹↓
𝜏 to become dominant. However,

assuming that we have good bounds on these subdivergences, this statement becomes attainable. More
precisely, we have the following result:

Lemma 5.17. For any 𝜏 ∈ 𝔗−, there exists a smooth function 𝐺𝜏 : R𝔗− × R𝒯≺𝜏
− × Λ → R such that

𝐺𝜏

(
𝑎, (𝐹�̃� (𝑎, 𝜆)) �̃�∈𝒯≺𝜏

−
, 𝜆

)
= 𝐹↓

𝜏 (𝑎, 𝜆) (5.21)

for any (𝑎, 𝜆) ∈ A × Λ, and such that for any fixed 𝜌 > 0 and 𝛽 > 0 the following bound is attainable:

|𝐺𝜏 (𝑎, 𝑏, 𝜆) | ≤ 𝛽𝜆−𝜅
i(𝜏) (5.22)

uniformly over all (𝑎, 𝑏) ∈ A × R𝒯≺𝜏
− such that max�̃�∈𝔗−

|𝑎 �̃� | ∨ max�̃�∈𝒯≺𝜏
−

|𝑏 �̃� | ≤ 𝜌.

Before we prove this lemma, we show how to use it to finish the proof of Proposition 3.20. We first
argue that one can strengthen the statement of the lemma:

Lemma 5.18. For any 𝜏 ∈ 𝔗− and 𝜌 > 0, there exists a continuous function �̃�𝜏 : A × R𝔗≺𝜏
− × Λ → R

such that

�̃�𝜏

(
𝑎, (𝐹�̃� (𝑎, 𝜆)) �̃�∈𝔗≺𝜏

−
, 𝜆

)
= 𝐹↓

𝜏 (𝑎, 𝜆) (5.23)

holds for any (𝑎, 𝜆) ∈ A×Λ with sup�̃�∈𝔗−
|𝑎 �̃� | ∨ sup�̃�∈𝔗≺𝜏

−
|𝐹�̃� (𝑎, 𝜆) | ≤ 𝜌, and for any 𝛽 > 0 the bound���̃�𝜏 (𝑎, 𝑏, 𝜆)

�� ≤ 𝛽𝜆−𝜅
i(𝜏) (5.24)

uniformly over (𝑎, 𝑏) ∈ A × R𝔗≺𝜏
− such that max�̃�∈𝔗−

|𝑎 �̃� | ∨ max�̃�∈𝔗≺𝜏
−

|𝑏 �̃� | ≤ 𝜌 is attainable.

Proof. Let 𝐴𝜌 denote the set of 𝑎 ∈ A such that sup�̃�∈𝔗−
|𝑎 �̃� | ∨ sup�̃�∈𝔗≺𝜏

−
|𝐹�̃� (𝑎, 𝜆) | ≤ 𝜌. We first argue

that there exists 𝑅 > 0 such that one has |𝐹�̃� (𝑎, 𝜆) | ≤ 𝑅 for any 𝜏 ∈ 𝒯≺𝜏
− and any (𝑎, 𝜆) ∈ 𝐴𝜌 × Λ.

Once this is shown, it is not hard to see that the function

�̃�𝜏 (𝑎, 𝑏, 𝜆) := 𝐺𝜏

(
𝑎, (𝑏 �̄�) �̄�∈𝔗≺𝜏

−
� (𝐹�̄� (𝑎, 𝜆) ∧ 𝑅) �̄�∈𝒯≺𝜏

− \𝔗≺𝜏
−

, 𝜆
)

has all the properties we are looking for.
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We denote by 𝒈𝜺 = 𝒈𝜺 (𝑎, 𝜆) ∈ G− the BPHZ character for the noise 𝜂𝜀 (𝑎, 𝜆), and we define
𝒉𝜺 = 𝒉𝜺 (𝑎, 𝜆) ∈ G− via the identity 𝒉𝜺 ◦ 𝒈𝜺 = 𝑔𝜀 , so that one has

𝐹�̃� (𝑎, 𝜆) = lim
𝜀→0

Υ𝜂
𝜀
𝑀𝒈𝜺𝑀𝒉𝜺

𝒮𝜏

for any 𝜏 ∈ 𝒯−, where we suppress the dependence on (𝑎, 𝜆) in the notation on the right-hand side. By
Lemma 5.11, the noise 𝜂𝜀 (𝑎, 𝜆) is uniformly bounded with respect to ‖·‖𝔰−𝜅 over (𝑎, 𝜆) ∈ 𝐴𝜌 × Λ and
𝜀 > 0, and it follows from [CH16] that ���Υ𝜂𝜀

𝑀𝒈𝜺𝜎
��� � 1

for any 𝜎 ∈ T uniformly over (𝑎, 𝜆) ∈ 𝐴𝜌 × Λ and 𝜀 > 0. We recall at this point (Lemma 5.4) that 𝒮
commutes with the coproduct, so that it remains to show that 𝒉𝜺𝒮𝜏 is bounded for any 𝜏 ∈ T− uniformly
over (𝑎, 𝜆) ∈ 𝐴𝜌 × Λ and 𝜀 > 0. We denote by ℎ𝜀, 𝛿 ∈ G− the character from Proposition 3.21 for the
shift 𝜁𝛿 := 𝒮∗𝜂𝜀 (𝑎, 𝜆) − 𝜉 𝜀 , and we claim that one has 𝒉𝜺𝒮 = ℎ𝜀, 𝛿 on T−. Indeed, one has

M
(
𝒈𝜺𝒮 ⊗ Υ𝜉

𝜀+𝜁𝛿
)
Δ−𝔦 =M

(
𝒈𝜺 ⊗ Υ𝜂

𝜀
)
Δ−𝔦𝒮 = 1★𝒮 = 1★

on T−, and since this relation characterises the BPHZ character, one has 𝒈𝜺𝒮 = 𝑔𝜀, 𝛿 . It remains to argue
that

𝒉𝜺𝒮 ◦ 𝑔𝜀, 𝛿 = 𝒉𝜺𝒮 ◦ 𝒈𝜺𝒮 = (𝒉𝜺 ◦ 𝒈𝜺)𝒮 = 𝑔𝜀𝒮 = 𝑔𝜀

on T−. We can now argue inductively with respect to ≺ in the same way as in the proof of equation (3.8).
The only difference is that in equation (3.8) we showed convergence based on the assumption that
𝐹�̃� (𝑎, 𝜆) converges for 𝜏 ∈ 𝔗≺𝜏

− . Now we show boundedness based on the assumption that these
quantities are bounded. �

With this we can finish the proof of Proposition 3.20. We recall at this point that we fixed ℎ ∈ 𝑓 𝜉 ◦H
at the beginning of Section 3.3 (see also equation (3.6)).

Proposition 5.19. For any 𝛿 > 0, the following is an attainable statement: There exists a family of
constants 𝑎 ∈ R𝔗− such that sup𝜏∈𝔗−

|𝑎𝜏 | ≤ 𝛿 and such that

𝐹𝜏 (𝑎, 𝜆) = ℎ(𝜏) (5.25)

for any 𝜏 ∈ 𝔗−.
In particular, one can choose a sequence of scales 𝜆𝛿 ∈ Λ and a sequence of constants 𝑎𝛿 ∈ A, both

converging to 0 as 𝛿 → 0, such that the statement of Proposition 3.20 holds for the corresponding shift
𝜁𝛿 = 𝒮∗𝜂𝜀 (𝑎, 𝜆) − 𝜉 𝜀 .

Proof. The key step is to find a solution 𝑎 ∈ A with max𝜏∈𝔗−
|𝑎𝜏 | < 𝛿 to the system of equations

𝐹↑
𝜏 (𝑎, 𝜆) + �̃�𝜏

(
𝑎, (ℎ(𝜏)) �̃�∈𝔗≺𝜏

−
, 𝜆

)
= ℎ(𝜏), 𝜏 ∈ 𝔗−, (5.26)

where �̃�𝜏 is as in Lemma 5.18 for 𝜌 := 2 max𝜏∈𝔗−
ℎ(𝜏) ∧2𝛿. We then argue inductively: Fixing 𝜏 ∈ 𝔗−

and assuming that 𝐹�̃� (𝑎, 𝜆) = ℎ(𝜏) for any 𝜏 ∈ 𝔗≺𝜏
− , then the assumptions of equation (5.23) are met

for 𝜏, so that the left-hand side of equation (5.26) is equal to 𝐹𝜏 (𝑎, 𝜆).
We rephrase equation (5.26) slightly into a fixed point problem. Define the function

𝑔 : A × Λ → A by

𝑔𝜏 (𝑎, 𝜆) := −𝜆𝜅i(𝜏)

(
𝐹↑
𝜏 (𝑎, 𝜆) + �̃�𝜏

(
𝑎, (ℎ(𝜏))�̃�∈𝔗≺𝜏

−
, 𝜆

)
− ℎ(𝜏)

)
+ 𝑎𝜏 (5.27)
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for any 𝜏 ∈ 𝔗−. Then 𝑎 ∈ A with max𝜏∈𝔗−
|𝑎𝜏 | < 𝛿 is a fixed point of 𝑔(·, 𝜆) if and only if (𝑎, 𝜆) is

a solution to equation (5.25). It follows from Lemma 5.10 that −𝜆𝜅
i(𝜏)

𝐹↑
𝜏 (𝑎, 𝜆) + 𝑎𝜏 → 0 as 𝜆 → 0

uniformly over 𝑎 ∈ A, as before, and from Lemma 5.18 that for any 𝛽 > 0 the bound���𝜆𝜅i(𝜏)�̃�𝜏
(
𝑎, (ℎ(𝜏))�̃�∈𝔗≺𝜏

−
, 𝜆

) ��� ≤ 𝛽

for any 𝑎 ∈ A as before is an attainable statement.
It follows that the statement

max
𝜏∈𝔗−

|𝑎𝜏 | ≤ 𝛿 implies max
𝜏∈𝔗−

|𝑔𝜏 (𝑎, 𝜆) | ≤ 𝛿

is attainable, and by Schauder’s fixed point theorem there exists a solution a to equation (5.27) in the
𝛿-neighbourhood of the origin. �

It remains to show Lemma 5.17. We fix 𝜿 > 0 with the property that 𝜅 > 𝜿 and such that |𝜏 |𝖘 > −
|𝔰 |
2 +𝜿

for any tree 𝜏 ∈ T with #𝐾 (𝜏) ≥ 1. For fixed i0 ∈ I we introduce a homogeneity assignment 𝖘i0 on 𝕷−
which treats noises regularised on scales larger than 𝜆i0 as smooth. More precisely, we set 𝖘i0 (Ξ) := 𝖘(Ξ)

and 𝖘i0
(
Ξ̃
)

:= −𝜿 for any Ξ ∈ 𝔏−, and we define

𝖘i0 (Ξ, 𝜏) :=

{
𝖘(Ξ, 𝜏) if i(𝜏) ≤ i0,

−𝜿 if i(𝜏) > i0,

for any noise type (Ξ, 𝜏) ∈ 𝕷−. Here we use the total order ≤ on I introduced in Section 5.3.

Lemma 5.20. Set i ∈ I and set i↑ := min{j ∈ I★ : j > i}. For any 𝐴 > 0 there exists a constant
𝐶𝑁 (𝜆i↑) > 0, such that for any 𝑁 ∈ N the bound

‖𝜂𝜀 (𝑎, 𝜆)‖𝖘i0 ≤ 𝐶𝑁
(
𝜆i↑

)
holds uniformly over all families 𝜆 ∈ Λ and 𝑎 ∈ A with max𝜏∈𝔗−

|𝑎𝜏 | < 𝐴.

Proof. This follows directly from Lemma 5.11. �

We denote by Ti ⊆ T− the unital subalgebra generated by trees of negative |·|𝖘i-homogeneity. Note
that 𝜿 was chosen small enough so that for any tree 𝜏 ∈ T−, one has 𝜏 ∈ Ti if and only if for any noise-
type edge 𝑒 ∈ 𝐿(𝜏) one has either 𝔱(𝑒) ∈ 𝔏− or 𝔱(𝑒) = (Ξ, 𝜏), with i(𝜏) ≤ i0. We denote by pi

− the
multiplicative projection of T− onto Ti, and we define 𝒈𝜺i := 𝒈𝜺pi

− (we usually suppress the dependence
of (𝑎, 𝜆) in this notation).

It follows that 𝒈𝜺i restricted to Ti is just the BPHZ character for the homogeneity assignment 𝖘i and
the evaluation 𝜂𝜀 . Applying the results of [CH16] to the homogeneity assignment 𝖘i, we obtain the
following estimate:

Lemma 5.21. For any i ∈ I, there exists a constant 𝐶𝑁 (𝜆i↑) > 0 such that for any 𝜏 ∈ T̂−, the bound���Υ𝜂𝜀
𝑀𝒈𝜺i 𝜏

��� ≤ 𝐶𝑁
(
𝜆i↑

)
holds uniformly over all families 𝜆 ∈ Λ and 𝑎 ∈ A with max𝜏∈𝔗−

|𝑎𝜏 | < 𝐴.
Moreover,

g𝑖 (𝑎, 𝜆)𝜏 := lim
𝜀→0

Υ𝜂
𝜀
𝑀𝒈𝜺i 𝜏

exists and is a continuous function in (𝑎, 𝜆).

Proof. Both statements follow from Lemma 5.20 and [CH16, Theorem 2.31]. �
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We are finally in a position to prove Lemma 5.17.

Proof of Lemma 5.17. We fix from now on a tree 𝜏 ∈ 𝔗− and assume that the statement of Lemma 5.17
holds for any 𝜏 ∈ 𝔗≺𝜏

− . We set j := i(𝜏) and we define a character 𝒌𝜺j ∈ G− by

𝒌𝜺j ◦ 𝒈𝜺j = 𝑔𝜀 . (5.28)

It then follows that for any 𝜏 ∈ 𝒯≺𝜏
− , one has

Υ𝜂
𝜀
𝑀𝑔𝜀

𝒮𝜏 =
(
𝒌𝜺j ⊗ Υ𝜂

𝜀
𝑀𝒈𝜺j

)
Δ−𝔦𝒮𝜏

=
(
𝒌𝜺j𝒮 ⊗ Υ𝜂

𝜀
𝑀𝒈𝜺j𝒮

)
(Δ−𝔦 − Id ⊗ 1)𝜏 + 𝒌𝜺j𝒮𝜏.

It follows from this identity and the definition of the coproduct that there exists a fixed polynomial 𝑃�̃�
in 𝒯� �̃�

− × 𝒯 variables such that

𝒌𝜺j𝒮𝜏 = Υ𝜂
𝜀
𝑀𝑔𝜀

𝒮𝜏 + 𝑃 �̃�

(
𝒌𝜺j𝒮𝜏,Υ𝜂

𝜀
𝑀𝒈𝜺

j𝒮𝜏 : 𝜏 ∈ 𝒯� �̃�
− , 𝜏 ∈ 𝒯

)
. (5.29)

We prove inductively in ≺ that for any 𝜏 ∈ 𝒯≺𝜏
− , there exists a continuous function

f(·, ·, ·)�̃� : A × R𝒯≺𝜏
− × Λ → R (5.30)

such thatf(𝑎,
(
𝐹�̂� (𝑎, 𝜆))�̂�∈𝒯≺𝜏

−
, 𝜆

)
𝜏 is equal to equation (5.29) in the limit 𝜀 → 0 for any (𝑎, 𝜆) ∈ A×Λ,

and such that for any 𝐶 > 0, the estimate

|f(𝑎, 𝑏, 𝜆)�̃� | � 𝐶𝑁 (𝜆j↑)

holds uniformly over all (𝑎, 𝑏) ∈ A × R𝒯≺𝜏
− such that sup�̄�∈𝔗−

|𝑎 �̄� | ∨ sup�̄�∈𝒯≺𝜏
−

|𝑏 �̄� | < 𝐶 and 𝜀 > 0
small enough (where ‘small enough’ may depend on (𝑎, 𝑏)). We can write

lim
𝜀→0

𝒌𝜺j𝒮𝜏 = 𝐹�̃� (𝑎, 𝜆) + 𝑃 �̃� (f(𝑎, (𝐹�̂� (𝑎, 𝜆))�̂�∈𝒯≺𝜏
−

, 𝜆)�̄�, g𝑗 (𝑎, 𝜆)�̂� : 𝜏 ∈ 𝒯� �̃�
− , 𝜏 ∈ 𝒯)

=: f(𝑎, (𝐹�̂� (𝑎, 𝜆))�̂�∈𝒯≺𝜏
−

, 𝜆)�̃�,

which is bounded in the required way by Lemma 5.21 and the induction hypothesis. In order to continue,
we now make the claim that for any tree �̃� ∈ T−, one has 𝒌𝜺j𝜏 = 0 if at least one of the following three
properties is satisfied:

1. One has 𝜏 ∈ T−.
2. For any partition 𝜋 ∈ P(𝐿(𝜏)), one has∏

𝑃∈𝜋

E𝑐
[(
𝜂𝜀𝑡 (𝑒) (𝑥𝑒)

)
𝑒∈𝑃

]
= 0 (5.31)

for any (𝑥𝑒)𝑒∈𝐿 ( �̃�) ∈
(
D̄
)𝐿 ( �̃�) , where 𝔱 : 𝐿(𝜏) → 𝕷− denotes the type map of 𝜏.

3. One has |𝜏 |𝖘j > 0.

The first claim follows from the fact that T− is a Hopf subalgebra of T−, and on T− the characters 𝑔𝜀

and 𝒈𝜺j agree. For the second claim, we denote by I ⊆ T− the ideal in T− generated by all trees 𝜏 ∈ T−
with the property that equation (5.31) holds. Then I forms a Hopf ideal, and by the definition of the
BPHZ character it follows that both 𝑔𝜀 and 𝒈𝜺j vanish on I. The claim now follows from the fact that the
annihilator of any Hopf ideal forms a subgroup of G−. The third claim follows similarly, noting that Δ−

preserves the |·|𝖘j-homogeneity, in the sense that |Δ−𝜏 |𝖘j = |𝜏 |𝖘j, where on the left-hand side we add up
the homogeneities of products of trees. It follows that the ideal I+

j in T− generated by trees 𝜏 ∈ T− such
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that |𝜏 |𝖘j > 0 is a Hopf ideal. Moreover, since 𝒈𝜺j and 𝑔𝜀 vanish on I+
i, the claim follows again from the

fact that annihilators of Hopf ideals are subgroups.
As a corollary, we obtain the identity(

𝒌𝜺j ⊗ Υ𝜂
𝜀
𝑀𝒈𝜺j

)
(Δ−𝔦 − Id ⊗ 1)

(
𝒮↑ + Id

)
𝜏 = 0. (5.32)

Indeed, set 𝜏 ∈ 𝒮↑[𝜏]. Then there exists a unique noise-type edge 𝑒 ∈ 𝐿(𝜏) such that 𝔱(𝑒) ∉ 𝔏−, and
for this edge 𝜂𝜀𝔱 (𝑒) is an element of the 𝑚(𝜏)th homogeneous Wiener chaos. It follows that whenever
𝜏 ≠ 1 is a proper subtree of 𝜏, so that in particular 𝐿(𝜏) � 𝐿(𝜏), then either the first or the second of
the foregoing properties is satisfied. The claim then follows, since on the one hand Υ𝜂𝜀

𝑀𝒈𝜺j𝑋 𝑘 = 0 for
any 𝑘 ∈ N𝑑\{0}, and on the other hand |𝜏 |𝖘j < 0 implies that Υ𝜂𝜀

𝑀𝒈𝜺j𝜏 = 0. Here we use the fact that
𝖘j was chosen in such a way that |𝜏 |𝖘j ≤ 𝜅 < 0 for any 𝜏 ∈ 𝒮↑[𝜏].

As a second corollary, we get that if 𝜏 is such that �𝜏�𝔰 < 0, then

𝒌𝜺j𝒮
↓𝜏 = 0. (5.33)

To see this, let 𝜏 ∈ 𝒮↓[𝜏]. It is clear that whenever there exists 𝑒 ∈ 𝐿(𝜏) such that either 𝔱(𝑒) = Ξ̃ for
some Ξ ∈ 𝔏− or 𝔱(𝑒) = (Ξ, 𝜏) with i(𝜏) > j, then one has |𝜏 |𝖘j > 0, and by the third of the foregoing
properties it follows that 𝒌𝜺j𝜏 = 0. Thus, we can assume that 𝔱(𝑒) ∈ 𝔏− or 𝔱(𝑒) = (Ξ, 𝜏) with i(𝜏) ≤ j

for all 𝑒 ∈ 𝐿(𝜏).
Assume now that in addition there are two distinct 𝑒, 𝑓 ∈ 𝐿(𝜏) such that 𝔱(𝑒), 𝔱( 𝑓 ) ∉ 𝔏− – say

𝔱(𝑒) = (Ξ̄, 𝜏) and 𝔱( 𝑓 ) = (Ξ̂, 𝜏). Then the assumption i(𝜏) ∨ i(𝜏) ≤ jimplies that �𝜏�𝔰 ∨�𝜏�𝔰 ≤ �𝜏�𝔰 .
Upon choosing 𝜅 small enough, one has

|𝜏 |𝖘j ≥ |𝜏 |𝔰 −
(
�𝜏�𝔰 + 𝜅

)
−

(
�𝜏�𝔰 + 𝜅

)
≥ |𝜏 |𝔰 − 2

(
�𝜏�𝔰 + 𝜅

)
> 0.

(5.34)

In the remaining case there exists a unique 𝑒 ∈ 𝐿(𝜏) such that 𝔱(𝑒) ∉ 𝔏−, say 𝔱(𝑒) =
(
Ξ̄, 𝜏

)
. We

distinguish the case �𝜏�𝔰 = �𝜏�𝔰 and �𝜏�𝔰 < �𝜏�𝔰 (by the earlier discussion, we have i(𝜏) ≤ j, so
that the case �𝜏�𝔰 > �𝜏�𝔰 is ruled out). In the first case, we have by the definition of ≤ and 𝒮↓ that
#𝐿(𝜏) > #𝐿(𝜏), so that 𝜂𝜀𝔱 (𝑒) takes values in a homogeneous Wiener chaos of order strictly greater than
𝑚(𝜏), so that the second of the foregoing properties applies. In the second case it follows similarly to
before that

|𝜏 |𝖘j ≥ |𝜏 |𝔰 − �𝜏�𝔰 − 𝜅 > 0,

so that the third of the foregoing properties applies, and this finishes the proof of the claim.
We now conclude that in the case �𝜏�𝔰 < 0, it follows from equations (5.32) and (5.33) that

𝐹↓
𝜏 (𝑎, 𝜆) = lim

𝜀→0

(
𝒌𝜺j ⊗ Υ𝜂

𝜀
𝑀𝒈𝜺j

)
(Δ−𝔦 − Id ⊗ 1)𝒮↓𝜏 + 𝒌𝜺j𝒮

↓𝜏

= lim
𝜀→0

(
𝒌𝜺j𝒮 ⊗ Υ𝜂

𝜀
𝑀𝒈𝜺

j𝒮
)
(Δ−𝔦 − Id ⊗ 1)𝜏,

and using the definition of fin formula (5.30) together with Lemma 5.21, this can be rewritten as

𝐹↓
𝜏 (𝑎, 𝜆) =

(
f
(
𝑎, (𝐹�̃�)𝜏∈𝒯≺𝜏

−
(𝑎), 𝜆

)
⊗ g(𝑎, 𝜆)

)
(Δ−𝔦 − Id ⊗ 1)𝜏,
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so that

𝐺𝜏 (𝑎, 𝑏, 𝜆) := (f(𝑎, 𝑏, 𝜆) ⊗ g(𝑎, 𝜆)) (Δ−𝔦 − Id ⊗ 1)𝜏

has the desired form (5.21).
It remains to treat the case �𝜏�𝔰 = 0, where the estimate (5.34) fails in general. However, we will

show that a slightly weaker statement than equation (5.33) still holds – namely, there exists a constant
𝐶𝑁 (𝜆j↑) such that

|𝒌𝜺j𝒮
↓𝜏 | ≤ 𝐶𝑁 (𝜆j↑). (5.35)

Proceeding identically to before, this suffices to finish the proof of Lemma 5.17.
To show formula (5.35), we recall that by Assumption 5 one has for any 𝜏 ∈ V and any 𝜏 ∈ 𝒮[𝜏]

that 𝑔𝜀𝜏 = 𝒈𝜺j𝜏 = 0. It follows from this, equation (5.28) and the fact that the unital algebra generated
by

⋃
𝜏∈V𝒮[𝜏] is a Hopf subalgebra of T− that one also has 𝒌𝜺j𝜏 = 0 for any 𝜏 ∈ 𝒮[𝜏] and any 𝜏 ∈ V.

In particular,

0 = 𝑔𝜀𝒮↓𝜏 = (𝒌𝜺j ⊗ 𝒈𝜺j)Δ−𝒮
↓𝜏 = 𝒌𝜺j𝒮

↓𝜏 + 𝒈𝜺j𝒮
↓𝜏.

The estimate (5.35) now follows from formula (5.36), using the fact that one has the identity 𝒈𝜺j𝜏 = 𝒈𝜺𝜏
for any tree 𝜏 ∈ T− such that 𝒈𝜺j𝜏 ≠ 0. �

Remark 5.22. The last step of this proof, relating 𝒌𝜺j𝒮
↓𝜏 and 𝒈𝜺j𝒮

↓𝜏, does not need Assumption 5,
although the argument is greatly simplified. The assumption is, however, needed in the proof of formula
(5.36).

Lemma 5.23. Let 𝜏 ∈ 𝒯− satisfy �𝜏�𝔰 = 0, and let 𝜏 ∈ 𝒮↓[𝜏] be such that �𝜏�𝖘 ≤ 0. Then for any
noise-type edge 𝑒 ∈ 𝐿(𝜏), one 𝔱(𝑒) = Ξ or 𝔱(𝑒) = Ξ̃ for some Ξ ∈ 𝔏−, or 𝔱(𝑒) = (Ξ, 𝜏) with 𝜏 ∈ 𝔗−

such that �𝜏�𝔰 = 0.
Moreover, setting j := i(𝜏), for any 𝜌 > 0 the bound

|𝒈𝜺𝜏 | ≤ 𝐶 (𝜆j↑), (5.36)

uniformly over 𝑎 ∈ A with max𝜏∈𝔗−
|𝑎𝜏 | < 𝜌, is attainable.

Proof. The first statement follows directly from the definition. For formula (5.36) we distinguish three
cases.
First case. There exists 𝑒 ∈ 𝐿(𝜏) with 𝜆(𝔱(𝑒)) > 𝜆j – that is, one has either 𝔱(𝑒) = Ξ̃ ∈ �̃�− or
𝔱(𝑒) = (Ξ, 𝜏) with �𝜏�𝔰 = 0 and #𝐿(𝜏) < #𝐿(𝜏). In this case, consider the homogeneity assignment �̃�
given by

�̃�(𝔱) := 𝖘(𝔱) + 𝜃I𝔱=𝔱 (𝑒)

for any 𝔱 ∈ 𝕷−, where 𝜃 := − |𝜏 |𝖘 + 𝜅. Then one has |𝜏 |�̃� > 0. Let �̃�𝜺 be the BPHZ character for this
homogeneity assignment and the noise 𝜂𝜀 . From Assumption 5 it follows that

𝒈𝜺 (𝜏) =
(
𝒈𝜺 ⊗ Υ𝜂

𝜀
)
(Δ−𝔦 − Id ⊗ 1)𝜏 =

(
�̃�𝜺 ⊗ Υ𝜂

𝜀
)
Δ−𝔦𝜏

= Υ𝜂
𝜀
𝑀 �̃�𝜺𝜏 � 𝜆(𝔱(𝑒))��̃���̃� ≤ 𝐶 (𝜆j↑). (5.37)

Here we use the fact that by construction, �̃�𝜺𝜏 = 0. We also use the fact that whenever 𝜏𝔫𝔢 ⊆ 𝜏 is a
proper subtree such that for some polynomial decoration �̃� one has �𝜏�̃�𝔢 �𝖘 = 0 and 𝔱(𝑒) ∈ 𝔱(𝐿(𝜏)), then��𝜏�̃�𝔢 ���̃� > 0, so that �̃�𝜺𝜏 = 0. On the other hand, by Assumption 5 one also has 𝒈𝜺𝜏�̃�𝔢 = 0.
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Second case. There exists a unique noise-type edge 𝑒 ∈ 𝐿(𝜏) with 𝔢(𝑒) ∉ 𝔏−. We only need to consider
the case that 𝔱(𝑒) is of the form (Ξ, 𝜏) for some 𝜏 ∈ 𝒯− with �𝜏�𝔰 = 0 and #𝐿(𝜏) > #𝐿(𝜏); otherwise
either the first case applies or 𝜏 ∈ 𝒮↑[𝜏]. In this case, however, we recall that 𝜂𝜀

(Ξ, �̄�) takes values in the
(#𝐿(𝜏) −1)th Wiener chaos, and since #𝐿(𝜏) −1 ≥ #𝐿(𝜏) and all other noise-type edges (there are only
#𝐿(𝜏) −1 such edges) carry Gaussian noises, there is no nonvanishing cumulant, and one has 𝒈𝜺 (𝜏) = 0.
Third case. In the final case there exist 𝑟 ≥ 2 distinct noise-type edges 𝑒1, . . . , 𝑒𝑟 ∈ 𝐿(𝜏) with
𝔱(𝑒𝑖) =

(
Ξ̄𝑖 , 𝜏𝑖

)
, and one has �𝜏𝑖�𝔰 = 0 and #𝐿(𝜏𝑖) ≥ #𝐿(𝜏). At this point we recall the definition (5.9)

of 𝐾(Ξ̄𝑖 , �̄�𝑖) , from which it follows that these two kernels are sums over 𝑁𝑖 := 𝑁 �̄�𝑖 kernels respectively,
and we write

𝐾(Ξ̄𝑖 , �̄�𝑖) =
𝑎 �̄�𝑖
𝑁𝑖

𝜆−𝜅
𝜏𝑖

𝑁𝑖−1∑
𝑚=0

𝐾𝑚𝑖

with (recall that 𝛼(Ξ̄𝑖 , �̄�𝑖) = −#𝐿(𝜏𝑖)
|𝔰 |
2 − 𝜅)

𝐾𝑚𝑖 := 𝜆−𝜅𝑚S
(
2−𝑚𝜆𝜏𝑖 , #𝐿(𝜏𝑖)

|𝔰 |
2

)
Φ(Ξ̄𝑖 , �̄�𝑖) .

In order to simplify the argument to come, we assume that the noise types
(
Ξ̄𝑖 , 𝜏𝑖

)
are all different.

(If this is not the case, extend the regularity structure at this point by introducing sufficiently many
distinct copies of the noise types

(
Ξ̄𝑖 , 𝜏𝑖

)
, and extend 𝜂𝜀 such that it acts identically on each copy of any

given noise type. The argument to follow can then be applied to the extended regularity structure and
the extended set of noise types.)

Given 𝑛 = (𝑛1, . . . , 𝑛𝑟 ) with 𝑛𝑖 ∈ {0, . . . , 𝑁𝑖 − 1}, we write 𝜂𝜀𝑛 for the noise defined by formula
(5.12), but with 𝐾(Ξ̄𝑖 , �̄�𝑖) replaced by 𝐾𝑛𝑖𝑖 , and we write 𝒈𝜺𝒏 for the BPHZ character for the noise 𝜂𝜀𝑛 .
It follows that with 𝑎 = 𝑎 �̄�1 · · · 𝑎 �̄�𝑛 , one has

𝒈𝜺 (𝜏) = 𝑎
𝜆−𝜅
𝜏1 · · · 𝜆−𝜅

𝜏𝑟

𝑁1 · · · 𝑁𝑟

𝑁1−1∑
𝑛1=0

. . .
𝑁𝑟−1∑
𝑛𝑟=0

𝒈𝜺𝒏 (𝜏). (5.38)

By Corollary A.24, there exists 𝜃 > 0 such that

��𝒈𝜺𝒏 (𝜏)
�� � (

min𝑖 2−𝑛𝑖𝜆𝜏𝑖
max𝑖 2−𝑛𝑖𝜆𝜏𝑖

) 𝜃
. (5.39)

We can assume that 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑟 and hence also 𝑁1 ≥ 𝑁2 ≥ · · · ≥ 𝑁𝑟 . At this point we recall that
the scales are ‘well separated’, and in particular there is no loss of generality to assume that whenever
𝜆𝜏𝑖 > 𝜆𝜏 𝑗 , one also has 2−𝑁𝑖𝜆𝜏𝑖 > 𝜆𝜏 𝑗 . Then one has the bound

|𝒈𝜺 (𝜏) | �
𝜆−𝑟 𝜅

1
𝑁1 · · · 𝑁𝑟

𝑁1−1∑
𝑛1=0

. . .
𝑁𝑟−1∑
𝑛𝑟=0

2−𝜃 (max𝑖 𝑛𝑖−min𝑖 𝑛𝑖) . (5.40)

Up to a combinatorial factor, we can restrict the sum to the regime 𝑛1 ≥ · · · ≥ 𝑛𝑟 . Changing variables
in the sum so that 𝑘 = (max𝑖 𝑛𝑖) − (min𝑖 𝑛𝑖) = 𝑛1 − 𝑛𝑟 , we obtain the bound

𝑁1−1∑
𝑛1=0

. . .
𝑁𝑟−1∑
𝑛𝑟=0

2−𝜃 (max𝑖 𝑛𝑖−min𝑖 𝑛𝑖 ) �
∑
𝑘

𝑁2−1∑
𝑛2=0

. . .
𝑁𝑟−1∑
𝑛𝑟=0

2−𝜃𝑘 � 𝑁2 · · · 𝑁𝑟 .
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With formula (5.40), we obtain

|𝒈𝜺 (𝜏) | � 𝑁−1
1 𝜆−𝑟 𝜅

1 ,

and recalling that 𝑁1 ∼ 𝜆−1
1 , it remains to choose 𝜅 small enough so that 𝑟𝜅 < 1, where 𝑟 denotes the

maximal number of noise-type edges appearing in any tree 𝜏 ∈ 𝒯−. �

A. Technical proofs and notations

A.1. The coproduct via forests

In some of the arguments we are going to perform a construction for which it will be important to first
derive certain identities involving the coproduct. The proofs of some of these statements are relatively
straightforward but turn out to be a bit fiddly; these arguments become clearer using some notation that
we introduce in this section.

Definition A.1. For a rooted, typed tree (𝑇, 𝔱), we say that F is a subforest of T if F is a subgraph of 𝜏
without isolated vertices. We call F a subtree if F is nonempty and connected. We write 𝑇/F for the
rooted, typed tree obtained by contracting any connected component of T to a single vertex.

We write F̄ for the set of the connected components ofF. In a natural way, one can view any connected
component of 𝑆 ∈ F̄ again as a rooted, typed tree (𝑆, 𝔱), where the type 𝔱 is simply taken over from T.
The set of vertices 𝑉 (𝑇/F) can now be naturally identified with the set (𝑉 (𝑇)\𝑉 (F)) �

{
𝑢𝐴 : 𝐴 ∈ F̄

}
,

where 𝑢𝐴 ∈ 𝑉 (𝑇/F) denotes the vertex obtained by contracting the subtree A of T. It follows that there
exists a map 𝜑F

𝑇 : 𝑉 (𝑇) → 𝑉 (F/𝑇) defined by

𝜑F
𝑇 (𝑢) :=

{
𝑢𝐴 if 𝑢 ∈ 𝑉 (𝐴) with 𝐴 ∈ F̄,

𝑢 if 𝑢 ∈ 𝑉 (𝑇)\𝑉 (F).
(A.1)

Given a tree 𝜏 ∈ T ex, 𝜏 is of the form 𝜏 = 𝑇𝔫,𝔬𝔢 for some rooted, typed tree T, and we say that F is a
subforest of 𝜏 if F is a subforest of T.

Given a tree 𝜏 = 𝑇𝔫,𝔬𝔢 ∈ T ex, we write div(𝜏) for the set of subforests F of 𝜏 with the property that
for any 𝑆 ∈ F̄, one has

��𝑆0
𝔢

��
𝔰 < 0. We write 𝜕F𝐸 (𝜏) ⊆ 𝐸 (𝜏) for the set of 𝑒 ∈ 𝐸 (𝜏) with the property

that 𝑒 ∉ 𝐸 (F) but 𝑒↓ ∈ 𝑁 (F). For a map ē : 𝐸 (𝜏) → Z𝑑 ⊕ Z(𝔏), we write 𝜋ē : 𝑁 (𝜏) → Z𝑑 ⊕ Z(𝔏)

for the map defined by

𝜋ē(𝑢) :=
∑

𝑒∈𝐸 (𝜏) , 𝑒↓=𝑢

ē(𝑒).

Finally, if 𝔪 : 𝑁 (𝜏) → Z𝑑 ⊕ Z(𝔏), then we define 𝔪/F : 𝑁 (𝜏/F) → Z𝑑 ⊕ Z(𝔏) by setting
(𝔪/F) (𝑢) := 𝔪(𝑢) of 𝑢 ∈ 𝑁 (𝜏)\𝑁 (F) and

(𝔪/F) (𝑢) :=
∑

𝑣 ∈𝑁 (𝑆)

𝔪(𝑣)

if 𝑢 ∈ 𝑁 (𝜏/F) was generated by contracting the subtree 𝑆 ∈ F̄. With this notation we have the following
formula for the coproduct Δ− : T ex → T− ⊗ T ex from [BHZ19, Definitions 3.3, 3.18]:

Δ−𝜏 =
∑

F∈div(𝜏)

∑
𝔫F ,eF

1
eF!

(
𝔫
𝔫F

) ∏
𝑆∈F

𝑆𝔫F+𝜋eF
𝔢 ⊗ (𝑇/F)

𝔫−𝔫F , [𝔬]F
𝔢+𝔢F , (A.2)

where [𝔬]F :=
(
𝔬 + 𝔫F + 𝜋

(
eF − 𝔢|F + 𝔱 |𝐸 (F)

) )
/F. Here we use the same convention as in [BHZ19,

Definition 3.3]: Given a typed tree 𝜏 and a subforest F of 𝜏, the notations 𝔫F and eF always denote
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decorations 𝔫F : 𝑁 (𝜏) → N𝑑 and eF : 𝐸 (𝜏) → N𝑑 with the property that

supp 𝔫F ⊆ 𝑁 (F) and supp𝔢F ⊆ 𝜕F𝐸 (𝜏). (A.3)

We furthermore use the convention that a sum over 𝔫F and 𝔢F ranges over all decorations satisfying
formula (A.3).

A.2. Some technical proofs

Proof of Lemma 4.31. Note first that for an undecorated tree S, one has that 𝑆𝔫𝔢 ∈ I holds either for all
choices of decorations 𝔫,𝔢 or for no choice of decoration; for the purpose of this proof we write 𝑆 ∈ I★
in the first case.

In order to see that equation (4.23) holds, we only need to show that for any forest F ∈ div(𝜏) which
is not of the form G for some G ∈ div(𝜋𝜏), one has∏

𝑆∈F
𝑆𝔫F+𝜋eF
𝔢 ⊗ (𝑇/F)

𝔫−𝔫F , [𝔬]F
𝔢+𝔢F ∈ I ⊗ T̂ ex

− + T− ⊗ Î. (A.4)

If there exists 𝑆 ∈ F̄ such that 𝐸 (𝑆) = 𝐿L (𝑆) (i.e., such that S consists only of the root with a finite
number of legs attached to it), then formula (A.4) follows at once. Otherwise, we write 𝜋F for the
subforest of F given by removing all legs – that is, 𝜋F is the subgraph of 𝜋𝜏 induced by the edge set

𝐸 (𝜋F) := 𝐸 (F)\𝐿L(𝜏).

Then one has 𝜋F ∈ div(𝜋𝜏), and since F ≠ 𝜋F by assumption, there exists 𝑆 ∈ F with the property
such that 𝐿L (𝑆) ≠ 𝐿L

(
𝜋𝑆

)
. Assume first that 𝐿L (𝑆) contains a leg e with the property that 𝑒 ∉ 𝐿L

(
𝜋𝑆

)
.

Then, since 𝜏 is properly legged, the leg e has a unique partner 𝑒 ∈ 𝐿L (𝑇) in T and one has 𝑒↓ ∉ 𝑁 (𝑆)
(since otherwise one would have 𝑒↓, 𝑒↓ ∈ 𝑁 (𝑆) and hence 𝑒, 𝑒 ∈ 𝐿L

(
𝜋𝑆

)
by the definition of 𝜋𝑆). Thus,

e does not have a partner in S, and hence 𝑆 ∈ I★. Otherwise, 𝐿L (𝑆) � 𝐿L
(
𝜋𝑆

)
. Then there exist legs

𝑒, 𝑒 ∈ 𝐿L
(
𝜋𝑆

)
such that {𝔱(𝑒), 𝔱(𝑒)} ∈ L and such that at least one of these two legs is not an element of

𝐿L (𝑆). If 𝑒 ∈ 𝐿L (𝑆) but 𝑒 ∉ 𝐿L (𝑆) (or the other way round), then one has 𝑆 ∈ I★. If 𝑒, 𝑒 ∉ 𝐿L (𝑆), then
one has 𝑒↓ = 𝑒↓ in 𝑇/F (since the vertices 𝑒↓ and 𝑒↓ in T belong to the same connected component of
F), and thus 𝑇/F ∈ Î★.

We now show that T pl
− is a Hopf subalgebra; the claim that T̂ ex,pl

− is a comodule follows very
similarly. We need to show that Δ−T pl

− ⊆ T pl
− ⊗ T pl

− . For this it is sufficient to show that Δ−𝑷
�𝜏 =(

𝑷� ⊗ 𝑷� ) Δ−𝜏 ∈ T pl
− ⊗ T pl

− for any properly legged tree 𝜏 = 𝑇𝔫𝔢 ∈ T−, which in turn follows once we
show that any subforest F = G for some G ∈ div(𝜋𝜏) has the property that the trees 𝑆 ∈ F̄ and the tree
𝑇/F are all properly legged.

It follows from the definition of the coproduct that if 𝜏 is properly legged, then Definition 4.23(1)
carries over to any subtree 𝑆 ∈ F and also to𝑇/F. Moreover, Definition 4.23(2) also immediately carries
over to subtrees 𝑆 ∈ F. To see that this point is inherited also by 𝑇/F, we note that by assumption on the
regularity structure, it follows that whenever 𝑆 is a subtree of 𝜋𝜏 with �𝑆0

𝔢�𝔰 < 0, then for any 𝑢 ∈ 𝐿(𝜏)

one has 𝑢 ∈ 𝐿(𝑆) if and only if 𝑢↓ ∈ 𝑁 (𝑆). Applying this fact to the trees 𝑆 ∈ G, it follows that one
has L(𝜏/F) = L(𝜏)\𝑁 (F), and moreover, for any 𝑢 ∈ L(𝜏/F), the sets 𝐸 (𝑢, 𝜏/F) and 𝐸 (𝑢, 𝜏), given
respectively as the sets containing all edges 𝑒 ∈ 𝐸 (𝜏/F) and 𝑒 ∈ 𝐸 (𝜏) with 𝑒↓ = 𝑢, coincide. Together
these imply that Definition 4.23(2) holds with i = i|L(𝜏/F) .

The fact that Definition 4.23(3) and (4) hold for any 𝑆 ∈ F̄ follows from the definition of F = G. The
fact that (4) holds for 𝑇/F follows from the fact that 𝐸 (𝑢, 𝜏) = 𝐸 (𝑢, 𝜏/F) for any 𝑢 ∈ L(𝜏). A very
similar argument shows that (3) holds also for 𝑇/F. Finally, note that Definition 4.23(5) holds trivially
for the left component of Δex

− 𝜏, since by definition this component does not contain coloured vertices.
The fact that (5) holds for 𝑇/F can be argued very similarly as for (4). �
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Proof of Lemma 4.40. Using Lemma 4.62, it suffices to show that Δ− kerQ0 ⊆ ker(Q0 ⊗ Q0), which
follows once we show that (Q0 ⊗ Q0)Δ− = (Q0 ⊗ Q0)Δ−Q0. This in turn is a consequence of

(P0 ⊗ P0)Δ−𝜏 = (P0 ⊗ P0)Δ−Q0𝜏 (A.5)

for any 𝜏 ∈ T pl
− . Since both sides are linear and multiplicative, it suffices to show this for trees 𝜏 ∈ T pl

− .
In the case that the derivative decoration 𝔢 of 𝜏 does not vanish identically on legs, identity (A.5)

follows directly from the fact that the coproduct Δ− never decreases the decoration 𝔢, so that either the
right or the left component of Δ−𝜏 contains at least one leg with nonvanishing derivative decoration.
Hence, both sides in equation (A.5) vanish.

In the remaining case one has𝔢|𝐿L (𝜏) = 0 and thusQ0𝜏 = Q𝜏. Recall that one hasΔ− = (Id⊗p−)Δ−𝖎−
on T pl

− . We then note that one has 𝜋𝜏 = 𝜋Q𝜏, so that from equation (4.23) we infer

Δ−𝖎−Q𝜏 =
∑

F∈div(𝜋𝜏)

∑
𝔫F ,eF

1
eF!

(
𝔫
𝔫F

) ∏
𝑆∈F

𝑆
𝔫F+𝜋eF
𝔢 ⊗

(
𝑇/F

)𝔫−𝔫F , [𝔬]F
𝔢+𝔢F

,

where F = F[Q𝜏]. If we compare the second sum in this identity to the corresponding sum in equation
(4.23), we see that they differ only by the range of the decoration 𝔢F, since the sum here puts derivatives
also on superfluous legs. If we write 𝐿∗

L (𝜏) ⊆ 𝐿L (𝜏) for the set of superfluous legs of 𝜏, it follows that
one has the idenity

Δ−𝖎−Q𝜏 =
∑

F∈div(𝜋𝜏)

∑
𝔫F ,eF

𝔢F |𝐿∗
L (𝜏)=0

1
eF!

(
𝔫
𝔫F

) ∏
𝑆∈F

Q𝑆
𝔫F+𝜋eF
𝔢 ⊗ Q

(
𝑇/F

)𝔫−𝔫F , [𝔬]F
𝔢+𝔢F

,

where this time F = F[𝜏]. Since any term on the right-hand side of equation (4.23) with 𝔢F non
vanishing on 𝐿∗

L (𝜏) yields an element of T pl
− ⊗ ker P0, the claim follows. �

Lemma A.2. Let A be the symmetric algebra of a finite-dimensional vector space B, and letΦ ⊆ B∗ be
a linear subspace of the dual space B∗ of B. For any 𝑓 ∈ B∗, denote by 𝑓∗ ∈ A∗ the unique character of
A extending f. Finally, for any 𝐶 ⊆ A, write J(𝐶) for the ideal in A generated by C.

Then one has I := J
(⋂

𝜑∈Φ ker 𝜑
)
=
⋂
𝜑∈Φ ker 𝜑∗ =: Ī.

Proof. The inclusion I ⊆ Ī is trivial, so we only need to show that Ī ⊆ I.
Define Φ⊥ ⊆ B by Φ⊥ :=

⋂
𝜑∈Φ ker 𝜑. Let X be a basis of Φ⊥, let Y be a basis of a complement of

Φ⊥ in B and observe that 𝑋 ∪𝑌 generates A freely as a commutative, unital algebra. So for any 𝑎 ∈ A,
there exist 𝑟 ≥ 0, 𝑐𝑖 ∈ R and 𝑏𝑖 : 𝑋 ∪ 𝑌 → N such that

𝑎 =
∑
𝑖≤𝑟

𝑐𝑖
∏
𝑥∈𝑋

𝑥𝑏𝑖 (𝑥)
∏
𝑦∈𝑌

𝑦𝑏𝑖 (𝑦) . (A.6)

We will always assume that this sum is minimal in the sense that 𝑐𝑖 ≠ 0 and 𝑖 ≠ 𝑗 ⇒ 𝑏𝑖 ≠ 𝑏 𝑗 , which
makes the representation unique, modulo a permutation of the index set {1, . . . , 𝑟}.

The ideal I consists precisely of those elements 𝑎 ∈ A such that in the representation (A.6), one has
𝑏𝑖�𝑋 ≠ 0 for all i. For 𝑎 ∈ Ī, we can therefore write 𝑎 = 𝑎0 + 𝑎1 with 𝑎1 ∈ I and 𝑎0 belonging to the
subalgebraA𝑌 ⊂ A generated by Y. Assuming by contradiction that 𝑎0 ≠ 0, one can find a character 𝜑 of
A𝑌 such that 𝜙(𝑎0) ≠ 0. If we extend 𝜑 to all of A by setting 𝜑(𝑥) = 0 for 𝑥 ∈ 𝑋 , then 𝜑 ∈ (Φ⊥)

⊥ = Φ,
so that 𝜑(𝑎0) = 0 and therefore 𝜑(𝑎) ≠ 0, in contradiction of the assumption that 𝑎 ∈ Ī. �
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A.3. Feynman diagrams

We state and sketch the proof of (a slight generalisation of) [Hai18, Theorems 3.1, 4.3]. For this, let L★
be a nonempty set of types and set L := L★ � {𝛿}. In analogy to [Hai18, Definition 2.1], we make the
following definition:

Definition A.3. A Feynman diagram is a finite directed graph Γ = (𝑉, 𝐸) endowed with the following
additional data:

◦ An ordered set of distinct vertices �̄� = {[1], . . . , [𝑘]} ⊆ 𝑉 such that each [𝑖] has exactly one outgoing
edge called a ‘leg’ and no incoming edge, and such that each connected component of Γ contains at
least one leg. We write 𝑉★ := 𝑉 \ �̄� and 𝐸★ ⊆ 𝐸 for the set of internal edges – that is, edges which
are not legs. For each [𝑖] ∈ �̄� we denote by 𝑖★ the vertex such that ([𝑖], 𝑖★) ∈ 𝐸 .

◦ A distinguished vertex 𝑣★
(
Γ̃
)

for every connected component Γ̃ of Γ. For any 𝑢 ∈ 𝑉 we write 𝑢★ for
the distinguished vertex 𝑣★

(
Γ̃
)

of the connected component Γ̃ which contains u.
◦ Decorations 𝔱 : 𝐸 → L such that 𝔱(𝑒) = 𝛿 if and only if e is a leg, 𝔢 : 𝐸 → N𝑑 and 𝔫 : 𝑉★ → N𝑑 .

We write Γ𝔫𝔢 whenever we want to make the decorations explicit.

This definition differs slightly from [Hai18, Definition 2.1] because we include a polynomial deco-
ration 𝔫.

As in [Hai18, Definition 2.7], we define a vacuum diagram as a Feynman diagram Γ such that each
connected component contains exactly one leg. We writeD for the linear space generated by all Feynman
diagrams, and we write D̂− for the algebra of all vacuum diagrams such that each connected component
contains at least one internal edge. As in [Hai18] we factor out a subspace (resp., an ideal) on which
the valuation (which we will define) vanishes. We define 𝜕D (resp., 𝜕D̂−) as the smallest subspace of
D (resp., the smallest ideal in D̂−) which contains the expressions [Hai18, Equations 2.16, 2.17, 2.18]
for any connected Feynman diagram, and we set

H := D/𝜕D and Ĥ− := D̂−/𝜕D̂−.

Degree assignments
In [Hai18] it was assumed that we are given a degree assignment deg : L → R−, and for any 𝐶 > 0,
bounds were derived uniformly in kernel assignments K such that ‖𝐾𝔱 ‖deg 𝔱 < 𝐶 for any 𝔱 ∈ L. We will
generalise this setting slightly to allow some of the kernels to ‘exchange’ homogeneity. This is possible
from the fact that the bounds we are interested in depend only on the product

∏
𝑒∈𝐸 (Γ)

��𝐾𝔱 (𝑒)��deg 𝔱 (𝑒) .

Example A.4. As a typical example, consider two edges 𝑒, 𝑓 ∈ 𝐸 (Γ) and two smooth, compactly
supported functions 𝜑, 𝜓, and assume that

𝐾𝔱 (𝑒) (𝑥) := 𝜆𝛼𝜑
(
𝜆−𝔰𝑥

)
and 𝐾𝔱 ( 𝑓 ) (𝑥) := 𝜆𝛽𝜓

(
𝜆−𝔰𝑥

)
for some 𝛼, 𝛽 < 0 and 𝜆 ∈ (0, 1). While deg 𝔱(𝑒) = 𝛼 and deg 𝔱( 𝑓 ) = 𝛽 seem the most natural choices,
if we are interested in bounds uniformly in 𝜆 > 0 we could make any choice of the form deg 𝔱(𝑒) = 𝛼− 𝜃
and deg 𝔱( 𝑓 ) = 𝛽 + 𝜃 for some 𝜃 ∈ R (as long as 𝛼 − 𝜃 < 0 and 𝛽 + 𝜃 < 0).

Tweaking the degrees in this way may alter the renormalisation structure (i.e., the degree of a
subdiagram may cross a nonpositive integer), so that one could try to find a degree assignment which
minimises the number of subdiagrams that need to be renormalised. Unfortunately, in the situations
we are interested in, this turns out to be impossible: Given any ‘tweaked’ choice of degrees, there are
always subgraphs which appear divergent but are actually completely fine.

To overcome this issue we consider the following construction: Assume that we are given a partition
L = ⊔

l∈L Ll of the set of types. We then call a type 𝔱 ∈ L strong if {𝔱} = 𝔏l for some l ∈ L, and weak

https://doi.org/10.1017/fmp.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.18


Forum of Mathematics, Pi 95

otherwise, and we write Ls and Lw for the subsets of strong and weak types, respectively. We always
assume that 𝛿 is a strong type.

Definition A.5. A Feynman diagram Γ is called admissible if any weak type 𝔱 appears at most once in
Γ, and for any l ∈ L with 𝔱(𝐸 (Γ)) ∩ Ll ≠ ��, one has Ll ⊆ 𝔱(𝐸 (Γ)) and there exists a vertex u with the
property that all 𝑒 ∈ 𝐸 (Γ) with type 𝔱(𝑒) ∈ Ll are connected to u.

The last part of this definition rules out the possibility that for some l ∈ L there are two nonoverlapping
subgraphs which contain the edges 𝑒 ∈ 𝐸 (Γ) with 𝔱(𝑒) ∈ Ll (in which case we may be able to avoid
either subdivergence, but possibly not both at the same time).

Example A.6. A typical example to which we apply this setting is given by a Feynman diagram where
the ‘strong’ edges are the kernel-type edges of an underlying tree 𝜏 ∈ T and the ‘weak’ edges represent
kernels of noises living in fixed homogeneous Wiener chaoses. For instance, one could look at the
following Feynman diagram:

Here we draw bold lines for strong edges and dotted lines for weak edges, and we colour weak edges
according to the partition

⊔
l∈L Ll.

We assume we are given a degree assignment Deg : L → R−, such that Deg(𝛿) = −|𝔰 |. Here and
later we write Deg(𝔱) := Deg(l) if 𝔱 ∈ Ls is a strong type such that Ll = {𝔱}. Finally, we assume we are
given a homogeneity assignment deg : L → R− such that deg𝔱 := Deg 𝔱 for any strong type 𝔱 ∈ Ls. We
then write

Deg :=

{
deg : L → R− : deg ≥ deg and for all l ∈ L, one has

∑
𝔱∈Ll

deg 𝔱 = Deg l
}
,

and for any Feynman diagram Γ𝔫𝔢 we define the quantity

Deg Γ := sup
deg∈Deg

∑
𝑒∈𝐸 (Γ)

(deg 𝔱(𝑒) − |𝔢(𝑒) |𝔰) +
∑

𝑢∈𝑉 (Γ)

|𝔫(𝑢) |𝔰 + |𝔰 | (#𝑉 (Γ) − 1).

(Note that the expression inside the sup does not depend on deg ∈ Deg for admissible Feynman
diagrams.)

Example A.7. Consider two nonadmissible, overlapping (but not nested) subdiagrams Γ̃1, Γ̃2 with
Deg Γ̃𝑖 > 0. Consider furthermore a spanning tree T such that Γ̃1 collapses for T (i.e., for some interior
node 𝜇 of T, one has that 𝑉

(
Γ̃1

)
is given by the set of 𝑢 ∈ 𝑉 (Γ) such that 𝑢 ≥ 𝜇 with respect to the tree

order). By definition we can find a degree assignment deg ∈ Deg such that Γ̃1 is of positive degree, and
since Γ̃2 is overlapping with Γ̃1, it does not collapse. Consequently, neither of these two subdiagrams
needs to be renormalised. An identical argument works in the case that Γ̃2 is collapsing. However, there
may not exist a fixed degree assignment deg ∈ Deg such that both statements are true at the same time.

Finally, we fix another degree assignment deg∞ : L → [−∞, 0] with deg∞(𝛿) := −∞.

Kernel assignments and valuations
We write C1 for the space of smooth functions 𝜙 ∈ C∞

𝑐

(
D̄
)

supported in the 𝔰-unit ball of radius 1. We
then write K−

∞ for the set of kernel assignments (𝐾𝔱)𝔱∈L such that 𝐾𝔱 ∈ C1 for any 𝔱 ∈ L, and K+
∞ for the

set of kernel assignments (𝑅𝔱)𝔱∈L such that 𝑅𝔱 ∈ C∞
𝑐

(
D̄
)

for any 𝔱 ∈ L and 𝑅𝔱 := 0 for any weak type
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𝔱 ∈ Lw. We also set 𝑙𝑖 := 𝔢([𝑖], 𝑖★) for 𝑖 = 1, . . . , 𝑘 , and with this notation we define an valuation Π𝐾,𝑅
on H by setting (

Π𝐾,𝑅Γ
)
(𝜑) :=

∫
D̄𝑉★

∏
𝑒∈𝐸★

𝐷𝔢(𝑒) (𝐾 + 𝑅)𝔱 (𝑒)
(
𝑥𝑒+ − 𝑥𝑒−

)
∏
𝑢∈𝑉★

(
𝑥𝑢 − 𝑥𝑢★

)𝔫 (𝑢)
(
𝐷𝑙11 · · · 𝐷𝑙𝑘𝑘 𝜑

) (
𝑥𝑣1 , . . . , 𝑥𝑣𝑘

)
𝑑𝑥,

for any (𝐾, 𝑅) ∈ K−
∞ × K+

∞.
Recall that we want to allow types 𝔱, 𝔱 ∈ Ll to ‘exchange homogeneity’, and as a consequence there

is no natural norm on K−
∞ which we can use. Instead we are forced to work with tensor products, which

is very similar to Definition 2.7. For any l ∈ L we define the space

K̃l,−
∞ :=

⊗
𝔱∈Ll

C1

together with the norm

|||𝐾 |||Deg l := sup
deg∈Deg

∏
𝔱∈Ll

‖𝐾𝔱 ‖deg 𝔱, (A.7)

where ‖·‖deg 𝔱 is as in formulas (2.11) and (2.12), and we define K̃l,−
0 as the closure of K̃l,−

∞ under this
norm. We also write

K̃−
∞ :=

⊕
l∈L

K̃l,−
∞ and K̃−

0 :=
⊕
l∈L

K̃l,−
0 .

We next note that for admissible Feynman diagrams Γ, one can define Π𝐾,𝑅Γ for any (𝐾, 𝑅) ∈

K̃−
∞ ×K+

∞ in a canonical way by imposing this to be linear on each component K̃l,−
∞ . To be more precise,

for fixed 𝐾 ∈ K−
∞, define �̃� ∈ K̃−

∞ by setting

�̃�l :=
⊗
𝔱∈Ll

𝐾𝔱 (A.8)

for any l ∈ L. Then if Γ is admissible, the quantity

Π�̃� ,𝑅Γ := Π𝐾,𝑅Γ

is well defined (recall that 𝑅𝔱 = 0 for any weak type 𝔱 ∈ Lw) and can be linearly extended to �̃� ∈ K̃−
∞.

We finally defineK+
0 analogously to [Hai18, Section 4] as the closure ofK+

∞ under the norm ‖𝑅‖∞,deg∞

given by the smallest constant such that��𝐷𝑘𝑅𝔱 (𝑥)
�� ≤ ‖𝑅‖∞,deg∞

(1 + |𝑥 |)deg∞ 𝔱

for all 𝔱 ∈ L, 𝑥 ∈ D̄ and |𝑘 |𝔰 < 𝑟 .

Renormalisation
We denote by H− the algebras of Feynman vacuum diagrams defined as in [Hai18, after Remark
2.9]. Recall that H− can be identified with the factor algebra Ĥ−/J+, where J+ ⊆ Ĥ− denotes the
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ideal generated by connected vacuum diagrams of positive Deg-degree. We introduce a coproduct
Δ− : X → H− ⊗ X for X ∈

{
H, Ĥ−,H−

}
in analogue to [Hai18, Equations 2.19, 2.24] by setting

Δ−Γ
𝔫
𝔢 =

∑̃
Γ⊆Γ

∑̃
𝔢,�̃�

(−1) |out�̃� |

�̃�!

(
𝔫
�̃�

)
Γ̃�̃�+𝜋�̃�𝔢 ⊗

(
Γ/Γ̃

)𝔫−�̃�
[�̃�]+𝔢 , (A.9)

where we use the convention that the first sum runs over full subgraphs10 Γ̃ of Γ with the property that
any connected component of Γ̃0

𝔢 is of negative degree, and the second sum runs over all decorations
�̃� : 𝜕Γ̃𝐸 (Γ) → N𝑑 and �̃� : 𝑉 (Γ) → N𝑑 such that supp �̃� ⊆ 𝑉

(
Γ̃
)
. Here we write 𝜕Γ̃𝐸 (Γ) for the set of

half-edges (𝑒, 𝑣) with 𝑒 ∈ 𝐸 (Γ)\𝐸
(
Γ̃
)

and 𝑣 ∈ 𝑒 ∩𝑉
(
Γ̃
)
, and we write [�̃�] (𝑒) :=

∑
𝑢∈𝑒 �̃�(𝑒, 𝑢). We call

a subgraph Γ̄ of Γ full if it has the property that 𝐸
(
Γ̄
)

is given by the set of all 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (Γ) such
that {𝑢, 𝑣} ⊆ 𝑉

(
Γ̄
)
. This definition agrees (apart from the fact the we restrict to full subgraphs) with

[Hai18, Equation 2.24] in the case that X ∈
{
Ĥ−,H−

}
and is a slight generalisation of [Hai18, Equation

2.19] in the case that X = H, since we include polynomial decorations.
We moreover write Δ̃− for the coproducts acting between the same spaces, which are defined similarly

to equation (A.9) but where Γ̄ ranges also over subgraphs which are not necessarily full. We define
the twisted antipode Â : H− → Ĥ− as in [Hai18, Equation 2.28] as the unique multiplicative map
satisfying M

(
Â ⊗ Id

)
Δ−Γ = 0 for any Γ ∈ Ĥ− such that Deg Γ < 0, and we write Ã : H− → Ĥ− for

the operator that satisfies the same identity with Δ− replaced by Δ̃−. It follows with arguments identical
to those carried out in [Hai18] that the spaces H− and Ĥ− equipped with the full coproduct Δ− form a
Hopf algebra and a comodule, respectively. When we refer to H− as a Hopf algebra, and in particular
when we refer to the group product in the character group of H−, it is always the full coproduct Δ− that
we have in mind.

Finally, given a smooth kernel assignment 𝐾 ∈ K−
∞, we write 𝑔(𝐾) and 𝑔full(𝐾) for the respective

BPHZ characters, defined as characters on the Hopf algebra H− via the identities

𝑔(𝐾) := Π𝐾 Â and �̃�(𝐾) := Π𝐾 Ã.

It then follows from [Hai18, Proposition 3.11] that one has

Π̂
𝐾 :=

(
𝑔(𝐾) ⊗ Π𝐾

)
Δ− =

(
�̃�(𝐾) ⊗ Π𝐾

)
Δ̃− (A.10)

on H. We first show a simple lemma that extends formula (A.10) to the situation where one has
nonvanishing large-scale kernel assignments.

Lemma A.8. Assume that R is a smooth, compactly supported large-scale kernel assignment as in
[Hai18, Section 4] and assume that Γ ∈ Ĥ− is a connected vacuum diagram with the following property:
Whenever Γ̃ ⊆ Γ is a connected subgraph such that Deg Γ̃ < 0, then for any 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (Γ)\𝐸

(
Γ̃
)

with {𝑢, 𝑣} ⊆ 𝑉
(
Γ̃
)
, one has 𝑅𝔱 (𝑒) = 0. Then one has

Π̂
𝐾,𝑅

Γ :=
(
𝑔(𝐾) ⊗ Π𝐾,𝑅

)
Δ−Γ =

(
�̃�(𝐾) ⊗ Π𝐾,𝑅

)
Δ̃−Γ.

Proof. We only sketch how to adapt the proof of [Hai18, Proposition 3.11] to our situation. Using that
notation, the difference from our case is that in [Hai18, Equation 3.16] the evaluationsΠ− andΠ are built
on different kernel assignments (since the former ignores the large-scale kernel assignment). Without
the extra assumption made in the statement of our lemma, [Hai18, Equation 3.16] is not independent of
B whenever there is an element 𝛾cl ∈ B which is a root of the forest F𝑝 ∪ Ffull

, ∪ B. By definition, 𝛾cl

is the closure of some root 𝛾 of F𝑝 . Thanks to the additional assumption made in our lemma, the two

10Recall [Hai18, p. 7] that by definition a subgraph does not contain legs or isolated vertices.
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evaluations Π𝐾 and Π𝐾,𝑅 act identically when applied to an edge 𝑒 ∈ 𝐸 (𝛾cl) \𝐸 (𝛾), and the proof can
be finished as in [Hai18, Proposition 3.11]. �

Finally, note that as before, for admissible Feynman diagrams Γ the quantity Π̂𝐾,𝑅Γ is well defined
for 𝐾 ∈ K̃−

∞ by linear extension.

Remark A.9. The character 𝑔(𝐾) is in general not well defined for 𝐾 ∈ K̃−
∞. This is because diver-

gent subgraphs Γ̃ of an admissible Feynman diagram Γ need not be admissible. However, the map
𝐾 ↦→

(
𝑔(𝐾) ⊗ Π𝐾,𝑅

)
Δ−Γ, for 𝐾 ∈ K−

∞, has the multilinearity property previously described, and can
therefore be extended uniquely to K̃−

∞ by linearity.

A slight generalisation of [Hai18]
We now state a generalisation of the results of [Hai18]. For this we recall that for any Feynman diagram
Γ with legs 1★, . . . , 𝑘★, we call a partition P of 𝑉★ tight if #P ≥ 2 and all legs are contained in the same
element – that is, there exists 𝑃★ ∈ P such that for all 1 ≤ 𝑖 ≤ 𝑘 , one has 𝑖★ ∈ 𝑃★. For any such partition,
we introduce the notation 𝐸P for the set of edges 𝑒 ∈ 𝐸★ such that e is not a subset of any 𝑃 ∈ P, and the
notation 𝑉P for the set of vertices 𝑢 ∈ 𝑉★ such that {𝑢, 𝑢★} is not a subset of any 𝑃 ∈ P. We then define

deg∞ P :=
∑
𝑒∈𝐸P

deg∞ 𝔱(𝑒) − |𝔢(𝑒) |𝔰 +
∑
𝑢∈𝑉P

|𝔫(𝑢) | + |𝔰 | (#P − 1).

This differs slightly from [Hai18, p. 43], since we include polynomial decorations.

Theorem A.10. Let Γ be an admissible Feynman diagram such that deg∞ P < 0 for any tight partition
of V. Then for fixed 𝐾 ∈ K̃−

0 , the map 𝑅 ↦→ Π𝐾,𝑅Γ extends continuously to the space K+
0 and the map

(𝐾, 𝑅) ↦→ Π̂
𝐾,𝑅

Γ extends continuously to the space K̃−
0 × K+

0 .

Proof. We only sketch the difference from [Hai18]. Let us first discuss the bound on small scales – that
is, the continuous extension of 𝐾 ↦→ Π̂

𝐾,0
Γ to K̃−

0 . There are two differences from the case treated in
[Hai18, Section 3]. One is that we allow Γ to have polynomial decoration 𝔫; the other is the presence of
weak types.

It is straightforward to convince oneself that the proof given in [Hai18] works without any changes for
nonvanishing polynomial decoration. To see that weak edges cause no problem, we recall a few pieces
of notation. We write 𝔉−

Γ for the set of all forests F of Γ. Recall [Hai18, Section 3.1] that a forest F is
a family of divergent subgraphs of Γ such that any two elements of F are nonoverlapping (i.e., either
node-disjoint or nested). Recall further that a forest interval M is a subset of 𝔉−

Γ with the property that
there exist M, M ∈ 𝔉−

Γ such that M contains exactly those forests F ∈ 𝔉−
Γ such that M ⊆ F ⊆ M. The

bound in [Hai18] is then obtained by fixing a Hepp sector T [Hai18, Definition 3.5], which allows us to
partition the set of forests into a family of forest intervals indexed by safe forests for T. The main step
of the proof [Hai18, Equations 3.9, 3.10; Lemmas 3.7, 3.8] is then performed for each of these forest
intervals separately. The only difference in the present setup is that we have a set Deg of possible degree
assignments to choose from. By our definitions, a subgraph Γ̃ is divergent if and only if deg Γ̃ < 0 for any
deg ∈ Deg, so that the definition of the set of forests𝔉−

Γ does not depend on a choice deg ∈ Deg. Neither
do the notions of a forest interval or a safe forest. We can then use exactly the same proof as in [Hai18].
The only difference is that we first fix a Hepp sector T and a safe forest F𝑠 = M. Only afterwards do we
choose deg ∈ Deg in such a way to make sure that for any subgraph Γ̃ of Γ which is unsafe for F𝑠 , one
has deg Γ̃ = Deg Γ̃. This is always possible, since by definition, for any weak type l, all edges 𝑒 ∈ 𝐸 (Γ)
of type 𝔱(𝑒) ∈ Ll are connected to the same vertex. If we denote by 𝐸l ⊆ 𝐸 (Γ) the set of these edges and
𝜈𝑒 ∈

◦

T the node of the spanning tree at which e collapses, then the fact that all 𝑒 ∈ 𝐸l have a vertex in
common implies that {𝜈𝑒 : 𝑒 ∈ 𝐸l} is a totally ordered set with respect to the tree order. It follows that
one can recursively choose deg ∈ Deg to optimise the degree of subdiagrams containing edges 𝑒 ∈ 𝐸l.

We finally discuss the bound on large scales. In [Hai18, Section 4], the analogous statement was
shown again without polynomial decorations and weak types. It is again easy to convince oneself that
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polynomial decorations pose no problems. Furthermore, the proof of [Hai18, Theorem 4.3] uses the
bound on small scales (i.e., the continuous extension of Π̂𝐾,0 to 𝐾 ∈ K̃−

0 ) as a black box; otherwise
only the a priori bounds on large-scale kernel assignments are used. It remains to point out that since
𝑅𝔱 = 0 for weak types 𝔱 ∈ Lw, it suffices to consider in [Hai18, p. 45] subsets �̃� of the set of edges E
such that each 𝑒 ∈ �̃� has a strong type, and for such sets U

(
Γ, �̃�

)
constructed in [Hai18, p. 45] is again

an admissible Feynman diagram. �

An important application of the previous theorem is the proof of Theorem 4.19 (see the end of
Appendix A.3.1).

A scale-dependent bound
We also show that one can infer a scale-dependent bound from [Hai18] (even though this is not explicitly
stated in this paper). Given a Feynman diagram Γ ∈ H, we write �̄�−

Γ ⊆ 𝔉−
Γ for the set of all forests

F ∈ 𝔉−
Γ of Γ such that Γ ∉ F. To any forest interval M we associate a linear combination of Feyman

diagrams R̂MΓ as in [Hai18, Equation 3.7].

Remark A.11. A reader who is not familiar with [Hai18] should think of R̂MΓ as a sum over all
possible ways of ‘pulling out and contracting’ the divergent subdiagrams in M, with the restriction that
any element of M is always pulled out, and adjusting the sign according to the number of subdiagrams
which are pulled out. One specific property of R̂M is that we view the vertex set of every Feynman
diagram that we sum over in R̂MΓ as equal to 𝑉 (Γ). This can be obtained by ‘reattaching’ one vertex of
the pulled-out subdiagram to the vertex which has been created by contracting it. (This is not canonical,
but depends on a choice of distinct vertex in the pulled-out diagram. The ambiguity can be removed by
fixing an arbitrary total order on𝑉 (Γ).) Note that this last property forces us to abstain from viewing R̂M
as an operator acting on the algebra H (the operator viewed in this way is denoted by RM in [Hai18]).

We then write R̂ :=
∑

M∈P R̂M, where P is some partition of �̄�−
Γ into forest intervals (the definition

of R̂ is independent of this choice), and we write W𝐾 for the map defined after [Hai18, Equation 3.7],
so that

W𝐾Γ ∈ C∞
𝑐

(
D̄𝑉 (Γ)

)
for any 𝐾 ∈ K−

∞. The function W𝐾Γ should be thought of as introducing for every edge 𝑒 ∈ 𝐸 (Γ) a
factor 𝐷𝔢(𝑒)𝐾𝔱 (𝑒) evaluated between its endpoints. Note that by the definition of R̂Γ, one has W𝐾 R̂Γ ∈

C∞
𝑐 (D̄𝑉 (Γ)

). It follows as in [Hai18, Lemma 3.4] that one has

𝑔full(𝐾)Γ =
∫

D̄𝑉 (Γ)
𝑑𝑥𝛿

(
𝑥𝑣★

) (
W𝐾 R̂Γ

)
(𝑥) (A.11)

if deg Γ ≤ 0, whereas in the case that deg Γ > 0, the right-hand side of equation (A.11) is equal to
Π̂
𝐾
BPHZΓ. We define the ‘scale’ 𝔪(𝑥) of 𝑥 ∈ D̄\{0} as the largest integer smaller than − ln2 (|𝑥 |𝔰) (so that

|𝑥 |𝔰 is of order 2−𝔪 (𝑥) ), and we set

Y𝐾,Γ𝑛 :=
∫

D̄𝑉 (Γ)
𝑑𝑥𝛿

(
𝑥𝑣★

)
W𝐾 R̂Γ(𝑥)I

{
min

𝑢,𝑣 ∈𝑉 (Γ)
𝔪(|𝑥𝑢 − 𝑥𝑣 |) = 𝑛

}
. (A.12)

The indicator function ensures that we integrate only over point configurations x such that the maximal
distance |𝑥𝑢 − 𝑥𝑣 | for 𝑢, 𝑣 ∈ 𝑉 (Γ) is of order 2−𝑛, and the sum∑

𝑛≥0
Y𝐾,Γ𝑛

is equal to the right-hand side of equation (A.11). The following result follows as in [Hai18]:
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Theorem A.12. Let Γ be an admissible Feynman diagram. Then one has the bound

��Y𝐾,Γ𝑛

�� � ���
∏

𝑒∈𝐸 (Γ)

��𝐾𝔱 (𝑒)��deg 𝔱 (𝑒)
� ! 2−𝑛Deg Γ (A.13)

for any deg ∈ Deg. (Note that the right-hand side does not depend on deg ∈ Deg.) Here the implicit
constant depends only on Γ and Deg, but is uniform in n and 𝐾 ∈ K̃−

∞.

Proof. Given a decorated spanning tree (T, n) for 𝑉 (Γ) with n :
◦

T → N, we denote by 𝐷 (T,n) ⊆ D̄𝑉 (Γ)

the Hepp sector associated to (T, n) defined via [Hai18, Equation 2.10], and for 𝑛 ∈ N we write
𝐷T,𝑛 :=

⋃
n:n(𝜌T)=𝑛 𝐷 (T,n) . Given furthermore a forest interval M of �̄�−

Γ , we write Ȳ𝐾,Γ,MT,𝑛 for the
constant given by

Ȳ𝐾,Γ,MT,𝑛 :=
∫
𝐷T,𝑛

��𝑑𝑥𝛿 (
𝑥𝑣★

)
W𝐾 R̂MΓ(𝑥)

�� , (A.14)

so that it follows from the definitions that

��Y𝐾,Γ𝑛

�� �∑
T

∑
M∈PT

𝑛+𝑛0∑
𝑚=𝑛−𝑛0

Ȳ𝐾,Γ,MT,𝑚 ,

where 𝑛0 ∈ N depends only on the choice of C in [Hai18, Equation 2.10]. Here PT is the partition of
�̄�−
Γ defined as in [Hai18, p. 29]. It suffices to show the bound (A.13) for Ȳ𝐾,Γ,MT,𝑚 for any spanning tree

T, any 𝑚 ∈ N and any M ∈ �̄�−
Γ separately.

We now choose a degree assignment deg ∈ Deg with the property for that any subgraph Γ̃ of Γ which
collapses for T, one has

⌈
deg Γ̃

⌉
=
⌈
Deg Γ̃

⌉
. Identically to [Hai18, Equation 3.9], we obtain the bound

Ȳ𝐾,Γ,MT,𝑚 �
∑
𝑖∈𝐼

∑
𝔫:𝔫 (𝜌T)=𝑚

∏
𝑣 ∈

◦
T

2−𝜂𝑖 (𝑣)𝔫𝑣 ,

where 𝜂𝑖 (𝑣) is defined as in [Hai18, Equation 3.17] for the degree assignment deg. We can show [Hai18,
Equation 3.10] for any 𝑣 ∈

◦

T\{𝜌T} exactly as in [Hai18, p. 34], and it follows that

Ȳ𝐾,Γ,MT,𝑚 �
∑
𝑖∈𝐼

∏
𝑣 ∈

◦
T

2−𝜂𝑖 (𝑣)𝑚 � 2− Deg Γ𝑚,

where we used the fact that
∑
𝑣 ∈

◦
T 𝜂𝑖 (𝑣) = Deg Γ for any 𝑖 ∈ 𝐼. �

One application is the following corollary, which shows the absence of logarithmic divergences in
certain situations. Before we state the next definition, we introduce a piece of notation. Given a Feynman
diagram Γ𝔫𝔢 and a subgraph Γ̃ ⊆ Γ, we want to identify all polynomial decorations �̃� : 𝑉

(
Γ̃
)

→ N𝑑
such that Γ̃�̃�𝔢 appears on the right-hand side of the coproduct Δ− applied to Γ𝔫𝔢 . For this we write N

(
Γ̃
)

for the set of decorations �̃� : 𝑉
(
Γ̃
)
→ N𝑑 such that for any 𝑢 ∈ 𝑉

(
Γ̃
)

with the property that there does
not exist 𝑒 ∈ 𝐸 (Γ) \ 𝐸

(
Γ̃
)

with 𝑢 ∈ 𝑒, one has �̃�(𝑢) ≤ 𝔫(𝑢).

Definition A.13. Let Γ = Γ𝔫𝔢 be an admissible Feynman diagram such that Deg Γ𝔫𝔢 = 0 and set l ∈ L.
We say that a kernel assignment 𝐾 ∈ K̃−

∞ is log-avoiding for Γ and l if Ll ⊆ 𝔱(𝐸 (Γ)) and, for any
proper subgraph Γ̃ ⊆ Γ with Ll ∩ 𝔱

(
𝐸

(
Γ̃
) )
≠ �� and any polynomial decoration �̃� ∈ N

(
Γ̃
)

such that
Deg Γ̃�̃�𝔢 = 0, one has 𝑔(𝐾)Γ̃�̃�𝔢 = 0.
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Given l ∈ L and 𝜃 > 0, we also introduce the seminorm

|𝐾 |l, 𝜃 := |||𝐾l |||Deg l+𝜃 |||𝐾l |||Deg l−𝜃

for 𝐾 ∈ K̃−
0 . We then have the following statement:

Corollary A.14. In the foregoing setting, let Γ be an admissible Feynman diagram, set l◦ ∈ L and let
𝐾 ∈ K̃−

∞ be a kernel assignment which is log-avoiding for Γ and l◦. Then for all 𝜃 > 0 small enough,
one has

|𝑔(𝐾)Γ| � ‖𝐾 ‖K̃−
0
+ |𝐾 |l◦ , 𝜃 (A.15)

uniformly over all 𝐾 ∈ K̃−
∞.

Moreover, if l1 ∈ L is such that K is also log-avoiding for Γ and l1, then for all 𝜃 > 0 small enough,
one has

|𝑔(𝐾)Γ| �
������𝐾l◦

������
Deg l◦+𝜃

������𝐾l1
������

Deg l1−𝜃 (A.16)

uniformly over 𝐾 ∈ K̃−
∞ such that ‖𝐾 ‖K̃−

0
� 1.

Proof. First note that formula (A.15) is a consequence of formula (A.16) with l◦ = l1. We consider two
degree assignments Deg+ and Deg− on L such that Deg+ l = Deg l except for l = l◦ and Deg− l = Deg l
except for l = l1, which are defined by Deg+ l◦ := Deg l◦ + 𝜃 and Deg− l1 := Deg l1 − 𝜃. If we denote by
𝑔+(𝐾) and 𝑔−(𝐾) the BPHZ characters for K and the degree assignments Deg+ and Deg−, respectively,
then it is not hard to see that for 𝜃 > 0 small enough, one has

𝑔−(𝐾)Γ𝔫𝔢 = 𝑔(𝐾)Γ𝔫𝔢 = Π
𝐾𝑀𝑔+ (𝐾 )Γ𝔫𝔢 .

Indeed, the first identity follows from the fact that
⌈
Deg Γ̃

⌉
=

⌈
Deg− Γ̃

⌉
for any Feynman diagram

Γ̃ and for any 𝜃 > 0 small enough. The second identity is a bit more subtle, since in general the
‘divergence structure’ of Γ is not the same for the homogeneity assignments Deg and Deg+. But writing
ΔDeg

− and ΔDeg+
− for the coproducts obtained from the respective homogeneity assignments, one has

ΔDeg+
− = (p ⊗ Id)ΔDeg

− , with p the projection onto the algebra generated by diagrams of nonpositive
Deg+-degree, so that it suffices to show that 𝑔+(𝐾)pΓ̃�̃�𝔢 = 𝑔(𝐾)Γ̃�̃�𝔢 for any subdiagram Γ̃ of Γ such that
Deg Γ̃�̃�𝔢 ≤ 0. If we assume inductively that this is true for all proper subdiagrams of Γ̃, then we observe
that if 𝜃 > 0 is small enough, then Deg+ Γ̃

�̃�
𝔢 > 0 implies Deg Γ̃�̃�𝔢 = 0, and hence also 𝑔(𝐾)Γ̃�̃�𝔢 = 0 (by

assumption), and otherwise

𝑔(𝐾)Γ̃�̃�𝔢 = −(𝑔(𝐾) ⊗ Id)
(
ΔDeg

− − Id ⊗ 1
)
Γ̃�̃�𝔢 = − (𝑔+(𝐾) ⊗ Id)

(
ΔDeg+

− − Id ⊗ 1
)
Γ̃�̃�𝔢

= 𝑔+(𝐾)Γ̃�̃�𝔢 ,

which proves the claim.
Let now 𝜆 > 0 be such that

������𝐾l◦
������

Deg l◦+𝜃 = 𝜆−𝜃 , so that one also has
������𝐾l1

������
Deg l1−𝜃 ≤ 𝐶 (𝜃)𝜆𝜃 , where

𝐶 (𝜃) denotes the right-hand side of formula (A.16). Moreover, set 𝑚 ∈ N such that 2−𝑚−1 ≤ 𝜆 < 2𝑚.
We estimate the sum over large scales using formula (A.13) for the degree assignment Deg−, so that∑

𝑛≤𝑚

��Y𝐾,Γ𝑛

�� � 2𝑚𝜃𝜆𝜃 � 𝐶 (𝜃),
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and the sum over small scales using formula (A.13) for the degree assignment Deg+, so that∑
𝑛≥𝑚

��Y𝐾,Γ𝑛

�� � 2−𝑚𝜃𝜆−𝜃 � 1,

where both estimates hold uniformly over 𝐾 ∈ K̃−
∞ such that ‖𝐾 ‖K̃−

0
≤ 𝐶. �

A.3.1. Application to trees
We want to apply the result of Appendix A.3 to models obtained from smooth noises 𝜂 ∈ 𝔐∞ (see
Section 2.4). In Sections 4 and 5 we consider two different enlargements of the regularity structure
(by including legs and enlarging the set of noise types, respectively). We want to use the construction
carried out in this appendix in both cases, so we simply formulate our results on the regularity structure
which is enlarged in both ways. We write 𝕷− for the enlarged set of noise types (not including leg types)
and L for the set of leg types, and we write 𝕷− := 𝕷− � L. We then use the notation T and so on as in
Section 4.1, with 𝔏− replaced by 𝕷−. (Note that this is not really a generalisation, since all assumptions
which Section 4 puts on 𝔏− and T are satisfied for the enlargement 𝕷− and T as well.)

Moreover, in order not to overcomplicate the presentation here, we assume that for any 𝚵 ∈ 𝕷− we
are given a multiset m𝚵 with values in𝔏−, and we write𝔜𝑁∞ (𝕷−, m) for the set of kernels𝔎 ∈ 𝔜𝑁∞ (𝕷−)
such that for any 𝚵 ∈ 𝕷− one has 𝔎𝚵

m = 0 unless m = m𝚵. For 𝔎 ∈ 𝔜𝑁∞ (𝕷−, m), we simply write
𝔎𝚵 := 𝔎𝚵

m𝚵
. We set 𝑚𝚵 := #m𝚵.

Define the set of labels

L★ := 𝔏+ � L̃ := 𝔏+ �
{
(𝚵, 𝑘) : I𝑚𝚵=1 ≤ 𝑘 ≤ 𝑚𝚵,𝚵 ∈ 𝕷−

}
,

and write H for the linear space of Feynman diagrams as before. We also define the partition L of L
given by

L := {{𝔩} : 𝔩 ∈ 𝔏+} � {l𝚵 : 𝚵 ∈ 𝕷−} , (A.17)

where l𝚵 := {(𝚵, 𝑘) : 0 ≤ 𝑘 ≤ 𝑚𝚵} if 𝑚𝚵 > 1 and l𝚵 := {(𝚵, 1)} if 𝑚𝚵 = 1.
Trees 𝜏 ∈ T contain a finite number of legs 𝑒 ∈ 𝐿L (𝜏) and a finite number of noise-type edges

𝑓 ∈ 𝐿(𝜏). The formulation of this appendix will be cleaner by focusing on trees 𝜏 ∈ T with the property
that any leg type l and any noise type 𝚵 appear at most once in 𝜏, so that [𝐿L (𝜏), 𝔱] and [𝐿(𝜏), 𝔱] are
proper sets. We write T★ ⊆ T for the subspace generated by such trees. We will also work with the Hopf
subalgebra T★− ⊆ T− generated by such trees. We also fix an arbitrary total order ≤ on L, and we note
that ≤ induces an order ≤ on 𝐿L (𝜏) for any tree 𝜏 ∈ T★.

Given𝔎 ∈ 𝔜𝑁∞ (see Definition 2.11), we always write 𝜂 := 𝐽𝔎 for ease of notation. We first construct
continuous linear operators

W : T★ → H and 𝐿 : 𝔜𝑁∞ (𝕷−, m) → K̃−
∞

(
L̃
)

with the property that for any tree 𝜏 ∈ T★, W𝜏 takes values in the span of Feynman diagrams Γ with
exactly 𝑘 (𝜏) := #𝐿L (𝜏) legs, and such that(

Π𝐿𝔎,𝑅W𝜏
)
(𝜓𝜏) = Ῡ

𝜂,𝜓
𝑅 𝜏 (A.18)

for any 𝜏 ∈ T★, 𝔎 ∈ 𝔜𝑁∞ (𝕷−, m) and 𝜓 ∈ Ψ. Here we write 𝜓𝜏 = 𝜓 (𝑘 (𝜏) ,𝔱𝜏 ) ∈ C∞
𝑐

(
D̄𝑘 (𝜏)

)
, where

𝔱𝜏 : 𝑘 (𝜏) → 𝔱(𝐿L (𝜏)) denotes the unique order-preserving map.
Fix a tree 𝜏 ∈ T★ and denote the legs of 𝜏 by 𝑒1, . . . , 𝑒𝑘 (𝜏) in increasing order. Set Λ := {(𝑢, 𝑘) : 𝑢 ∈

𝐿(𝜏), 1 ≤ 𝑘 ≤ 𝑚(𝔱(𝑢))}.
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Definition A.15. We denote byP the set of pairings 𝑃 ofΛwith the property that for any {(𝑢, 𝑘), (𝑣, 𝑙)} ∈

𝑃, one has 𝑢 ≠ 𝑣 and m𝔱 (𝑢) [𝑘] = m𝔱 (𝑣) [𝑙]. For 𝑢 ∈ 𝐿(𝜏) and 𝑃 ∈ P, we write 𝑃[𝑢] ⊆ 𝑃 for all
elements of the form {(𝑢, 𝑘), (𝑣, 𝑙)} ∈ 𝑃 for some 𝑣 ∈ 𝐿(𝜏) and 𝑘, 𝑙 ∈ N.

For any pairing 𝑃 ∈ P, we now construct a connected, direct graph Γ𝑃𝜏 =
(
𝑉𝑃𝜏 , 𝐸𝑃𝜏

)
. Let 𝐿>1 (𝜏)

denote the set of noise-type edges 𝑢 ∈ 𝐿(𝜏) such that 𝑚(𝔱(𝑢)) > 1 and 𝐿=1 (𝜏) := 𝐿(𝜏) \𝐿>1. We first set

𝑉𝑃𝜏 := 𝑁 (𝜏) � 𝑃 � {𝑢∗ : 𝑢 ∈ 𝐿>1 (𝜏)} � {[1], . . . , [𝑘 (𝜏)]}.

We define for any 𝑢 ∈ 𝐿>1 (𝜏) the set 𝐸𝑢 := {(𝑞, 𝑢∗) : 𝑞 ∈ 𝑃[𝑢]} �
{(
𝑢∗, 𝑢↓

)}
, and for 𝑢 ∈ 𝐿=1 (𝜏)

we simply set 𝐸𝑢 :=
{(
𝑞, 𝑢↓

)
: 𝑞 ∈ 𝑃[𝑢]

}
. To avoid case distinctions, we also set 𝑢∗ := 𝑢↓ for any

𝑢 ∈ 𝐿=1 (𝜏). (As always, 𝑢↓ ∈ 𝑁 (𝜏) denotes the unique node to which the noise-type edge u is
connected.) We then set

𝐸𝑃𝜏 := 𝐾 (𝜏) �
⊔

𝑢∈𝐿 (𝜏)

𝐸𝑢 �
{(

[𝑖], 𝑒↓
𝑖

)
: 1 ≤ 𝑖 ≤ 𝑘 (𝜏)

}
.

We also fix an edge decoration 𝔢 : 𝐸𝑃𝜏 → N𝑑 and a node decoration 𝔫 : 𝑉𝑃𝜏 → N𝑑 by extending the
corresponding decorations coming from 𝜏 and setting them to zero everywhere else. We choose as the
‘special’ vertex the root 𝑢★

(
Γ𝑃𝜏

)
:= 𝜌𝜏 ∈ 𝑁 (𝜏).

Example A.16. To illustrate this construction, we take the following tree as an example, where nodes
𝑢 ∈ 𝐿(𝜏) are coloured and legs are drawn as short thick grey edges:

We then have 𝑘 (𝜏) = 4, and we assume that 𝑚( ) = 𝑚( ) = 1 and 𝑚( ) = 𝑚( ) = 3. In particular, we
have 𝐿>1 (𝜏) = { ∗, ∗}, and for the current example we will write := ∗ and := ∗. Finally, we fix
a pairing

𝑃 :=
{
{( , 1), ( , 1)}, {( , 1), ( , 1)}, {( , 2), ( , 2)}, {( , 3), ( , 3)}

}
.

The resulting diagram Γ𝑃𝜏 can then visualised as

It remains to specify a type map 𝔱 :
(
𝐸𝑃𝜏

)
★ → L to obtain an element of H. On 𝐾 (𝜏) we define

𝔱 to be equal to the type map of 𝜏. On edges (𝑞, 𝑢∗) ∈ 𝐸𝑢 for 𝑢 ∈ 𝐿(𝜏) and 𝑞 ∈ 𝑃[𝑢], we set
𝔱(𝑞, 𝑢∗) := (𝔱(𝑢), 𝑘), where 𝑘 ≤ 𝑚(𝔱(𝑢)) is the unique integer such that (𝑢, 𝑘) ∈ 𝑞. Finally, we define
𝔱
(
𝑢∗, 𝑢↓

)
:= (𝔱(𝑢), 0) for any 𝑢 ∈ 𝐿>1 (𝜏).

We then set

W𝜏 :=
∑
𝑃∈P

Γ𝑃𝜏 , (A.19)

and we extend W to a linear operator W : T★ → H.
Next we define a kernel assignment 𝐿𝔎 ∈ K̃−

∞

(
L̃
)

for any 𝔎 ∈ 𝔜𝑁∞ (𝕷−, m). For this we set, for any
𝚵 ∈ 𝕷− with 𝑚(𝚵) > 1,

(𝐿𝔎)l𝚵 := 𝔎𝚵,
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where we identify {0, . . . , 𝑚(𝚵)} with {(𝚵, 0), . . . , (𝚵, 𝑚𝚵)}, so that the space (A.8) with l𝚵 is naturally
isomorphic to equation (2.13) with 𝑛 = 𝑚𝚵. For 𝚵 ∈ 𝕷− with 𝑚(𝚵) = 1, we set (𝐿𝔎)l𝚵 := 𝔎𝚵

0 ★𝔎𝚵
1 . We

extend any element 𝐾 ∈ K̃−
∞

(
L̃
)

to a kernel assignment 𝐾 ∈ K̃−
∞(L) by defining 𝐾𝔱 to agree with the

truncated integration kernel (see Section 2.2.2). Finally, we fix a degree assignment deg∞ : L → [−∞, 0]
such that deg∞ 𝔱 := −∞ for any 𝔱 ∈ L̃. It then follows directly from the definition that one has the
following identity:

Lemma A.17. One has (
Π𝐿𝔎,𝑅W𝜏) (𝜓𝜏

)
= Ῡ𝜂,𝜓𝑅 𝜏

for any 𝜏 ∈ T★, any 𝔎 ∈ 𝔜𝑁∞ (𝕷−, m), any 𝑅 ∈ K+
∞ and 𝜓 ∈ Ψ. Here 𝜓𝜏 is as in equation (A.18). Here

we write, as before, 𝜂 := 𝐽𝔎.

Proof. This follows almost directly from the definition. See the proof of Lemma B.5 for a very similar
statement. �

Our next goal is to show that a similar identity holds for the BPHZ-renormalised evaluations.
(Actually, this will only be true modulo an order 1 change in renormalisation; see later). As in Section
2.4, we fix a homogeneity 𝖘 : 𝕷− → R− with 𝖘(𝚵) ≥ −

|𝔰 |
2 − 𝜅 (for some 𝜅 > 0 small enough), and we

define a degree assignment Deg : L → R− by setting

Deg 𝔱 := −|𝔰 | + |𝔱 |𝔰 , Deg l𝚵 := 𝖘(𝚵) − 𝑚𝚵
|𝔰 |
2

− |𝔰 |I𝑚𝚵>1, (A.20)

for any 𝔱 ∈ 𝔏+ and 𝚵 ∈ 𝕷−. We also set deg(𝚵, 0) := −|𝔰 | − 1 + 𝜅 and deg(𝚵, 𝑘) := −|𝔰 | for any 𝑘 ≥ 1.
The degree assignments Deg and deg give us a natural norm on K̃l,−

∞ as in formula (A.7), and with
respect to this norm and formula (2.18), the map 𝐿 : 𝔐∞(𝕷−, m) → K̃l,−

∞

(
L̃
)

constructed becomes
a bounded linear map. We extend 𝖘 to 𝕷− by setting 𝖘(l) := 0 for any leg type l ∈ L. Then a quick
computation shows the following:

Lemma A.18. For any tree 𝜏 ∈ T★ and any pairing 𝑃 ∈ P, one has Deg Γ𝑃𝜏 = |𝜏 |𝖘 , and Γ𝑃𝜏 is an
admissible Feynman diagram.

We still fix a tree 𝜏 ∈ T★ and a pairing 𝑃 ∈ P.

Definition A.19. We call a subtree 𝜎 ⊆ 𝜏 closed for 𝑃 if for any {(𝑢, 𝑘), (𝑣, 𝑙)} ∈ 𝑃 one has either
{𝑢, 𝑣} ⊆ 𝐿(𝜎) or {𝑢, 𝑣} ∩ 𝐿(𝜎) = ��.

Let 𝜎 ⊆ 𝜏 be a closed subtree. Then we denote by Γ𝑃𝜏 (𝜎) ⊆ Γ the full connected subgraph of Γ𝑃𝜏
which is induced by the vertex set

𝑉
(
Γ𝑃𝜏 (𝜎)

)
:= 𝑁 (𝜎) � {𝑢∗ : 𝑢 ∈ 𝐿>1 (𝜎)} � {𝑞 : 𝑞 ∈ 𝑃[𝑢], 𝑢 ∈ 𝐿(𝜎)}.

We show next that divergent subgraphs Γ̃ of Γ𝑃𝜏 correspond (almost) to closed divergent subtrees 𝜎 of 𝜏.

Lemma A.20. Set 𝑃 ∈ P and let 𝜎 ⊆ 𝜏 be a closed subtree of 𝜏. Then one has
��𝜎0
𝔢

��
�̃� = Deg

(
Γ𝑃𝜏 (𝜎)

)0
𝔢 .

Conversely, if Γ̃ ⊆ Γ𝑃𝜏 is a connected full subgraph such that Deg Γ̃0
𝔢 ≤ 0, then either Γ̃ = Γ𝑃𝜏 (𝜎) for a

closed subtree 𝜎 ⊆ 𝜏 or there does not exist an edge 𝑒 ∈ 𝐸
(
Γ̃
)

with 𝔱(𝑒) ∈ 𝔏+.

Proof. The first statement follows from Lemma A.18. For the second statement, let 𝐸trees denote the
set of edges 𝑒 ∈ �̃� := 𝐸

(
Γ̃
)

with 𝔱(𝑒) ∈ 𝔏+, and assume that 𝐸trees ≠ ��. Moreover, let 𝐸𝜓 (resp.,
𝐸noise) denote the set of edges 𝑒 ∈ 𝐸

(
Γ̃
)

with 𝔱(𝑒) = (𝚵, 0) (resp., 𝔱(𝑒) = (𝚵, 𝑘), 𝑘 ≥ 1) for some
𝚵 ∈ 𝕷−. Set also �̃� := 𝑉

(
Γ̃
)
. The set �̃� induces a subforest 𝜎 ⊆ 𝜏 with 𝑁 (𝜎) := �̃� ∩ 𝑁 (𝜏),

𝐾 (𝜎) := {𝑒 ∈ 𝐾 (𝜏) : 𝑒 ⊆ 𝑁 (𝜎)}, and 𝐿(𝜎) :=
{
𝑢 ∈ 𝐿(𝜏) : 𝑢↓ ∈ �̃�

}
. We also set 𝐿L (𝜎) := ��.

Special case. Assume that 𝐸𝜓 contains all edge 𝑒 ∈ 𝐸 with 𝔱(𝑒) = (𝚵, 0) for some𝚵 ∈ 𝕷− and 𝑒∩�̃� ≠ ��.
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Let 𝑁 ≥ 1 denote the number of connected components of 𝜎. Furthermore, let 𝐻 ⊆ 𝐸noise denote the
set of edges 𝑒 ∈ 𝐸noise which are ‘hanging’ in the following sense. Since 𝑒 ∈ 𝐸noise, one has 𝑒 = (𝑞, 𝑢∗)

for some 𝑢 ∈ 𝐿(𝜏) and 𝑞 ∈ 𝑃[𝑢], say 𝑞 = {(𝑢, 𝑘), (𝑣, 𝑙)}. Consequently, (𝑞, 𝑣∗) ∈ 𝐸
(
Γ𝑃𝜏

)
, and we set

𝑒 ∈ 𝐻 if (𝑞, 𝑣∗) ∉ 𝐸noise. Finally, let 𝑄 ⊆ 𝐿(𝜎) denote the set of noise-type edges 𝑢 ∈ 𝐿(𝜎) such that
𝑢↓ ∈ �̃� but there exists 𝑞 ∈ 𝑃[𝑢] such that (𝑞, 𝑢∗) ∉ 𝐸noise. The proof of the first step is finished if we
can show that 𝑁 = 1 and 𝐻 = 𝑄 = ��. We have the bound

Deg Γ̃0
𝔢 ≥

∑
𝑒∈𝐸trees

deg(𝑒) +
∑

𝑢∈𝐿 (𝜎)

𝖘(𝔱(𝑢)) +
|𝔰 |
2

#𝐻 + |𝖘 | (#𝑁 (𝜎) − 1)

= |𝜎 |𝖘 +
|𝔰 |
2

#𝐻 + |𝔰 | (𝑁 − 1),

where |𝜎 |𝖘 denotes the sum of the homogeneities of each connected component �̂� of 𝜎. Since |�̂� |𝖘 ≥

−
|𝔰 |
2 − 𝜅 for any tree �̂� ∈ T, one has |𝜎 |𝖘 ≥ −

|𝔰 |
2 𝑁 − 𝜅𝑁 , so that, provided 𝜅 and 𝜅◦ are small enough, one

has has 𝑁 = 1, since the left-hand side is nonpositive by assumption. It follows that 𝜎 is a tree, and since
𝜎 contains at least one kernel-type edge by assumption, one has |𝜎 |𝖘 > −

|𝔰 |
2 . Hence one has #𝐻 = 0.

Now denote by 𝑎 ≥ 0 the number of edges of the form (𝑞, 𝑢∗) for some 𝑢 ∈ 𝑄 and 𝑞 ∈ 𝑃[𝑢] such
that (𝑞, 𝑢∗) ∉ 𝐸noise. Then we have the bound

Deg Γ̃0
𝔢 ≥

∑
𝑒∈𝐸trees

deg(𝑒) +
∑

𝑢∈𝐿 (𝜎)\𝑄

𝖘(𝔱(𝑢)) +
|𝔰 |
2

𝑎 + |𝖘 | (#𝑁 (𝜎) − 1)

≥ |𝜎 |𝖘 +
|𝔰 |
2

𝑎,

so that with the same argument as before one has 𝑎 = 0 and hence 𝑄 = ��.
General case. Define Γ̂ ⊆ Γ𝑃𝜏 as the subgraph induced by the edge set

𝐸
(
Γ̂
)

:= 𝐸
(
Γ̃
)
∪

{
𝑒 ∈ 𝐸

(
Γ𝑃𝜏

)
: 𝔱(𝑒) = (𝚵, 0) for some 𝚵 ∈ 𝕷− and 𝑒 ∩ �̃� ≠ ��}

.

Then Γ̂ is a connected subgraph of Γ and one has Deg Γ̂ ≤ Deg Γ̃. Hence Γ̂ satisfies the conditions of the
special case, so that in particular Γ̂ = Γ𝑃𝜏 (𝜎) for some closed subtree 𝜎 ⊆ 𝜏. Now set 𝑒 ∈ 𝐸

(
Γ̂
)
\𝐸

(
Γ̃
)
.

Then necessarily 𝔱(𝑒) = (𝚵, 0) for some 𝚵 ∈ 𝕷−, and from the definition we infer deg l𝚵 < −|𝔰 |. The
first part of the proof shows that 𝑒 ⊆ 𝑉

(
Γ̃
)
, hence Deg Γ̃ > Deg Γ̂ + |𝔰 | > 0, in contradiction to the

assumption. Hence we must have Γ̂ = Γ̃, and this concludes the proof. �

We denote by 𝑔(𝐿𝔎) BPHZ characters on H− and by 𝑔𝐽𝔎 ∈ G− the BPHZ character on T−. We
introduce furthermore a character 𝑔trees (𝐿𝔎) on H− which corresponds to 𝑔𝜂 . For this we introduce
the canonical projection p− : Ĥ− → H−. We write i : H− → Ĥ− for the embedding which is a right
inverse of p− such that the range of i is given by the subalgebra of Ĥ− generated by Feynman diagrams
of nonpositive homogeneity. Furthermore, we write Htrees

− for the unital subalgebra of H− generated by
connected vacuum Feynman diagrams Γ such that there exists an edge 𝑒 ∈ 𝐸 (Γ) with 𝔱(𝑒) ∈ 𝔏+, and
we denote by Jnoise and Hnoise

− (resp., Ĵnoise and Ĥnoise
− ) the ideal and unital subalgebras of H− (resp.,

Ĥ−) generated by Feynman vacuum diagrams Γ with the property 𝔱(𝑒) ∈ L̃ for any edge 𝑒 ∈ 𝐸 (Γ).
Finally, we define ptrees : H− → Htrees

− as the multiplicative projection which is the identity on Htrees
−

and annihilates Jnoise.
With this notation we define 𝑔trees(𝐿𝔎) as the unique character onH− which satisfies the two relations(

𝑔trees(𝐿𝔎) ⊗ Π𝐿𝔎
)
Δ−i = 0 on Htrees, (A.21)

𝑔trees(𝐿𝔎) = 0 on Jnoise. (A.22)
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Let finally ℎ(𝐿𝔎) be the character defined by

ℎ(𝐿𝔎) ◦ 𝑔trees(𝐿𝔎) = 𝑔(𝐿𝔎).

We would like to show that h is bounded in the character group uniformly over 𝔎 ∈ 𝔜𝑁∞ (𝕷−, m) such
that ‖𝔎‖𝖘 ≤ 𝐶. This is not quite true, but it is true if h is restricted to the Hopf subalgebra Hs

− ⊆ H−

generated by all connected vacuum diagrams of the form Γ𝑃𝜏 for some 𝜏 ∈ T★ and some 𝑃 ∈ P.

Lemma A.21. Let Γ ∈ Hnoise
− ∩ Hs

− be a connected vacuum diagram. Then either Γ contains exactly
one edge e, and one has 𝔱(𝑒) = (𝚵, 1) for any 𝚵 ∈ 𝕷− with 𝑚𝚵 = 1, or Γ ‘represents a covariance’ in
the sense that Γ is of the form

Γ = . (A.23)

Here we have coloured edges e with weak types 𝔱(𝑒) belonging to the same element of the partition Ll
in the same colour.

Proof. Set 𝜏 ∈ T★ and fix a pairing 𝑃 ∈ P. Assume that we are given a family 𝐿 = (𝐿𝑖)𝑖≤𝑛 of
disjoint subsets 𝐿𝑖 ⊆ 𝐿(𝜏), 𝑖 = 1, . . . , 𝑛, such that each 𝐿𝑖 is ‘closed’ under P in the sense that
whenever {(𝑢, 𝑘), (𝑣, 𝑙)} ∈ 𝑃 for any 𝑢 ∈ 𝐿𝑖 and 𝑘, 𝑙 ∈ N, then one has 𝑣 ∈ 𝐿𝑖 as well. Each
set 𝐿𝑖 defines a connected subgraph Γ𝑖 ⊆ Γ𝑃𝜏 , 𝑖 = 1, . . . , 𝑛, induced by the vertex set 𝑉 (Γ𝑖) :={
𝑢∗, 𝑢↓, 𝑞 : 𝑢 ∈ 𝐿𝑖 , 𝑞 ∈ 𝑃[𝑢]

}
. Then we define the ‘contraction’ Γ𝑃𝜏 | 𝐿 ∈ Htrees

− by contracting each
subdiagram 𝐿𝑖 to a single vertex.

We claim that the unital algebra H̃s
− ⊆ H− generated by connected vacuum diagrams of the form

Γ𝑃𝜏 | 𝐿, where L is as a (possible empty) family as before and diagram (A.23) forms a Hopf algebra.
This immediately concludes the proof.

Fix 𝜏 ∈ T★ and 𝑃 ∈ P and let F be a forest of Γ𝑃𝜏 – that is, F is a collection of node-disjoint
subgraphs Γ̃ ⊆ Γ𝑃𝜏 such that Deg Γ̃0

𝔢 ≤ 0. We first show that for any Γ̃ ∈ F and any polynomial
decoration 𝔫 : 𝑉 (Γ̃) → N𝑑 , one has Γ̃𝔫𝔢 ∈ H̃s

−. First it follows with the same arguments as in the
proof of Lemma A.20 that Γ̃ is admissible. If Γ̃ ∈ Htrees

− , then Γ̃ = Γ𝑃𝜏 (𝜎) for some subtree 𝜎 ⊆ 𝜏 by
Lemma A.20, and the latter is an element of H̃s

− by definition. Otherwise there exists L̃ ⊆ L such that
𝔱
(
𝐸

(
Γ̃
) )
=

⊔
l∈L̃ Ll, and it follows that

Deg Γ̃ ≥ −𝑛

(
|𝔰 |
2

+ 𝜅

)
+ (𝑛 − 1) |𝔰 |,

where 𝑛 := #L̃. This can only be negative if 𝑛 ≤ 2. If 𝑛 = 1, say L̃ = {l𝚵}, then Deg Γ̃ = 𝖘(𝚵) +𝑚𝚵
|𝔰 |
2 , so

that 𝑚𝚵 = 1 and hence Γ contains a single leg. Otherwise 𝑛 = 2, and hence Γ is of the form of diagram
(A.23).

Now let Γ̂ be the Feynman diagram generated by contracting each graph Γ̃ ∈ F to a single vertex. Since
the operation of contracting node-disjoint subgraphs is commutative, we can first contract those elements
Γ̃ ofF for which Γ̃ ∈ Htrees

− . By Lemma A.20, for any such Γ̃ there exists a closed subtree 𝜎
(
Γ̃
)
⊆ 𝜏 such

that Γ̃ = Γ𝑃𝜏
(
𝜎

(
Γ̃
) )

. The Feynman diagram resulting from this contraction is then again of the form
Γ�̂��̂� , where 𝜏 ∈ T★ is the tree obtained by contracting each 𝜎

(
Γ̃
)

to a single vertex and �̂� is the pairing
induced by P. To proceed, we can hence assume that each connected component Γ̃ of F is an element
of Hnoise

− . Then each Γ̃ induces a subset 𝐿
(
Γ̃
)
⊆ 𝐿(𝜏) by setting 𝐿

(
Γ̃
)

:=
{
𝑢 ∈ 𝐿(𝜏) : 𝑢↓ ∈ 𝑉

(
Γ̃
)}

and
thus Γ̂ = Γ𝑃𝜏 | 𝐿, and this concludes the proof. �

The next lemma shows that when restricted to Hs
−, the character h is uniformly bounded:

Lemma A.22. For any 𝐶 > 0 the character ℎ(𝐿𝔎) restricted to the Hopf subalgebra Hs
− is bounded

uniformly over all noises 𝔎 ∈ 𝔜𝑁∞ (𝕷−, m) with ‖𝔎‖𝖘 ≤ 𝐶.
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Proof. By the definition of the BPHZ character 𝑔(𝐿𝔎), one has

0 =
(
𝑔(𝐿𝔎) ⊗ Π𝐿𝔎

)
Δ−i =

(
ℎ ⊗ 𝑔trees(𝐿𝔎) ⊗ Π𝐿𝔎

)
(Δ− ⊗ Id)Δ−i

=
(
ℎ ⊗

(
𝑔trees(𝐿𝔎) ⊗ Π𝐿𝔎

)
Δ−

)
Δ−i.

Since
(
𝑔trees(𝐿𝔎) ⊗ Π𝐿𝔎

)
Δ− = Π𝐿𝔎 on Ĥnoise

− , it follows that ℎ = 𝑔 onHnoise
− . The fact that |𝑔(𝐿𝔎)Γ| �

1 for any Γ ∈ Hnoise
− ∩ Hs

− is straightforward from the definitions.
We now show inductively in the number of edges of connected Feynman diagrams Γ, and in the

quantity
∑
𝑢∈𝑁 (Γ) |𝔫(𝑢) |𝔰 , that one has ℎ(𝐿𝔎)Γ = 0 for any Γ ∈ Htrees

− . Indeed, one has

ℎ(𝐿𝔎)Γ = −
(
ℎ(𝐿𝔎) ⊗

(
𝑔trees (𝐿𝔎) ⊗ Π𝐿𝔎

)
Δ−

)
(Δ− − Id ⊗ 1)iΓ (A.24)

= −
(
ℎ(𝐿𝔎)pnoise ⊗

(
𝑔trees(𝐿𝔎) ⊗ Π𝐿𝔎

)
Δ−

)
(Δ− − Id ⊗ 1)iΓ, (A.25)

where we have used the induction hypothesis to get the projection pnoise onto Hnoise
− in the last line.

One has

(pnoise ⊗ Id) (Δ− − Id ⊗ 1)iΓ ⊆ Hnoise
− ⊗ Ĥtrees

− . (A.26)

(Note that the second component contains an edge e of type 𝔱(𝑒) ∈ 𝔏+; otherwise such an edge would be
in the left component, and thus the term would be killed by the projection.) Since

(
𝑔trees(𝐿𝔎) ⊗ Π𝐿𝔎

)
Δ−i

vanishes on Htrees
− by definition, it remains to show that the right component of formula (A.26) is of

nonpositive degree. But this follows for 𝜅 > 0 small enough, since any connected diagram Γ ∈ Htrees
−

satisfies Deg Γ ≥ −𝑛𝜅, where 𝑛 > 0 denotes the number of nodes 𝑤 ∈ 𝑉 (Γ) of the form 𝑤 = 𝑢∗ for
some 𝑢 ∈ 𝐿(𝜏). (We omit the details of this argument, which is very similar to the one carried out in
the proof of Lemma A.20.) �

Finally, we have the following relation between the renormalised valuations on H and T★:

Proposition A.23. One has the identity

𝑔trees(𝐿𝔎)Wq = 𝑔𝜂 (A.27)

on T★− . Here q : T★− → T− denotes the projection which kills trees 𝜏 ∈ T★− such that 𝐿L (𝜏) ≠ ��, and we
write as before 𝜂 := 𝐽𝔎. Moreover, one has(

Π𝐿𝔎,𝑅𝑀𝑔trees (𝐿𝔎)W𝜏
)
(𝜓𝜏) = Ῡ

𝜂,𝜓
𝑅 𝑀𝑔𝜂𝜏 (A.28)

for any 𝜏 ∈ T★, any 𝔎 ∈ 𝔜𝑁∞ (𝕷−, m), any 𝑅 ∈ K+
∞ and 𝜓 ∈ Ψ. Here 𝜓𝜏 is as in equation (A.18).

Proof. We show equation (A.27). The character 𝑔𝜂 when viewed as a character of the Hopf algebra T★−
is determined by the relations

(𝑔𝜂 ⊗ Υ𝜂) Δ−𝔦 = 0 on T−,
𝑔𝜂 = 0 on J★

legs,

where J★
legs ⊆ T★− denotes the ideal generated by trees 𝜏 ∈ T★− that contain legs. The second identity

holds for the character 𝑔trees(𝐿𝔎)Wq by the definition of q. To see the first one, note that

(𝑔trees(𝐿𝔎)Wq ⊗ Υ𝜂) Δ−𝔦 =
(
𝑔trees (𝐿𝔎) ⊗ Π𝐿𝔎

)
(Wq ⊗ W)Δ−𝔦
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on T−. From Lemma A.20 and the definition of the respective coproducts, we infer that

(Wq ⊗ W)Δ−𝔦 = (ptrees ⊗ Id)Δ−iW

on T−, which together with equation (A.21) concludes the proof.
The proof of equation (A.28) is very similar. One has

Ῡ𝜂,𝜓𝑅 𝑀𝑔𝜂𝜏 =
(
𝑔trees (𝐿𝔎)Wq ⊗ Π𝐿𝔎W

)
Δ−

on T★, where we use equations (A.18) and (A.27). Using the identity

(Wq ⊗ W)Δ− = (ptrees ⊗ Id)Δ−W

on T★ concludes the proof. �

As an important application of this construction, we prove Theorem 4.19.

Proof of Theorem 4.19. We fix a tree 𝜏 ∈ T and assume without loss of generality that leg types and
noise types are unique in 𝜏, so that 𝜏 ∈ T★.

By Lemma A.17, the continuous extension of 𝑅 ↦→ Ῡ𝜂,𝜓𝑅 to K+
0 is a consequence of the continuous

extension of the evaluation 𝑅 ↦→ ΠW𝜂,𝑅, which in turn is the content of the first part of Theorem A.10.
The continuous extension of the map (𝜂, 𝑅) ↦→ Υ̂

𝜂,𝜓
𝑅 𝜏 to the space 𝔐★

0 × K+
0 is a consequence of

equation (A.28), Lemma A.22 and the second part of Theorem A.10. �

Another consequence is the following corollary, for which we assume as in Section 2.4 that we are
given a set of types 𝕷− such that 𝔏− ⊆ 𝕷− and a homogeneity assignment 𝖘 : 𝕷− → R−:

Corollary A.24. Assume that Assumption 5 holds. Set 𝑁 ∈ N and let 𝔎 =
(
𝔎𝚵

m

)
∈ 𝔜𝑁∞ , and assume the

following:

◦ One has 𝔎𝚵
m ∈ Ys,#m

∞,★ for any 𝚵 ∈ 𝕷− \𝔏− and any mulitset m (see Definition 2.19 for the definition
of this space), and

◦ one has 𝔎Ξm = 0 for any Ξ ∈ 𝔏− and multiset mwith #m > 1.

Fix 𝜏 ∈ T such that �𝜏�𝖘 = 0 and set 𝕷◦
− := (𝕷− \𝔏−)∩ 𝔱(𝐿(𝜏)). Finally, set 𝜂 := 𝐽 (𝔎) ∈ 𝔐∞ and denote

by 𝑔𝜂 ∈ G− the BPHZ character for 𝜂. Then for any 𝚵, �̃� ∈ 𝕷◦
− there exists 𝜃 > 0 such that one has

|𝑔𝜂𝜏 | � suppm,m̃

��𝔎𝚵
m

��
𝛽𝚵m+𝜃

���𝔎�̃�
m

���
𝛽�̃�
m̃

−𝜃
(A.29)

uniformly over all 𝔎 as before such that ‖𝔎‖𝖘 ≤ 𝐶. Here the supremum runs over all multisets m, m̃
with values in 𝔏− and such that #m∨ #m̃ ≤ 𝑁 . (See Definition 2.11 for the definition of 𝛽𝚵m.)

Proof. Fix a tree 𝜏 ∈ T. We can assume that any noise type 𝚵 ∈ 𝔱(𝐿(𝜏)) is unique, so that 𝔱(𝐿(𝜏)) is
a proper set. Note that 𝔎 can be written as a finite sum 𝔎 =

∑
m[𝔎]m, where the sum runs over all

families m = (m𝚵), 𝚵 ∈ 𝕷−, of multisets m𝚵 with values in 𝔏− and such that #m𝚵 ≤ 𝑁 , and where
[𝔎]m ∈ 𝔜𝑁∞ (𝕷−, m) (see Appendix 1.3.1). Since one has 𝑔𝜂𝜏 =

∑
m 𝑔 [𝜂 ]m𝜏, where [𝜂]m := 𝐽 ([𝔎]m),

it suffices to assume that 𝔎 ∈ 𝔜𝑁∞ (𝕷−, m). By equation (A.27), it then suffices to bound 𝑔trees(𝐿𝔎)W𝜏,
and by the definition of W in formula (A.19), it suffices to fix a pairing 𝑃 ∈ P and bound 𝑔trees (𝐿𝔎)Γ𝑃𝜏 .

We want to use the second statement of Corollary A.14, which is formulated in terms of 𝑔(𝐿𝔎)

rather than 𝑔trees(𝐿𝔎). We recall that one has

𝑔trees(𝐿𝔎) = ℎ(𝐿𝔎)−1 ◦ 𝑔(𝐿𝔎),
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and by Lemma A.22 the character ℎ(𝐿𝔎) is uniformly bounded when restricted to Hs
−. It follows from

the proof of Lemma A.22 that ℎ(𝐿𝔎) vanishes on Htrees
− ∩Hs

−. Moreover, ℎ(𝐿𝔎)Γ̃ = 0 for any subgraph
Γ̃ ∈ Hs

− ∩ Hnoise
− which contains a type l𝚵 ∈ L with 𝚵 ∈ 𝕷− \ 𝔏−. To see this, recall from Lemma

A.21 that Γ̃ represents a variance as in diagram (A.23), so that Γ̃ has no proper subdivergences, and
𝑔(Γ̃) = 0 = 𝑔trees (Γ̃), where the first equality follows from 𝔎𝚵

m𝚵
∈ Ys,#m𝚵

∞,★ and the second follows from
equation (A.22). It follows that the only subgraphs Γ̃ of Γ𝑃𝜏 on which ℎ(𝐿𝔎)Γ̃�̃�𝔢 does not vanish have the
property that every edge 𝑒 ∈ 𝐸 (Γ̃) is of type 𝔱(𝑒) = (0,Ξ) for some Ξ ∈ 𝔏−. We denote by E ⊆ 𝐸 (Γ𝑃𝜏 )

the set of edges 𝑒 ∈ 𝐸 (Γ𝑃𝜏 ) with the property that {𝔱(𝑒)} = (Ξ, 0) with Ξ ∈ 𝔏−, and we write 𝐴(𝜏, 𝑃) for
the collection of diagrams of the form Γ𝜏𝑃 |Ẽ which are obtained from Γ𝜏𝑃 by fixing Ẽ ⊆ E and contracting
each edge in Ẽ to one vertex. Then this paragraph implies in particular that one has

(ℎ(𝐿𝔎) ⊗ Id)Δ− Vec 𝐴(𝜏, 𝑃) ⊆ Vec 𝐴(𝜏, 𝑃). (A.30)

It now remains to show that for any fixed Γ ∈ 𝐴(𝜏, 𝑃), one has that 𝑔(𝐿𝔎)Γ is bounded by the right-
hand side of formula (A.29). For this we note first that ‖𝐿𝔎‖K̃−

0
� ‖𝔎‖𝖘 � 1. Fix now 𝚵, �̃� ∈ 𝕷◦

− and
set l◦ := l𝚵 and l1 := l�̃� (see formula (A.17)). Then one has Deg l◦ = 𝛽𝚵m − |𝔰 | and Deg l1 = 𝛽�̃�m − |𝔰 |,
and by definition (A.7) and formula (2.15), one has������(𝐿𝔎)l◦

������
Deg l◦+𝜃 =

��𝔎𝚵
m𝚵

��
𝛽𝚵m𝚵

+𝜃
and

������(𝐿𝔎)l1
������

Deg l1−𝜃 =
���𝔎�̃�

m�̃�

���
𝛽�̃�m�̃�

−𝜃
.

It remains to show that 𝐿𝔎 is log-avoiding for Γ and l𝚵 ∈ L for any 𝚵 ∈ 𝕷◦
−. First note that

Deg Γ = Deg Γ𝑃𝜏 = �𝜏�𝖘 = 0. (In the first equality we use the fact that Deg 𝔱(𝑒) = −|𝔰 | for any 𝑒 ∈ E;
the second equality holds by construction, and the third by assumption.) Fix a type 𝚵 ∈ 𝕷◦

− and let
Γ̃ ⊆ Γ be a subgraph with 𝔱

(
𝐸

(
Γ̃
) )

∩ Ll𝚵 ≠ �� and let �̃� ∈ N
(
Γ̃
)

be a polynomial decoration such that
Deg Γ̃�̃�𝔢 = 0. We have to show that 𝑔(𝐿𝔎)Γ̃�̃�𝔢 = 0. If Γ̃ ∈ Hs

− ∩ Hnoise
− , then 𝑔

(
Γ̃�̃�𝔢

)
= 0 with the same

argument as before. Otherwise, note that Γ̃ can be written as Γ̂ |
(
Ẽ ∩ 𝐸

(
Γ̂
))

for some subdiagram Γ̂

of Γ𝑃𝜏 and Ẽ as before, where 𝐸
(
Γ̂
)

:= 𝐸
(
Γ̃
)
�

{
𝑒 ∈ Ẽ : 𝑒 ⊆ 𝑉

(
Γ̃
)}

. By Lemma A.20 there exists a
closed subtree 𝜎 ⊆ 𝜏 such that Γ̂ = Γ𝑃𝜏 (𝜎), and it follows that Γ̃�̃�𝔢 ∈ 𝐴

(
𝜎�̃�𝔢 , 𝑃

)
. We can assume that 𝜎

is connected to its complement in 𝜏 with at least two nodes (otherwise one has 𝑔(𝐿𝔎)Γ = 0 and there
is nothing to show). By formula (A.30), it suffices to show that 𝑔trees(𝐿𝔎) vanishes on 𝐴

(
𝜎�̃�𝔢 , 𝑃

)
. By

equation (A.27), one has 𝑔trees(𝐿𝔎)Γ̂
�̃�
𝔢 = 𝑔𝜂𝜎�̃�𝔢 = 0, where the last equality follows from Assumption 5,

which shows the required identity for Ẽ = ��. In general, we obtain the identity via a limit argument. Set
Ê := Ẽ ∩ 𝐸

(
Γ̂
)

and let 𝔎𝜀 be defined by setting, for any Ξ ∈ 𝔏− such that (Ξ, 0) ∈ 𝔱
(
Ẽ
)
,

(𝔎𝜀)ΞmΞ
:= 𝜌𝜀 ,

where 𝜌𝜀 → 𝛿0 as 𝜀 → 0 (note that #mΞ = 1 by assumption). For any 𝚵 ∈ 𝕷− which is not of this type,
we set (𝔎𝜀)𝚵m𝚵

:= 𝔎𝚵
m𝚵

. Then one has

𝑔trees (𝐿𝔎𝜀) Γ̂
�̃�
𝔢 = 𝑔𝜂

𝜀
𝜎�̃�𝔢 = 0

for any 𝜀 > 0, where 𝜂𝜀 := 𝐽 (𝔎𝜀), and on the other hand one has

𝑔trees (𝐿𝔎𝜀) Γ̂
�̃�
𝔢 → 𝑔trees (𝐿𝔎)Γ̂

�̃�
𝔢 | Ê as 𝜀 → 0,

which concludes the proof. �
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B. Proof of Proposition 4.49

We will work with Proposition 4.49, although this proposition is not formulated in the most natural way
and is not well adapted to the proof we will give. We will now state a more general (but essentially
equivalent) formulation. For this we start with the following definition:

Definition B.1. Given a system𝔓 ∈ P, a compact set 𝐾 ⊆ D̄ and 𝛿 > 0, we define the set𝔑(𝔓, 𝐾, 𝛿) ⊆

𝔑 as the set of 𝜙 ∈ 𝔑(𝔓, 𝛿) such that additionally one has supp 𝜙l ⊆ 𝐾 for any l ∈ L. On the space
𝔑(𝔓, 𝐾, 𝛿), we introduce the norm ‖·‖𝔓, given as the smallest constant such that��𝐷𝑘𝜙l(𝑥)

�� ≤ ‖𝜙‖𝔓 |𝑥 |
deg𝔓l−|𝑘 |𝔰
𝔰 (B.1)

for any l ∈ L, 𝑘 ∈ N𝑑 with |𝑘 |𝔰 < 𝑟 , and 𝑥 ∈ D̄.

With this notation, we will show the following proposition:

Proposition B.2. Set 𝜏 ∈ Tad
− and 𝔓 ∈ P(𝜏), let 𝐾 ⊆ D̄ be a compact set, let 𝛿 > 0 and let deg𝔓 be the

degree assignment defined in formula (4.40). Then one has for any 𝐶 > 0 the bound���(ℎ𝜙𝔓,𝑅 ⊗ Ῡ𝜙 �̃�
)
Δ−𝖎−𝜏

��� � 1 (B.2)

uniformly over 𝜙 ∈ 𝔑(𝔓, 𝐾, 𝛿) and 𝑅, �̃� ∈ K+
0 with ‖𝜙‖𝔓 ∨ ‖𝑅‖K+ ∨

���̃���K+ < 𝐶.

The proof of this proposition is the content of the next three sections (see in particular Appendix
B.3). We end this section by showing that Proposition 4.49 follows from Proposition B.2.

Proof of Proposition 4.49. We apply Proposition B.2 for |||·|||
(𝛽)
𝔰 := |||·|||𝔰 − 𝛽, where 𝛽 > 0 is small

enough that one still has |||Ξ|||
(𝛽)
𝔰 > |Ξ|𝔰 for anyΞ ∈ 𝔏−. We denote by deg𝔓,𝛽 : L→ R−∪{0} the degree

assignment defined as in formulas (4.38) and (4.40), but with |||·|||𝔰 replaced by |||·|||
(𝛽)
𝔰 , and we write

‖𝜙‖𝔓,𝛽 for the norm defined as in formula (B.1) with deg𝔓 replaced by deg𝔓,𝛽 . We choose a compact
set 𝐾 ⊆ D̄ that supports the functions 𝜙𝜀l for any l ∈ L and 𝜀 > 0, so that one has 𝜙𝜀 ∈ 𝔑(𝔓, 𝐾, 𝛿) for
any 𝜀 ∈ (0, 1].

Let now l̃ ∈ L be such that l̃ ∈ 𝔱(𝐿L (𝜏)) and l̃ ∈ I ∈ 𝔓, and define for 0 < 𝜀 ≤ 1 the tuple
𝜙𝜀 ∈ 𝔑(𝔓, 𝐾, 𝛿) by setting 𝜙𝜀

l̃
:= 𝜀−

𝛽
2 𝜙𝜀
l̃

and 𝜙𝜀l := 𝜙𝜀l for any l ∈ L\
{
l̃
}
. It follows that

��𝜙𝜀��𝔓,𝛽 � 1.
Since, moreover, deg∞ was chosen in such a way that

���̂� − 𝐾
��
K+ is finite, it follows from formula (B.2)

that one has ���(ℎ𝜙𝜀

𝔓,𝑅 ⊗ Ῡ�̃�
𝜀
)
Δ−𝖎−𝜏

��� � 1, (B.3)

for 𝑅 ∈
{
0, �̂� − 𝐾

}
.

It remains to show that the left-hand side of formula (B.3) is equal to 𝜀−
𝛽
2 times the left-hand side

of formula (4.43). For this, let F be a subforest of 𝜏 and choose decorations 𝔫F and eF as in formula
(A.3). We then distinguish two cases. In the first case, one has l̃ ∈ 𝔱(𝐿L (𝑇/F)), and it follows that
Ῡ�̃�

𝜀
(𝑇/F)

𝔫−𝔫F
𝔢+𝔢F = 𝜀−

𝛽
2 Ῡ𝜙

𝜀
(𝑇/F)

𝔫−𝔫F
𝔢+𝔢F . In the second case, there exists 𝑆 ∈ F̄ such that l̃ ∈ 𝔱(𝐿L (𝑆)),

and in this case it follows that ℎ𝜙
𝜀

𝔓,𝑅𝑆
𝔫F
𝔢F = 𝜀−

𝛽
2 ℎ

𝜙𝜀

𝔓,𝑅𝑆
𝔫F
𝔢F . �

B.1. Feynman diagrams

We are going to show Proposition B.2 by applying the results of [Hai18]. To this end, we recall the
notation of Appendix A.3 about Feynman diagrams, which we are going to apply to the type set
L := M � 𝔏+, where we define M as the set of all (l, l̄) ∈ L × L with l < l̄. Fix a system 𝔓 ∈ P.
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We then define a degree assignment deg𝔓 on L by setting deg𝔓 (l, l̄) := 2deg𝔓(l) for (l, l̄) ∈ M and
deg𝔓𝔱 := |𝔱 |𝔰 − |𝔰 | for any kernel type 𝔱 ∈ 𝔏+.

Given an element 𝜙 ∈ 𝔑 and a large-scale kernel assignment 𝑅 ∈ K+
0 , we define

K𝔱 :=

{
𝐾𝔱 if 𝔱 ∈ 𝔏+,

𝜙l if 𝔱 = (l, l̄) ∈ M,
and R𝔱 :=

{
𝑅𝔱 if 𝔱 ∈ 𝔏+,

0 if 𝔱 ∈ M.
(B.4)

In the notation of Proposition B.2, let K = K(𝜙) be defined as in formula (B.4) from some tuple
𝜙 ∈ 𝔑(𝔓, 𝐾, 𝛿), and let R and R̃ be the large-scale kernel assignments defined as in formula (B.4) from
R and �̃�. Then we have the following result, which is an immediate corollary of [Hai18, Theorem 4.3]:

Theorem B.3. Assume that Γ ∈ Ĥ− is a connected vacuum diagram that has the property described in
Lemma A.8, and let K = K(𝜙) be as before. Then for any 𝐶 > 0, one has the bound���(𝑔full(K) ⊗ ΠK,R̃

)
Δ full

− Γ
��� � 1 (B.5)

uniformly over 𝜙 ∈ 𝔑(𝔓, 𝐾, 𝛿) and R̃ ∈ K+
∞, with ‖𝜙‖𝔓 ∨

��R̃��
K+ ≤ 𝐶.

Proof. Comparing this formulation to [Hai18, Theorem 4.3], we only need to note that one has
‖K(𝜙)‖K− � ‖𝜙‖𝔓 uniformly over all 𝜙 ∈ 𝔑(𝔓, 𝐾, 𝛿), where the norm ‖·‖K− is defined as the smallest
constant such that ��𝐷𝑘K𝔱 (𝑥)

�� ≤ ‖K‖K− |𝑥 |deg𝔍 𝔱−|𝑘 |𝔰

for any 𝔱 ∈ L and 𝑘 ∈ N𝑑+1 with |𝑘 |𝔰 < 𝑟 (compare [Hai18, Equation 2.2]). �

B.2. Embedding the tree algebra into the Feynman-diagram algebra

We now construct for any properly legged tree 𝜏 ∈ T̂ ex,pl
− a Feynman vacuum diagram Γ(𝜏) :=

(𝑉Γ (𝜏), 𝐸Γ (𝜏)) together with the necessary decorations 𝔩 : 𝐸Γ (𝜏) → L and 𝔫 : 𝑉Γ (𝜏) → N𝑑 . To this
end, we first introduce the notation that for 𝑒 ∈ 𝐸Γ (𝜏), we write 𝑒+, 𝑒− ∈ 𝑉Γ (𝜏) for the two vertices such
that e is an edge from 𝑒− to 𝑒+.11 The total order ≤ on L induces a total order ≤ on 𝐿L (𝜏), and we define
EL(𝜏) as the set of all ordered pairs (𝑒, 𝑒) with 𝑒 ≤ 𝑒 (recall that 𝑒 denotes the partner of e). We interpret
any (𝑒, 𝑒) ∈ EL (𝜏) as an edge by setting (𝑒, 𝑒)− := 𝑒↓ and (𝑒, 𝑒)+ := 𝑒↓, and with this notation we set

𝑉Γ (𝜏) := 𝑁 (𝜏) and 𝐸Γ (𝜏) := EL (𝜏) � 𝐾 (𝜏).

The decoration 𝔫 is then taken over from 𝜏, and the decoration 𝔩 : 𝐸Γ (𝜏) → L is defined by setting
𝔩(𝑒) := 𝔱(𝑒) (𝔢(𝑒)) for any 𝑒 ∈ 𝐾 (𝜏) and 𝔩(𝑒, 𝑒) := (𝔱(𝑒), 𝔱(𝑒)) (𝔢(𝑒)+𝔢(�̄�)) for any (𝑒, 𝑒) ∈ EL(𝜏). We
finally specify that the distinguished vertex in 𝑉Γ (𝜏) is given by 𝑣★ := 𝜌(𝜏) ∈ 𝑉Γ (𝜏). This specifies a
Feynman vacuum diagram, and we summarise this in the following lemma:

Lemma B.4. For any properly legged tree 𝜏 ∈ T̂ ex,pl
− , the vacuum diagram Γ(𝜏) = (Γ(𝜏), 𝔫, 𝔩, 𝑣★) is a

connected vacuum diagram and an element of the algebra Ĥ−.

In plain words, we can view Γ(𝜏) as the Feynman diagram obtained from 𝜏 by killing the noise-type
edge 𝑒 ∈ 𝐿(𝜏) and marrying each leg of 𝜏 with its respective partner. We also set

V𝜏 := (−1)𝑚(𝜏)Γ(𝜏), (B.6)

11We do not identify an edge e with the pair (𝑒−, 𝑒+) , since we will have to consider multiple edges between the same pair of
vertices.
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where we define for any properly legged tree 𝜏 ∈ T̂ ex,pl
− the quantity

𝑚(𝜏) :=
∑

(𝑒,�̄�) ∈EL (𝜏)
𝔢(𝑒).

If we extend V multiplicatively to a map on T̂ ex,pl
− , we obtain an algebra monomorphism

V : T̂ ex,pl
− → Ĥ−.

We now have the following relation between the evaluations Π on Ĥ− and Ῡ on T̂ ex,pl
− , respectively:

Lemma B.5. For any 𝜙 ∈ 𝔑 and any large-scale kernel assignment 𝑅 ∈ K+
∞, one has the identity

ΠK,RV = Ῡ𝜙𝑅 (B.7)

on T̂ ex,pl
− , where K and R are constructed from 𝜙 and R as in formula (B.4).

Proof. Let 𝜏 ∈ T̂ ex,pl
− be a tree. We have to compare the definition of Ῡ1,𝜙

𝑅 𝜏 in formula (4.10), with 𝜓
given by equation (4.26), to the definition of ΠK,RV𝜏 in [Hai18, Equations 2.15, 4.3]. We rewrite the
integrand in [Hai18, Equations 2.15, 4.3] as

(−1)𝑚(𝜏)𝛿0
(
𝑥𝜌

) ∏
𝑒∈𝐾 (𝜏)

𝐷𝔢(𝑒) (𝐾 + 𝑅)𝔱 (𝑒) (𝑥𝑒+ − 𝑥𝑒−)∏
𝑒,�̄�∈EL (𝜏)

𝐷𝔢(𝑒)+𝔢(�̄�)𝜙𝔱 (𝑒)
(
𝑥𝑒↓ − 𝑥�̄�↓

) ∏
𝑢∈𝑁 (𝜏)

𝑥𝔫 (𝑢)
𝑢 . (B.8)

Moreover, we have the identity∏
𝑒,�̄�∈EL (𝜏)

𝐷𝔢(𝑒)+𝔢(�̄�)𝜙𝔱 (𝑒)
(
𝑥𝑣↓ − 𝑥𝑢↓

)
= (−1)𝑚(𝜏)

∫
𝐿L (𝜏)

𝑑𝑥
∏

𝑒∈𝐿L (𝜏)

𝐷𝔢(𝑒)𝛿0
(
𝑥𝑢↓ − 𝑥𝑢

)
𝜙𝐿L (𝜏)

(
𝑥𝐿L (𝜏)

)
, (B.9)

where 𝜙𝐿L (𝜏) is as in equation (4.26). Comparing this with equation (4.26), the lemma follows at
once. �

In a the next step, we would like to understand the relation between the coproducts Δ− and Δ− on
T̂ ex,pl
− and Ĥ−, respectively. This in general quite messy, as for general trees 𝜏 ∈ T̂ ex,pl

− there is no
obvious relation between the homogeneity |𝜏 |𝔰 and the degree degIΓ (𝜏) for subtrees 𝜏 of 𝜏. However,
the situation is much nicer for trees of the form 𝖎−𝜏 for some 𝜏 ∈ Tad

− with the property that𝔓 ∈ P(𝜏).

Lemma B.6. Let 𝜏 = 𝑇𝔫𝔢 ∈ Tad
− , set 𝔓 ∈ P(𝜏) and set (Γ, 𝔫, 𝔩) := Γ(𝜏). Then the set of full, connected

subgraphs Γ̃ of Γ with deg𝔓Γ̃0
𝔢 < 0 coincides with the set of subgraphs Γ̃ of Γ that satisfy one of the

following two criteria:

1. There exists a subtree 𝜏 = 𝑇0
𝔢 of 𝜏 with |𝜏 |𝔰 < 0 such that Γ̃ is the full subgraph of Γ induced by 𝑁 (𝜏).

2. The graph Γ̃ contains a single edge e with the property that 𝔩(𝑒) = l(𝑘) for some l ∈ M and 𝑘 ∈ N𝑑 .

In the first case one has
������𝑇0
𝔢

������
𝔰 = deg𝔓VΓ̃0

𝔢 and Γ̃ = Γ
(
𝜋𝜏

)
, where 𝜋 is, as before, the projection that

removes legs and 𝜋𝜏 is as in formula (4.22). Finally, there exists M̄ ⊆ M such that L (𝜏) =
⊔ M̄,

where M is as in equation (4.42) for𝔓.

Proof. Let Γ̃ be a connected, full subgraph of Γ(𝜏) such that deg𝔓Γ̃0
𝔢 < 0, and let 𝜏 be the subgraph

of 𝜏 induced by the edge set 𝐸 (𝜏) := 𝐾 (𝜏) ∩ 𝐸
(
Γ̃
)
. We first argue that either 𝜏 is a subtree of 𝜏 or

criterion (2) applies. For this we denote by 𝜏1, . . . , 𝜏𝑚 for some 𝑚 ≥ 1 the connected components
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of 𝜏, so that 𝜏𝑖 is a subtree of 𝜏 for any 𝑖 ≤ 𝑚. We obtain another tree 𝜏𝑖 from 𝜏𝑖 by adding all
noise-type edges 𝑒 ∈ 𝐿(𝜏) incident to 𝜏𝑖 , so that 𝜏𝑖 is the subtree of 𝜏 induced by the edge set
𝐸 (𝜏𝑖) := 𝐸 (𝜏𝑖) �

{
𝑒 ∈ 𝐿(𝜏) : 𝑒↓ ∈ 𝑁 (𝜏𝑖)

}
. It now follows from a counting argument identical to

equation (4.39) that deg𝔓Γ̃0
𝔢 is given by

𝑚∑
𝑖=1

∑
𝑒∈𝐾 ( �̂�𝑖)

( |𝔱(𝑒) |𝔰 − |𝔢(𝑒) |𝔰) + (𝑚 − 1) |𝔰 |

+
∑

(𝑒,�̄�) ∈EL (𝜏)∩𝐸 (Γ̂)

deg𝔓(𝔱(𝑒)) + deg𝔓(𝔱(𝑒)) +
∑

𝑢∈𝑉 (Γ̃)

|𝔫(𝑢) |𝔰

≥

𝑚∑
𝑖=1

������(𝜏𝑖)0
𝔢

������
𝔰 + (𝑚 − 1) |𝔰 |. (B.10)

Now, by our assumption on the regularity structure one has
������(𝜏𝑖)0

𝔢

������
𝔰 > −

|𝔰 |
2 unless 𝜏𝑖 = Ξ for some

Ξ ∈ 𝔏− with �Ξ�𝔰 = −
|𝔰 |
2 . It follows that this expression can only be negative for 𝑚 = 1 or for 𝑚 = 2, and

in the second case one has necessarily that 𝜏𝑖 is the trivial tree for 𝑖 = 1, 2, so that criterion (2) applies.
Assume for the rest of the proof that 𝑚 = 1 and hence 𝜏 is a subtree of 𝜏. It then follows that Γ̃ is

the full subgraph of Γ induced by set 𝑁 (𝜏) of nodes of 𝜏. Moreover, from formula (B.10) we infer that������𝜏0
𝔢

������
𝔰 < 0. We are left to show that L(𝜏) can be written as a disjoint union of some M̄ ⊆ M. Assume

this does not hold. We distinguish two cases. In the first case there exists 𝑢 ∈ L(𝜏) such that one has
𝑢 ∉

⊔M. Let 𝑒 ∈ 𝐿L (𝜏) be the noise-type edge with 𝑒↓ = 𝑢, and observe that similar to formula (B.10),
one gets the estimate

deg𝔓Γ̃0
𝔢 ≥

������𝜏0
𝔢

������
𝔰 − |||𝔱(𝑒) |||𝔰 > 0.

The last inequality follows again from the assumptions made on the regularity structure. In the
second case there exists 𝑀 ∈ M such that 𝑀 ∩ L(𝜏) ≠ ��, but 𝑀 � L(𝜏). Then we set
𝛼 := max

{
|||𝔱(𝑒) |||𝔰 : 𝑒 ∈ 𝐿(𝜏), 𝑒↓ ∈ 𝑀 ∩ L(𝜏)

}
, and similar to formula (B.10), we have the estimate

deg𝔓Γ̃0
𝔢 ≥

������𝜏0
𝔢

������
𝔰 −

∑
𝑒∈𝐿 ( �̃�) , 𝑒↓∈𝑀∩L( �̃�)

#𝑀 − #(𝑀 ∩ L(𝜏))

#𝑀 − 1
|||𝔱(𝑒) |||𝔰 (B.11)

≥
������𝜏0
𝔢

������
𝔰 −

#𝑀 − #(𝑀 ∩ L(𝜏))

#𝑀 − 1
#(𝑀 ∩ L(𝜏))𝛼. (B.12)

Since 1 ≤ #(𝑀 ∩ L(𝜏)) ≤ #𝑀 − 1, we can bound this expression by������𝜏0
𝔢

������
𝔰 − 𝛼 ≥ 0.

The last inequality follows again from the assumption on the regularity structure and the fact that there
exists a noise-type edge 𝑒 ∈ 𝐿(𝜏) such that |||𝔱(𝑒) |||𝔰 = 𝛼. �

We are now in a position to show an identity between the coproducts on the respective spaces. For this
we introduce the canonical projection p− : Ĥ− → H−, and we define the projection ptrees : H− → H−

as the multiplicative projection onto the subalgebra of H− generated by connected vacuum diagrams(
Γ𝔫𝔢 , 𝔩

)
∈ H with the property that there exists an edge 𝑒 ∈ 𝐸 (Γ) such that 𝔩(𝑒) ∈ 𝔏+. With this notation,

we have the following lemma:
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Lemma B.7. One has the identity

(p−V ⊗ V)Δex
− 𝖎− = (ptrees ⊗ Id)Δ−V𝖎− (B.13)

on Tad
− .

Proof. Since the expressions on both sides are multiplicative and linear, it suffices to show this identity
for trees, and we fix for the entire proof a tree 𝜏 = 𝑇𝔫𝔢 ∈ Tad

− . We start with the expression given by
applying the right-hand side of the equation to 𝜏 and transform it into the left-hand side.

By definition one has

Δ−V𝖎−𝜏 = (−1)𝑚(𝜏)
∑̃
Γ

∑̃
𝔢,�̃�

(−1) |out �̃� |

�̃�!

(
𝔫
�̃�

)
Γ̃�̃�+𝜋�̃�𝔢 ⊗

(
Γ/Γ̂

)𝔫−�̃�
[�̃�]+𝔢

,

where we use the convention that the first sum runs over subgraphs Γ̃ of Γ𝔫𝔢 := V𝜏 with the property
that any connected component of Γ̃0

𝔢 is divergent, and the second sum runs over all decorations �̃� :
𝜕Γ̃𝐸 (Γ) → N𝑑 and �̃� : 𝑉 (Γ) → N𝑑 such that supp �̃� ⊆ 𝑉

(
Γ̃
)
. Here we write 𝜕Γ̃𝐸 (Γ) for the set of

half-edges (𝑒, 𝑣) with 𝑒 ∈ 𝐸 (Γ)\𝐸
(
Γ̃
)

and 𝑣 ∈ 𝑒 ∩𝑉
(
Γ̃
)
, and we write [�̃�] (𝑒) :=

∑
𝑢∈𝑒 �̃�(𝑒, 𝑢).

After applying ptrees⊗Id to this identity, we restrict the first sum to those subgraphs Γ̃with the property
that each connected component of Γ̃ is of the first type in Lemma B.6. In this case we can write this
graph in the form Γ̃ =

∏
𝑆∈F̄ Γ(𝑆) for some forest F ∈ div★(𝜋𝜏), where we write div★(𝜋𝜏) ⊆ div(𝜋𝜏)

for the set of forests F ∈ div(𝜋𝜏) with the property that each tree 𝑆 ∈ F̄ satisfies the first condition of
Lemma B.6. We can now write

(ptrees ⊗ Id)Δ−V𝖎−𝜏 = (−1)𝑚(𝜏)
∑

F∈div★ (𝜋𝜏)

∑
𝔢F ,𝔫F

(−1) 〈𝔢F 〉

𝔢F!

(
𝔫
𝔫F

)
Γ
(
F
)𝔫F+𝜋𝔢F
𝔢 ⊗

(
Γ
(
𝑇/F

) )𝔫−𝔫F
𝔢F+𝔢

=
∑

F∈div★ (𝜋𝜏)

∑
𝔢F ,𝔫F

1
𝔢F!

(
𝔫
𝔫F

)
V
(
F
)𝔫F+𝜋𝔢F
𝔢 ⊗

(
V
(
𝑇/F

) )𝔫−𝔫F
𝔢F+𝔢 ,

where 〈𝔢F〉 :=
��∑

(𝑢,𝑣) ∈EL (𝜏) 𝔢F (𝑢)
��. The sums here run over all decorations 𝔫F and eF satisfying

the condition that deg Γ(𝑆)
𝔫F+𝜋𝔢F
𝔢 < 0 for any 𝑆 ∈ F̄, which, due to Lemma B.6, is equivalent to���𝑆𝔫F+𝜋𝔢F

𝔢

���
𝔰
< 0. Moreover, again with Lemma B.6, it follows that this condition is violated for any

F ∈ div(𝜏)\ div★(𝜏) for any choice of decoration, so that we can rewrite this expression further as

(ptrees ⊗ Id)Δ−V𝖎−𝜏 = (p−V ⊗ V)
∑

F∈div 𝜏

∑
𝔢F ,𝔫F

1
𝔢F!

(
𝔫
𝔫F

)
F𝔫F+𝜋𝔢F
𝔢 ⊗

(
𝑇/F

)𝔫−𝔫F
𝔢F+𝔢 .

Comparing this with the definition of the coproduct Δex
− in equation (4.23), and noting that the extended

𝔬-decoration is irrelevant due to the definition of the operator V, concludes the proof. �

We now construct a character ℎ(K,R) on H− in an analogous way to formula (4.41). Given a set
I ⊆ L which is closed under conjugation, we write HI− ⊆ H− and ĤI− ⊆ Ĥ− for the linear subspaces of
H− and Ĥ−, respectively, spanned by all connected Feynman diagrams Γ = (V, E) with the property that
for any 𝑒 ∈ E one has either 𝔱(𝑒) ∈ 𝔏+ or 𝔱(𝑒) = (l, l̄) ∈ L/− with l ∈ I, and we write 𝑃I : H− → HI−
for the canonical projection.

With this notation we define a character ℎ(K,R) on H− by setting

ℎ(K,R)Γ := −
∑
I∈𝔓

ΠK,R𝑃IΓ (B.14)
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for any connected vacuum Feynman diagram Γ, and extending this linearly and multiplicatively. We
leave the set𝔓 implicit in this notation, since it is fixed for the entire proof anyway.

Before we state the next lemma, let us give an equivalent definition of the characters ℎ(𝔍, 𝜙, 𝑅) and
ℎ(K,R) defined in formulas (4.41) and (B.14).

First note that we introduce linear projections 𝑃I : T pl
− → T pl

− and 𝑃I : H− → H−. We generalise
this notation to systems𝔔 ∈ P in the following way: We write T pl

− [𝔔] ⊆ T pl
− (resp., H𝔔

− ⊆ H−) for the
linear subspaces spanned by all products of trees

∏
I∈𝔔 𝜏I (resp., vacuum diagrams

∏
I∈𝔔 Γ𝔔) with the

property that 𝔱(𝐿L(𝜏I)) = I (resp., ΓI ∈ HI−) for any I ∈ 𝔔. We then write 𝑃𝔔 for the linear projections
onto T pl

− [𝔔] and H𝔔
− , respectively. We overload the notation 𝑃𝔔 here because these projections are

closely related (compare equation (B.18)). With this notation, we have the following identities:

ℎ
𝜙
𝔓,𝑅 :=

∑
𝔔⊆𝔓

(−1)#𝔔Ῡ
1,𝜙
𝑅 𝑃𝔔 , (B.15)

ℎ(K,R) :=
∑
𝔔⊆𝔓

(−1)#𝔔ΠK,R𝑃𝔔 , (B.16)

on T pl
− and H−, respectively.

Lemma B.8. Let K, R and R̃ be constructed from 𝜙, R and �̃� as in formula (B.4). Then one has the
identity (

ℎ
𝜙
𝔓,𝑅 ⊗ Ῡ𝜙

�̃�

)
Δ−𝖎− =

(
ℎ(K,R) ⊗ ΠK,R̃

)
Δ full

− V𝖎− (B.17)

on Tad
− .

Proof. We first claim that one has the identity

𝑃𝔔V = V𝑃𝔔 (B.18)

on Tad
− for any 𝔔 ⊆ 𝔓. By the definition of 𝑃𝔔 , it is clear that it is enough to show this identity for

𝔔 = {I} for any I ∈ 𝔓. Let 𝜏 ∈ Tad
− be a tree, and observe that one has 𝜏 ∈ rng 𝑃I if and only if

𝔱(𝐿L (𝜏)) = I. This implies in particular that V𝜏 ∈ HI−, so that

𝑃IV𝜏 = V𝑃I𝜏 = V𝜏.

Conversely, assume that 𝔱(𝐿L (𝜏)) ≠ I. Then this implies in particular that V𝜏 ∉ HI− by construction, so
that both sides of the claimed identity vanish.

Now using expression (B.15) for ℎ(𝔓, 𝜙, 𝑅), we can rewrite the left-hand side of equation (B.17) as∑
𝔔⊆𝔓

(−1)#𝔔
(
Ῡ𝜙𝑅𝑃𝔔 ⊗ Ῡ𝜙

�̃�

)
Δex

− 𝖎−.

Using Lemmas B.5 and B.7, we can rewrite this as∑
𝔔⊆𝔓

(−1)#𝔔
(
ΠK,R𝑃𝔔p−V ⊗ ΠK,R̃V

)
Δex

− 𝖎−

=
∑
𝔔⊆𝔓

(−1)#𝔔
(
ΠK,R𝑃𝔔ptrees ⊗ ΠK,R̃

)
Δ full

− V𝖎−. (B.19)

We now note that the projection ptrees on the right-hand side is irrelevant, since the only divergent
connected subgraphs of V𝜄𝜏 that get killed by ptrees are of type 2 in Lemma B.6, and thus get killed
by ΠK,R anyway. Using formula (B.16), we see that this expression is equal to the right-hand side of
equation (B.17), as required. �

https://doi.org/10.1017/fmp.2021.18 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2021.18


116 Martin Hairer and Philipp Schönbauer

B.3. Proof of Proposition B.2

For 𝜀 > 0, let
(
�̄� 𝜀
𝔱

)
𝔱∈𝔏+

be a kernel assignment such that �̄� 𝜀
𝔱 ∈ C∞

𝑐

(
D̄\{0}

)
for any 𝔱 ∈ 𝔏+ and 𝜀 > 0,

and such that �̄� 𝜀
𝔱 is equal to �̂�

𝜀
𝔱 in some neighbourhood of the origin but compactly supported in a ball

of radius 𝛿
𝑀 around the origin, where 𝛿 is as in Proposition 4.49 and M is the maximal number of edges

appearing in some tree 𝜏 ∈ 𝒯−. Let also K̄ be defined as in formula (B.4), with K replaced by �̄� . We
first have the following lemma:

Lemma B.9. Under the assumptions of Proposition 4.49, one has(
𝑔full (K̄)

⊗ ΠK̄,R
)
Δ full

− V𝖎− =
(
ℎ
(
K̄, 0

)
⊗ ΠK̄,R

)
Δ full

− V𝖎−

on Tad
− .

Proof. Set Γ := V𝖎−𝜏. It is sufficient to show that

𝑔full (K̄)
Γ̃�̃�𝔢 = ℎ

(
K̄, 0

)
Γ̃�̃�𝔢 (B.20)

for any connected, full subgraph Γ̃ of Γ and any node decoration �̃� with the property that deg𝔓Γ̃�̃�𝔢 < 0.
Assume first that Γ̃ satisfies Lemma B.6(2), and let e be the unique edge of Γ̃. Then ℎ

(
K̄, 0

)
vanishes

by definition, and one has

𝑔full (K̄)
Γ̃ = −ΠK̄Γ̃ = −

∫
𝜙𝔩 (𝑒) (𝑥)𝑑𝑥 = 0,

where the last equality follows from the definition of𝔑(𝔓, 𝛿). Otherwise, one has that Γ̃ satisfies Lemma
B.6(1), and we denote by 𝜏 the subtree of 𝜏 such that Γ̃ is induced as a full subgraph of Γ by 𝑁 (𝜏). Then
one has L(𝜏) =

⊔ M̄ for some M̄ ⊆ M with #M ≥ 1. In the case that #M̄ = 1, one has that all full
subgraphs Γ̂ of Γ̃ of negative degree are of type (2) in Lemma B.6, so that equation (B.20) follows from

𝑔full (K̄)
Γ̃�̃�𝔢 = −

(
𝑔full (K̄)

⊗ ΠK̄
) ∑̂
Γ�Γ̃

∑̂
𝔢,�̂�

(−1) |out �̂� |

�̂�!

(
𝔫
�̂�

)
Γ̂
�̂�+𝜋�̂�
𝔢 ⊗ Γ𝔫−�̂��̂� /

(
Γ̂, 𝜋�̂�

)
= −ΠK̄Γ̃�̃�𝔢 = ℎ

(
K̄, 0

)
Γ̃�̃�𝔢 .

In the case that #M̄ ≥ 2, one has ℎ
(
K̄, 0

)
Γ̃�̃�𝔢 = 0 by definition. On the other hand, there exist distinct

𝑀, 𝑁 ∈ M̄ with 𝑀 ≠ 𝑁 , and we can choose elements 𝑢 ∈ 𝑀 and 𝑣 ∈ N. There exists a unique edge
𝑒 ∈ 𝐸

(
Γ̃
)

connecting u and v. By the definition of M (compare equation (4.42)), one has 𝔩(𝑒) ∉
⊔
𝔓/−,

and by the definition of 𝔑(𝔓, 𝛿), one has 𝜙𝔩 (𝑒) = 0 in a 𝛿-neighbourhood of the origin. Combined with
the support properties of the kernel assignment �̄� , we infer that one has ΠK̄Γ̃�̃�𝔢 = 0. The same reasoning
applies to any other Feynman diagram containing an edge of type 𝔩(𝑒). It follows thus from the definition
of the coproduct that one has 𝑔full (K̄)

Γ̂
�̂�
�̂� = 0. �

With this lemma, comparing equation (B.5) and the right-hand side of formula (B.17), we are left to
compare the characters

ℎ(K,R) = ℎ
(
K̄, R̄

)
and ℎ

(
K̄, 0

)
,

where we define R̄ := R − K̄ + K. We first claim that for any 𝜏 ∈ Tad
− one has(

𝑓 ◦ ℎ
(
K̄, 0

) )
(V𝜏) = 𝑓 (V𝜏) + ℎ

(
K̄, 0

)
(V𝜏)

for any character f in the character group of H−. This can been seen in a way very similar to the last step
of the proof of Lemma B.9, since whenever Γ̃ is a nonempty, proper subgraph of Γ = V𝜏 of negative
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homogeneity, there exists an edge 𝑒 ∈ 𝐸
(
Γ/Γ̃

)
with 𝔩(𝑒) ∉

⊔
𝔓/−, so that ℎ

(
�̄�, 0

) (
Γ𝔫𝔢 /

(
Γ̃, �̃�

) )
vanishes

for any such subdiagram.
It remains to show that the expression

𝑓
(
K̄, R̄

)
Γ := ℎ

(
K̄, R̄

)
Γ − ℎ

(
K̄, 0

)
Γ

is bounded by a constant uniformly over 𝜙 ∈ 𝔑(𝔓, 𝐾, 𝛿) and R̄ ∈ K+
0 such that ‖𝜙‖𝔓 ∨

��R̄��
K+ ≤ 𝐶 for

any Γ ∈ H−. By definition, it is sufficient to show this for connected Feynman diagrams Γ ∈ H𝐼
− for any

𝐼 ∈ 𝔓. In this case one has

𝑓
(
K̄, R̄

)
Γ =

(
ΠK̄,R̄ − ΠK̄,0

)
Γ,

and since Γ does not contain any subdivergences in this case, this expression is bounded in the required
way as a consequence of [Hai18, Section 4] and Lemma 4.21.

C. Applications

C.1. The Φ4
3 equation

We show that our support theorem applies to the solution to Φ4
3 started at any deterministic initial

condition 𝑢0 ∈ C𝜂
(
T3) with 𝜂 > − 2

3 , which then concludes the proof of Theorem 1.12. While it is
known that u is a Markov process which can be started from a deterministic initial condition and is a
continuous function in time [Hai14, Section 9.4], none of these statements follows immediately from
[BCCH17]. In case ofΦ4

3, the process S−(𝜉) = lim𝜀→0 S−
𝜀 (𝜉) is the stationary solution to the stochastic

heat equation on T3, so that S−
𝜀 (𝜉) (0, ·) is (in law) a smooth approximation of the Gaussian free field.

In order to see that one can start the equation at a deterministic initial condition, one has to use the fact
that the critical regularity for the initial condition is − 2

3 [Hai14, Equation 9.13], and hence lower than
the regularity of the Gaussian free field. One can now choose the initial condition for the remainder 𝜀-
dependent of the form 𝑣 (0) −S−

𝜀 (𝜉) (0, ·), use the fact that this converges in probability in C− 2
3 +𝜅 (T3) for

any 𝜅 < 1
6 and argue with the fact that the solution constructed in [BCCH17, Theorem 2.13] is almost

surely continuous as a functional of the initial condition. The last statement follows from the second
bullet in [BCCH17, Theorem 2.13], with Cireg := C𝜂

(
T3) and 𝜂 ∈

(
− 3

2 ,−
1
2

)
.

While this procedure provides a robust interpretation of what we mean by a solution to Φ4
3 starting

from a deterministic initial condition 𝑣 (0) ∈ Cireg, the process defined in this way fails to be a continuous
function of the model. Note that while S−

𝜀 (𝜉) is a continuous function of the model with values in
C− 1

2 −𝜅
𝔰 (𝒟), evaluating at a fixed time is not well defined on this space, so that S−

𝜀 (𝜉) (0, ·) fails to be a
continuous function of the model.

To overcome this difficulty we work with a slightly stronger topology on the space of models (compare
[Hai14, Proposition 9.8]), generated by the system of pseudo-metrics

�𝑍, �̃��𝛾,𝑇 :=
������𝑍, �̃� ������

𝛾, [−𝑇 ,𝑇 ]×T3 +

���𝐾 ★𝚷𝑍Ξ − 𝐾 ★𝚷 �̃�Ξ
���
C( [−𝑇 ,𝑇 ],Cireg)

for any 𝑇 > 0. Here
������𝑍, �̃� ������

𝛾, [−𝑇 ,𝑇 ]×T3 denotes the usual metric on the model space as in [Hai14,

Equation 2.17]. With respect to this topology, it is clear that S−
𝜀 (𝜉) (0, ·) = (𝐾 ★ 𝚷 �̂�

𝜀

Ξ) (0, ·) is a
continuous function of the model with values in Cireg. The fact that the BPHZ renormalised model
converges in this stronger topology follows from [Hai14, Proposition 9.5]. To show that our support
theorem holds for Φ4

3, it remains to argue that the proof of the support theorem for random models
also applies in this stronger topology. For this we first note that once Proposition 3.8 is proved, the
arguments carried out in Section 3.2 use only the fact that the shift operator and the renormalisation
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group act continuously on the space of models, which is still true in this stronger topology. As in 𝑑 = 2,
Assumptions 7 and 8 are trivial in this case, so that Section 4 is not needed.

Remark C.1. We outline the proof that J is the ideal generated by Ξ. Recall that J is generated by
linear combinations of trees with same number of leaves. From this we already infer that the only

possible generator of J other than must be a linear combination of and . We can rule out that
such a linear combination is element of J by choosing a sequence of test functions 𝜓𝜀 (𝑥1, 𝑥2, 𝑥3, 𝑥4) =∏

1≤𝑖< 𝑗≤4 𝜓𝑖, 𝑗 , 𝜀
(
𝑥𝑖 − 𝑥 𝑗

)
for smooth symmetric functions 𝜓𝑖, 𝑗 , where we set 𝜓𝑖, 𝑗 , 𝜀 := 𝜓 (𝜀)

𝑖, 𝑗 if {𝑖, 𝑗} ∈

{{1, 2}, {3, 4}} and 𝜓𝑖, 𝑗 , 𝜀 = 𝜓𝑖, 𝑗 otherwise. The divergence structure of the two trees in question then
implies the asymptotic behaviour〈

K�̂� , 𝜓𝜀

〉
� 𝜀−2 and

〈
K�̂� , 𝜓𝜀

〉
� 𝜀−1.

Section 5 is formulated entirely at the level of the space of noises𝔐0 and never refers to the topology
on the model space. The remaining caveat is Section 3.3. The topology on the model space enters
explicitly in the final step of the proof of Proposition 3.21 via the identity

lim
𝛿→0

lim
𝜀→0

R𝑔𝜀,𝛿
𝑍c (𝜉

𝜀 + 𝜁𝛿) = 𝑍c (0),

so we need to show that this convergence holds also with respect to the stronger topology we are using
here. Using [Hai14, Proposition 9.5], which shows that 𝐾 ★ 𝜉 𝜀 → 𝐾 ★ 𝜉 in C

(
[−𝑇,𝑇], Cireg) almost

surely, we need to provide an additional argument showing that

𝐾 ★ 𝜁𝛿 → 0 in C
(
[−𝑇, 𝑇], Cireg

)
as 𝛿 → 0 in probability. This can be shown with an argument very similar to the proof of [Hai14,
Equation 9.15]. Indeed, setting X := C �̃�

2
(
[−𝑇, 𝑇], C𝜂+𝜅 (T3) ) , where 𝜂 ∈ (− 3

2 ,−
1
2 ) is as before and

𝜅 > 0 is small enough that 𝜂+2𝜅 < − 1
2 , it suffices to bound 𝐾★𝜁𝛿 uniformly in X. Write 𝐾 =

∑
𝑛≥0 𝐾𝑛,

where 𝐾𝑛 is supported in an annulus of order 2−𝑛 as in [Hai14, Assumption 5.1]. By Kolmogorov’s
continuity criterion and the fact that 𝜁𝛿 belongs to a Wiener chaos of fixed order and therefore enjoys
equivalence of moments, it suffices to show that for some 𝑟 > 0 one has

E
(∫

𝜓𝜆 (𝑥) (𝐾𝑛 ∗ 𝜁𝛿 (𝑥, 𝑡) − 𝐾𝑛 ∗ 𝜁𝛿 (𝑥, 0))𝑑𝑥
)2
� 2−𝑟𝑛 |𝑡 |𝜅+𝑟𝜆2𝜂+2𝜅+𝑟 . (C.1)

This expression is of the form of [Hai14, Equation 9.17], with white noise 𝜉 replaced by 𝜁𝛿 . For the
proof we can now proceed along the same lines as in [Hai14], noting that by definition 𝜁𝛿 is a linear
combination (with uniformly bounded coefficients) of random stationary smooth functions 𝜂𝛿

(Ξ,𝜏) , with
the property that

𝜌𝛿
(Ξ,𝜏) (𝑥, 𝑡) := E𝜂𝛿

(Ξ,𝜏) (𝑥, 𝑡)𝜂
𝛿
(Ξ,𝜏) (0, 0)

satisfies the scaling relation

𝜌𝛿
(Ξ,𝜏) =

(
𝜆𝛿

(Ξ,𝜏)

)−2�𝜏�𝔰−2𝜅 (
𝜌1

(Ξ,𝜏)

) (𝜆𝛿
(Ξ,𝜏)

)
.

The proof is now straightforward in the case that �𝜏�𝔰 < 0, where the right-hand side can be estimated
by an approximate 𝛿0. In the case that �𝜏�𝔰 = 0, the fact that these covariances integrate to zero comes
to the rescue in the same way as in the proof of formula (2.19).
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C.2. The Φ4
4−𝜅 equation

TheΦ4
4−𝜅 equation with 𝜅 irrational satisfies all our assumptions, except that the noise is not white. Recall

that the space-time scaling is given by 𝔰 = (2, 1, 1, 1, 1), with |𝔰 | = 6. We assume that 𝜉 = 𝑃 ★ 𝜉, where
𝜉 is space-time white noise on T4 × R, the symbol ★ denotes spatial convolution and 𝑃 ∈ C∞

𝑐

(
R4\{0}

)
is some integration kernel on R4 which is homogeneous on small scales 𝑃(𝜆𝑥) = 𝜆−4+𝜅𝑃(𝑥) for any
𝜆 ∈ (0, 1) and 𝑥 ∈ R4 with |𝑥 | ≤ 1

2 (say). Here we assume that 𝜅 > 0 is irrational (in order to
avoid log-divergencies, which could destroy Assumption 5). There exists a unique homogeneous kernel
�̂� : T4\{0} → R such that �̂� = 𝑃 in a neighbourhood of the origin. We denote by �̂� the heat kernel, and
we assume that �̂� is such that �̂� ★ �̂� can be decomposed as in Section 2.2.2. (This is certainly possible
for �̂�(𝑥) = |𝑥 |−4+𝜅 , which is a natural choice.)

We fix a set of two kernel types 𝔏+ := {𝔱, 𝔱′}, representing heat kernel �̂� and the convolution �̂� ★ �̂�,
respectively, with �𝔱𝐾� := 2 and �𝔱𝑃� := 2 + 𝜅, and we fix a single noise type 𝔏− := {Ξ} representing
white noise with �Ξ� = −3 and |Ξ| = −3 − 𝜅 for some 𝜅 > 0 small enough. A rule R is given by the
completion of �̄�, defined by setting

�̄�(𝔱) :=
{
��,

[
𝔱1
]
,
[
𝔱1, 𝔱2

]
,
[
𝔱1, 𝔱2, 𝔱3

]
: 𝔱𝑖 ∈ {𝔱, 𝔱′}

}
and �̄�(𝔱′) := { ��, [Ξ]}.

Provided that 𝜅 < 𝜅, the rule �̄� (and hence R) is subcritical [BHZ19, Definition 5.14]. We fix truncations
𝐾𝔱 and 𝐾𝔱′ of �̂� and �̂� ★ �̂� as in Section 2.2.2, we denote by �̂�

𝜀 the BPHZ-renormalised canonical lift
of the regularised white noise 𝜉 𝜀 and we write �̂� := lim𝜀→0 �̂�

𝜀 . The existence of this limit follows from
[CH16] (see also [CMW19]). Moreover, the solution to theΦ4

4−𝜅 equation is path-wise continuous in �̂� .
We now argue why Assumptions 1 through 6 hold, which finalises the proof that Theorem 3.14 can

be applied to �̂� . Assumptions 1 through 3 are shown in [BCCH17, Section 2.8.2]. The heat kernel is
homogeneous, so Assumption 4 is satisfied. Finally, for irrational 𝜅 there are no trees of integer degree
(and in particular no tree of zero degree), hence Assumptions 5 and 6 hold.

C.3. Proof of Theorem 1.15

Recall that we are interested in characterising the support of the solutions, in the sense of [BGHZ19,
Theorem 1.2], to

𝜕𝑡𝑢
𝑖 = 𝜕2

𝑥𝑢
𝑖 + Γ𝑖𝑗 ,𝑘 (𝑢)𝜕𝑥𝑢

𝑗𝜕𝑥𝑢
𝑘 + ℎ𝑖 (𝑢) + 𝜎𝑖𝜇 (𝑢)𝜉

𝜇 . (C.2)

As before, 𝑖, 𝑗 , 𝑘 = 1, . . . , 𝑛, 𝜇 = 1, . . . , 𝑚, and Einstein’s convention is used. We also denote (as in
equation (1.16)) by ∇ the connection on R𝑛 given by Γ.

We first show that the generalised KPZ equation (C.2) satisfies Assumptions 2 through 6. Assump-
tion 2 was shown in [BGHZ19], and Assumptions 3 and 4 are clear. To see Assumption 5 we choose
g := g2 and we note that

V =
{

, , , , , ,

}
.

Here, thin black lines denote the heat kernel, whereas thick grey lines denote its spatial derivative. We
write for an instance of white noise and polynomial label 𝔫( ) = (0, 0), for a node with white
noise and polynomial label 𝔫( ) = (0, 1) and for a node without noise and with polynomial label
𝔫( ) = (0, 1). We drop the type decoration from the noises, for simplicity, so that any tree in V should
be thought of as a finite collection of trees. I t is easy to see that the kernels K̂𝜏 for 𝜏 ∈ V are all
antisymmetric under the transformation (𝑡, 𝑥) ↦→ (𝑡,−𝑥), and since the covariance of a shifted noise is
symmetric under this transformation, one has E𝚷𝜂𝜏(0) = 0, as required. Assumption 6 is then trivially
satisfied, since in this example one has V0 = V.
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Write now Sgeo ⊂ Vec𝒯− for the linear subspace of dimension 15 generated by the ‘geometric’
counterterms, as defined in [BGHZ19, Definition 3.2] and characterised in [BGHZ19, Proposition 6.11,
Remark 6.17]. We also write ΥΓ,𝜎 : Sgeo → C∞(R𝑛, R𝑛) for the evaluation map defined in [BGHZ19,
Equation 2.6] (but note also the remark just before Equation 6.2 in that article). We can interpret

(
Sgeo, +

)
as a subgroup of the renormalisation groupG−, and its action on the space of right-hand sides for equation
(C.2) is given by 𝜏 ↦→ ΥΓ,𝜎𝜏. As in [BGHZ19, Remark 2.9], it will be convenient to introduce on T−

(and therefore also on Sgeo) an inner product by specifying that any two trees are orthogonal and their
norm squared is given by their symmetry factor. We will use the suggestive notation of [BGHZ19] for
elements of Sgeo, so that, for example,

ΥΓ,𝜎∇ =
∑
𝜇

∇𝜎𝜇𝜎𝜇 .

We are now in a position to apply Theorem 1.7. First we have the following result:

Lemma C.2. Let H be the subspace of Vec𝒯− defined in Theorem 1.7. Then one has H ⊆ Sgeo.

Remark C.3. The renormalisation group for the generalised KPZ equation is naturally isomorphic to
(Vec𝒯−

∗, +), so that it is more convenient to work with the linear space Vec𝒯− instead of the full algebra
T−. The scalar product introduced provides an isomorphism Vec𝒯− � Vec𝒯−

∗ via Riesz identification.
In the statement of the lemma we have made a slight abuse of notation and identified H with a subset
of Vec𝒯− given by the Riesz identification of the set H viewed as a subspace of Vec𝒯−

∗.

Proof. Let 𝜎𝑖𝑙 and Γ𝑖𝑗 ,𝑘 be smooth functions on R𝑚 for 𝑖, 𝑗 , 𝑘 ≤ 𝑚 and 𝑙 ≤ 𝑛. Furthermore, let
𝜑 : R𝑚 → R𝑚 be a diffeomorphism, and define 𝜑 ·Γ and 𝜑 ·𝑇 for any tensor T by the usual transformation
rules for Christoffel symbols and tensors under the diffeomorphism 𝜑, see [BGHZ19, Equation 1.6]. By
[BGHZ19, Theorem 1.2] there exists a sequence of elements 𝑔𝜀 ∈ Sgeo such that 𝑔𝜀 − 𝑔𝜀BPHZ converges to
a finite limit 𝑓◦ ∈ Vec𝒯− as 𝜀 → 0. We set �̂� 𝜀 := R𝑔𝜀

𝑍c (𝜉
𝜀) and �̂� := lim𝜀→0 �̂�

𝜀 .
Fix ℎ ∈ 𝑓◦ + 𝑓 𝜉 +H, where 𝑓 𝜉 is the character defined in Assumption 8 (which holds by Proposition

4.1). It suffices to show that ℎ ∈ Sgeo (note that this proves furthermore that 𝑓◦ + 𝑓 𝜉 ∈ Sgeo), which by
[BGHZ19, Definition 3.2] is equivalent to the property that Υ𝜑 ·Γ,𝜑 ·𝜎ℎ = 𝜑 · ΥΓ,𝜎ℎ for any Γ, 𝜎 and
𝜑 as before. Fix an initial condition 𝑣0 ∈ C 1

2
−

(T) and let v and w denote the images of the model Z(ℎ)
under the solution maps for (Γ, 𝜎) and (𝜑 · Γ, 𝜑 · 𝜎), respectively, with initial conditions 𝑣(0) = 𝑣0 and
𝑤(0) = 𝑤0 := 𝜑(𝑣0), so that

𝜕𝑡𝑣 = 𝜕2
𝑥𝑣 + Γ(𝑣)𝜕𝑥𝑣𝜕𝑥𝑣 +

(
ΥΓ,𝜎ℎ

)
(𝑣), (C.3)

𝜕𝑡𝑤 = 𝜕2
𝑥𝑤 + (𝜑 · Γ) (𝑤)𝜕𝑥𝑤𝜕𝑥𝑤 +

(
Υ𝜑 ·Γ,𝜑 ·𝜎ℎ

)
(𝑤). (C.4)

(Here we omit the indices for simplicity.) Note that 𝜑(𝑣) satisfies an equation analogous to equation
(C.4) but with counterterm given by 𝜑 · ΥΓ,𝜎ℎ, so that by a simple special case of [BGHZ19, Theorem
3.5], the proof is complete if we can show that 𝑤 = 𝜑(𝑣). By Proposition 3.21 there exists a sequence of
smooth random functions 𝜁𝛿 such that 𝑍 𝜀, 𝛿 := 𝑇𝜁𝛿 �̂�

𝜀
→ Z(ℎ) as 𝜀 → 0 and 𝛿 → 0. Similar to before,

denote by 𝑣𝜀, 𝛿 and 𝑤𝜀, 𝛿 the images of the (random) model 𝑍 𝜀, 𝛿 under the solution map for the data
(Γ, 𝜎) and (𝜑 · Γ, 𝜑 · 𝜎), so that 𝑣𝜀, 𝛿 → 𝑣 and 𝑤𝜀, 𝛿 → 𝑤 in probability. But since 𝑔𝜀 ∈ Sgeo, one has
𝑤𝜀, 𝛿 = 𝜑

(
𝑣𝜀, 𝛿

)
, and this concludes the proof. �

Write Moll ⊂ C∞
0

(
R2) for the collection of test functions that are supported in the unit ball and

integrate to 1. It then follows from [BGHZ19, Theorem 1.2] that there exist 𝜏★ ∈ Sgeo as well as maps
Moll ' 𝜌 ↦→ 𝜏𝜌 ∈ Sgeo and Moll ' 𝜌 ↦→ 𝐶𝜌 ∈ R such that for every mollifier 𝜌 ∈ Moll and for
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𝜉
𝜇
𝜀 = 𝜌𝜀 ★ 𝜉𝜇, one has 𝑢 = lim𝜀→0 𝑢𝜀 with

𝜕𝑡𝑢𝜀 = 𝜕2
𝑥𝑢𝜀 + Γ(𝑢𝜀) (𝜕𝑥𝑢𝜀 , 𝜕𝑥𝑢𝜀) + ℎ(𝑢𝜀) + 𝜎𝜇 (𝑢𝜀)𝜉

𝜇
𝜀

+
(
ΥΓ,𝜎𝜏𝜌

)
(𝑢𝜀) +

(
ΥΓ,𝜎𝜏★

)
(𝑢𝜀) log 𝜀 +

𝐶𝜌

𝜀

(
ΥΓ,𝜎∇

)
(𝑢𝜀).

(C.5)

Combining this with Theorem 1.6 and Remark 1.10, we conclude that there exists 𝜏 ∈ Sgeo such that the
support 𝑆𝑢 of the law of u is given by the closure in C𝛼 of all solutions to

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + Γ(𝑢𝜀) (𝜕𝑥𝑢, 𝜕𝑥𝑢) + ℎ(𝑢) + 𝜎𝜇 (𝑢)𝜂

𝜇

+ (ΥΓ,𝜎𝜏) (𝑢𝜀) + 𝐾★
(
ΥΓ,𝜎𝜏★

)
(𝑢𝜀) + 𝐾0

(
ΥΓ,𝜎∇

)
(𝑢𝜀),

for arbitrary smooth controls 𝜂𝜇 and arbitrary constants 𝐾★ and 𝐾0. Note that ΥΓ,𝜎∇ is nothing but
the vector field V in Theorem 1.15, and ΥΓ,𝜎𝜏★ = 𝑉★. We also write 𝜏 ∈ Sgeo for the element such that
ΥΓ,𝜎𝜏 = �̂� with �̂� as in Theorem 1.15, so that

𝜏 = ∇∇ ∇ .

We also introduce the following notation: Given two collections A, Ā ⊂ C∞(R𝑛, R𝑛) and 𝐻 ∈

C∞(R𝑛, R𝑛), we write U
(
𝐻,A, Ā

)
for the closure in C𝛼 of all solutions to

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + Γ(𝑢𝜀) (𝜕𝑥𝑢, 𝜕𝑥𝑢) + 𝐻 (𝑢) +

∑
𝐴∈A

𝜂𝐴𝐴 +
∑
𝐵∈Ā

𝐾𝐵𝐵,

where the 𝜂𝐴 are arbitrary smooth functions and the 𝐾𝐵 are arbitrary real constants. An important
remark is that one has the identity

U
(
𝐻,A, Ā

)
= U

(
𝐻 + �̄�,A, Ā ∪ B

)
(C.6)

for any �̄� ∈ Vec
(
A ∪ Ā

)
and any B ⊂ VecA.

To complete the proof of Theorem 1.15, it then remains to show that for any 𝜏 ∈ Sgeo, there exists 𝑐
such that

U
(
ℎ + 𝜏,

{
𝜎𝜇

}
, {𝜏★,∇ }

)
= U

(
ℎ + 𝑐𝜏,

{
𝜎𝜇

}
, {𝜏★,∇ }

)
, (C.7)

thus reducing the dimensionality of the unknown quantity from 15 to 1. Here we implicitly identify
elements of Sgeo with elements of C∞(R𝑛, R𝑛) via ΥΓ,𝜎 to shorten notations. To show equation (C.7),
we will make extensive use of the following result:

Lemma C.4. Let �̂� : R+ × T × R𝑛 → R𝑛, 𝐴, 𝐵 : R𝑛 → R𝑛 and 𝜁, 𝜁 , 𝜂, 𝜂 : R+ × T → R be smooth
functions and set 𝐶 ∈ R. Then there exist 𝐶𝜀 ∈ R and smooth functions 𝜂𝜀 , 𝜂𝜀 : R+ × T → R𝑚 such
that the solution to

𝜕𝑡𝑢𝜀 = 𝜕2
𝑥𝑢𝜀 + Γ(𝑢𝜀) (𝜕𝑥𝑢𝜀 , 𝜕𝑥𝑢𝜀) + �̂� (𝑡, 𝑥, 𝑢𝜀)

+ 𝐴(𝑢𝜀)𝜂𝜀 + 𝐵(𝑢𝜀)𝜂𝜀 + 𝐶𝜀
(
∇𝐴𝐴

)
(𝑢𝜀) (C.8)

converges in C𝛼 as 𝜀 → 0 to the solution u to

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + Γ(𝑢) (𝜕𝑥𝑢, 𝜕𝑥𝑢) + �̂� (𝑡, 𝑥, 𝑢)

+ 𝐴(𝑢)𝜂 + 𝐵(𝑢)𝜂 +
(
∇𝐴𝐵

)
(𝑢)𝜁 +

(
∇𝐵𝐴

)
(𝑢)𝜁 + 𝐶

(
∇𝐴𝐴

)
(𝑢).

Proof. We consider the singular SPDE given by

𝜕𝑡𝑢 = 𝜕2
𝑥𝑢 + Γ(𝑢) (𝜕𝑥𝑢, 𝜕𝑥𝑢) + �̂� (𝑡, 𝑥, 𝑢)
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+ 𝐴(𝑢)𝜂 + 𝐵(𝑢)𝜂 +
(
∇𝐴𝐵

)
(𝑢)𝜁 +

(
∇𝐵𝐴

)
(𝑢)𝜁 + 𝐶

(
∇𝐴𝐴

)
(𝑢)

+ 𝐴(𝑢)𝜉𝜀 + 𝐵(𝑢)
(
𝜁 · 𝜉𝜀 + 𝜁 · 𝜉 𝜀

)
,

driven by the three ‘noises’ 𝜉𝜀 ∈ C𝜅−1, 𝜉 𝜀 ∈ C𝜅−1 and 𝜉𝜀 ∈ C−1−3𝜅 . If we choose 𝜅 sufficiently small,
the only symbols of negative degree appearing in the corresponding regularity structure (besides those
representing the noises themselves and the one representing the product of 𝜉𝜀 with the spatial coordinate)
are

, , , , , , , ,

where we denote the symbol representing 𝜉𝜀 by , the one representing 𝜉𝜀 by and the one representing
𝜉 𝜀 by . Thin lines represent the heat kernel and thick lines its spatial derivative, as usual.

One then proceeds as follows: Choose first a symmetric function �̃� ∈ C∞
0 such that∫

( �̃� ★ �̃�) (𝑧)𝑃(𝑧)𝑑𝑧 = 1 for P the heat kernel on the whole space and 𝑧 = (𝑡, 𝑥) ∈ R2, and set
𝜉𝜀 = 𝜀−1−2𝜅 �̃�𝜀 ★ 𝜉, where 𝜉 is space-time white noise and �̃�𝜀 (𝑡, 𝑥) = �̃�

(
𝑡/𝜀2, 𝑥/𝜀

)
. One then fixes two

asymmetric C∞
0 functions 𝜌 and �̂� such that the following identities hold:∫

𝑃(𝑧) ( �̃� ★ 𝜌) (𝑧)𝑑𝑧 = 1,
∫

𝑃(−𝑧) ( �̃� ★ 𝜌) (𝑧)𝑑𝑧 = 0, (C.9)∫
𝑃(𝑧) ( �̃� ★ �̂�) (𝑧)𝑑𝑧 = 0,

∫
𝑃(−𝑧) ( �̃� ★ �̂�) (𝑧)𝑑𝑧 = 1.

With this choice, we then set

𝜉𝜀 = 𝜀2𝜅−1𝜌𝜀 ★ 𝜉, 𝜉 𝜀 = 𝜀2𝜅−1 �̂�𝜀 ★ 𝜉.

Since all of these noises weakly converge to 0, it is immediate from [CH16] (but in this case this is also
a simple exercise along the lines of the examples treated in [Hai14]) that the BPHZ model associated to
this choice converges to the canonical lift of 0.

Furthermore, as a consequence of equation (C.9), the scaling of the noise and the identity

𝜕𝑥𝑃 ★ 𝜕𝑥 �̄� =
1
2
(
𝑃 + �̄�

)
,

where �̄�(𝑧) = 𝑃(−𝑧), the BPHZ character 𝑔𝜀 for our choice of ‘noise’ is given by

𝑔𝜀
( )

= 𝑔𝜀 ( ) = −𝜀−4𝜅 , 𝑔𝜀
( )

= 𝑔𝜀
( )

= −1,
𝑔𝜀

( )
= 𝑔𝜀

( )
= 0, 𝑔𝜀 ( ) = 𝑔𝜀 ( ) = − 1

2 .

It then suffices to apply the results of [Hai14, BCCH17] to conclude that the BPHZ-renormalised
equation solves equation (C.8) with the choice 𝜂𝜀 = 𝜂 + 𝜁 · 𝜉𝜀 + 𝜁 · 𝜉 𝜀 and 𝜂𝜀 = 𝜂 + 𝜉𝜀 , so that the claim
follows. �

Corollary C.5. One has the identity

U
(
𝐻,A, Ā

)
= U

(
𝐻,A ∪ {∇𝐴𝐵,∇𝐵𝐴}, Ā

)
,

for any 𝐴, 𝐵 ∈ A such that ∇𝐴𝐴 ∈ �̄�.

Define now a sequence of collections of vector fields A𝑘 by setting (for 𝑘 ≥ 1)

A1 =
{
𝜎𝜇 | 𝜇 = 1, . . . , 𝑚

}
, A𝑘+1 = {∇𝐴𝐵,∇𝐵𝐴 | 𝐴 ∈ A1, 𝐵 ∈ A𝑘 }.
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It now follows for the same reason as in Lemma C.4 that for any two of the noises appearing in equation
(C.2) (denote them by and , say), one has

2 − − ∈ J,

and the kernels associated to and are linearly independent. This shows in particular that{
+ 1

2 , + 1
2

}
= {∇ ,∇ } ∈ H,

so that first applying Theorem 1.7 (combined with Definition 3.3) and then Corollary C.5 implies that
for any vector field H and any finite collection of vector fields B, one has

U
(
𝐻,

{
𝜎𝜇

}
,B ∪ {∇ }

)
= U

(
𝐻,

{
𝜎𝜇

}
,B ∪ {∇ } ∪ A2

)
= U

(
𝐻,

{
𝜎𝜇

}
∪ A2 ∪ A4,B ∪ A2

)
. (C.10)

(We could have added any of the A𝑘s to the right-hand side, but only A2 and A4 matter for the sequel.)
Setting

S★geo =
{
𝜏 ∈ Sgeo : ΥΓ,𝜎𝜏 ∈ Vec (A2 ∪ A4)

}
and combining the description of Sgeo given in [BGHZ19, Equation 1.8] with the definition of the A𝑖 ,
we see that one has the decomposition

Sgeo = S★geo ⊕ Vec
{
∇∇ ∇ ,∇∇ ∇ ,∇∇ ∇

}
.

Similarly, it follows from [BGHZ19, Equation 3.22] that there exists a constant c such that

𝜏★ − 𝑐
(
2∇∇ ∇ − ∇∇ ∇

)
∈ S★geo.

Setting 𝜏 = ∇∇ ∇ and combining this with equations (C.6) and (C.10), we conclude that there exist
constants 𝑐0 and 𝑐 such that the support of u is given by

U
(
ℎ + 𝜏,

{
𝜎𝜇

}
, {𝜏★,∇ }

)
= U

(
ℎ + 𝑐0𝜏 + 𝑐𝜏,

{
𝜎𝜇

}
∪ A2 ∪ A4, {𝜏★} ∪ A2

)
.

In order to eliminate 𝜏, we note that as a consequence of [BGHZ19, Equation 6.19], setting

𝜎1 = , 𝜎2 = ,

and writing 𝜋 : Sgeo → Vec{𝜎1, 𝜎2} for the orthogonal projection, we have

𝜋S★geo = 0, 𝜋𝜏 = 𝜎1, 𝜋𝜏 = 𝜋𝜏★ = 𝜎2.

Furthermore, since 𝜎1 ∉ J by Definition 3.3, there exists �̃� ∈ H with 〈�̃�, 𝜎1〉 ≠ 0, and therefore, by
Lemma C.2, 〈�̃�, 𝜏〉 ≠ 0. We conclude that there exists 𝑐 such that the support of u is given by

U
(
ℎ + 𝜏,

{
𝜎𝜇

}
, {𝜏★,∇ }

)
= U

(
ℎ + 𝜏,

{
𝜎𝜇

}
, {𝜏★,∇ , �̃�}

)
= U

(
ℎ + 𝑐𝜏,

{
𝜎𝜇

}
∪ A2 ∪ A4, {𝜏★, �̃�} ∪ A2

)
= U

(
ℎ + 𝑐𝜏,

{
𝜎𝜇

}
, {𝜏★,∇ }

)
,

thus concluding the proof of Theorem 1.15. Here the last identity follows from the fact that the preceding
sequence of identities holds for any choice of h.
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D. Symbolic index

Here we collect some of the most-used symbols in the article, together with their meaning and the page
where they were first introduced.

Symbol Meaning Page

| · |𝔰 Homogeneity used to construct the regularity structure 19
� · �𝔰 ‘True’ homogeneity of the noise 19
∼ Equivalence relation on 𝒯− 33
� Total order on 𝒯− 37
[𝐼 , 𝜑 ] Multiset; [𝐼 , 𝜑 ]𝑎 = #{𝑖 ∈ 𝐼 : 𝜑 (𝑖) = 𝑎} 18
𝖘𝔠 Cumulant homogeneity consistent with 𝖘 26
𝛼(Ξ,𝜏) 𝖘 (Ξ, 𝜏) −𝑚(𝜏) |𝔰 |

2 78
C̄∞
𝑐 Functions invariant under translation of all arguments 18
d(m) Set canonically associated to a multiset m 18
D Domain of definition of the noise 17
D̄ Whole-space extension of D 17
Δ− Coproduct 20
degI Degree assignment on L 60
deg𝔓 Degree assignment on L 60
div(𝜏) Set of divergent subforests of 𝜏 50
𝑓 𝜂 Character depending continuously on 𝜂 33
𝜁𝛿 Shift of the noise 36
G− Renormalisation group, character group of T− 3
G− Renormalisation group, character group of T− 47
g Spatial symmetries of the equation 30
𝑔𝜂 BPHZ character 21
�̂�𝜂 ‘Tweaked’ BPHZ character ( 𝑓 𝜂)−1 ◦ 𝑔𝜂 33
𝒈𝜼,𝝓𝑹 Character on T pl

− and T sym
− 57

𝐺L Group of permutations of L consistent with i and ·̄ 54
H Annihilator of J 32
ℎ
𝜙
𝔓,𝑅

Character on T pl
− 60

𝐼m(ℎ) Stochastic integration 23
i Type map on L 51
𝖎− Canonical embedding T− ↩→ T̂ ex

− and T pl
− ↩→ T̂ ex,pl

− 52
𝖎sym
− Canonical embedding T sym

− ↩→ T̂ ex,sym
− 55

𝜄 Admissible embedding T− → T pl
− 54

𝜄sym Admissible embedding T− → T sym
− 55

J̃ Ideal in T−, kernel of Υ̃ 32
J Ideal in T− generated by J̃ and trees with odd number of noises 32
𝐽m(ℎ) Stationary process in mth Wiener chaos with kernel h 23
K𝑛 Space of smooth simple kernels in n variables 24
𝐾 (𝜏) Kernel-type edges 19
K𝐺 𝜏 ‘Kernel’ D̄𝐿 (𝜏) → R associated to 𝜏 31
K+

∞ Compactly supported large-scale kernel assignments 47
K+

0 Large-scale kernel assignments 48
𝐿 (𝜏) Edges of noise type 19
𝐿L (𝜏) Edges of leg type 47
L(𝜏) Nodes touching edges of noise type 47
L̂(𝜏) Nodes with nonvanishing extended decoration 47
𝒟 Space-time domain 17
Λ Set of possible scales 83
Λ(𝜏) System of disjoint, nonempty subsets of L(𝜏) 62
L Set of leg types 46
𝕷− Enlarged set of noise types 75
[𝑀 ] Integers from 1 to M 17
M∞ Space of smooth admissible models 20
m̃ Map m̃ : [#m] → 𝐴 associated to multiset m 19
M0 Space of admissible models 20
𝑀𝑔 Matrix acting on T 21
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. .

Symbol Meaning Page

𝔐∞ Space of smooth noises 25
𝔐0 Space of singular noises 25
𝔐s

∞ Space of shifted smooth noises 30
𝔐s

0 Space of shifted singular noises 30
𝕸s

∞ Space of smooth noises for 𝕷− 76
m(Ξ, 𝜏) [𝐿 (𝜏) , 𝔱] \ {Ξ} 78
LL (𝜏) Nodes of 𝜏 touching legs 47
𝔑 Families of smooth functions indexed by leg types 57
𝔑 (𝔓) Elements of 𝔑 satisfying a constraint depending on𝔓 61
P0 Projection on T pl

− killing trees with nonvanishing 𝔢 on legs 56
Q Projection on T pl

− removing superfluous legs 56
Q0 Projection on T pl

− , Q0 = QP0 56
𝑃I Projection on T pl

− onto trees 𝜏 with 𝔱 (𝐿L (𝜏)) = I 60
Ψ̃ Set of families of test functions indexed by multisets 32
𝜋 Projection that removes legs 47
𝜌 Smooth mollifier 22
R𝑔 Action of G− onto M0 21
𝔰 Scaling on D 18
𝖘 Homogeneity assignment on 𝕷− 77
𝒮 Shift operator 𝒮 : T → T 76
𝒮↑ ‘Dominating’ part of the shift operator 𝒮↑ : T → T 77
𝒮↓ ‘Non-dominating’ part of the shift operator 𝒮↓ : T → T 77
S(𝜆, 𝛼) Rescaling operator 78
T ex Extended regularity structure 76
T Reduced regularity structure 19
T ex

− Extended Hopf algebra 20
T− Reduced Hopf algebra 20
T̂ ex

− Algebra of extended trees 20
T̂− Algebra of reduced trees 20
T ex Extended regularity structure with legs 47
T Reduced regularity structure with legs 47
T ex
− Extended Hopf algebra with legs 47

T− Reduced Hopf algebra with legs 47
T̂ ex
− Algebra of extended trees with legs 47

T �
− Auxiliary Hopf algebra T−/I 52

T̂ ex,�
− Auxiliary algebra T̂ ex

− /Î 52
T pl
− Hopf algebra of properly legged trees 53

T̂ ex,pl
− Algebra of properly legged trees 53

Tad
− Algebra of admissible trees 54

T sym
− Symmetrised Hopf algebra of properly legged trees 55

T̂ ex,sym
− Symmetrised algebra of properly legged trees 55

T sym
♠ Hopf algebra isomorphic to T− 56

T ex Enlarged regularity structure 76
𝒯 Set of trees 19
𝒯− Set of trees of negative homogeneity 20
𝓣−𝓣−𝓣− Set of trees of negative homogeneity with legs 47
𝔗− Subset of 𝒯− 37
𝑇ℎ Shift operator 21
V Set of trees appearing in Assumption 5 30
V0 Set of 𝜏 ∈ 𝒯− with �𝜏�𝔰 = 0 and #𝐿 (𝜏) = 2 30
Ψ Set of functions indexed by typed sets 48
Υ𝜂 𝜏 E(𝚷𝜂 𝜏) (0) 21
Υ̃𝜂,𝜓
𝑅 𝜏 Evaluation using large-scale kernel assignment R 42
Ῡ𝜂,𝜓
𝑅 𝜏 Like Υ̃𝜂,𝜓

𝑅 𝜏, acting on trees with legs 48
Υ̂

𝜂,𝜓
𝑅 𝜏 Renormalised evaluation acting on trees with legs 48

𝝋 Hopf isomorphism T− → T sym
♠ 56

Z(𝚷) Model constructed from 𝚷 20
𝑍c ( 𝑓 ) Canonical lift of f to an admissible model 21
𝒵 (𝑔) R𝑔𝑍 (0) 33
Ω∞ Space of smooth deterministic noises 21
Ω Space of rough deterministic noises 22
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E. Overview of assumptions

# Summary Page

1 Ensures that the general theory of [BCCH17] applies 6
2 Assumption necessary for the BPHZ theorem [CH16] 20
3 Rules out derivatives hitting noises, as well as direct products of noises 20
4 The integration kernels are homogeneous 20
5 BPHZ character vanishes on 0 degree subtrees of 0 degree trees 30
6 BPHZ character vanishes on 0 degree trees with only two leaves 31
7 The ideal J is a Hopf ideal 33
8 The BPHZ character is ‘almost’ an element of H 33

Assumptions 1, 2 and 3 are needed for the results from [BCCH17] and [CH16] to apply. Assumption 4
on the scale invariance of kernels is crucial for our argument in Lemma 5.10, which gives lower bounds
on the blowup of certain renormalisation constants. Assumption 5 is needed for a technical argument in
Lemma 5.23. Finally, we show in Section 4 that Assumption 6 implies Assumptions 7 and 8. We believe
that the latter two assumptions are satisfied for all naturally occurring classes of SPDEs.
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