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A MEASURE ON THE UNIPOTENT VARIETY 

JAMES ARTHUR 

Introduction. Suppose that G is a reductive algebraic group defined over 
Q. There occurs in the trace formula a remarkable distribution on G (A)1 

which is supported on the unipotent set. It is defined quite concretely in 
terms of a certain integral over G(Q)\G(A)1. Despite its explicit 
description, however, this distribution is not easily expressed locally, in 
terms of integrals on the groups G(QV). For many applications of the trace 
formula, it will be essential to do this. In the present paper we shall solve 
the problem up to some undetermined constants. 

The distribution, which we shall denote by /un ip , was defined in [1] and 
[3] as one of a family {JT} of distributions. It is the value at T = T0 of a 
certain polynomial J^p. We shall recall the precise definition in Section 
1. Let us just say here that f o r / e C^°(G(A)]), J^n\p{f) is given as an 
integral over G(Q)\G(A)1 which converges only for T in a certain 
chamber which depends on the support of/. This is a source of some 
difficulty. For example, since Jun[p(f) is defined by continuation in T 
outside the domain of absolute convergence of the integral Jun[p(f), it is 
not possible, a priori, to identify 7unip with a measure. This will be a 
consequence (Corollary 8.3) of our final formula for «/unip. 

We shall work indirectly. From [3] we understand the behaviour of /u n i 

under conjugation. If y is any point in G(A)1, we have 

(i) - w / " ) - ^ i<eii<r'/u%(/ô,,). 

(See Section 1 for a description of the undefined symbols.) On the other 
hand, for any finite set S of valuations of Q, there are some distributions 
on G(QS) which have the same behaviour under conjugation and which 
can be expressed locally in terms of integrals on the groups G(QV). They 
are the weighted orbital integrals 

JM(y,f), f^ C™(G(Qs)
]ly G M(QS) n G(QS)\ 

in which M is a Levi component of a parabolic subgroup of G. The 
definition of these objects, which is somewhat tricky for general y, will be 
given in the paper [6], along with the conjugation formula 
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1238 JAMES ARTHUR 

(2) JM(y,f)= 2 jfr(y.fQ,y). 

Our strategy is to find a linear combination of weighted orbital integrals 
which differs from Jun[p(f) by an invariant distribution. 

Assume that S contains the Archimedean valuation. We can identify 
C^(G(QS)

]) with the subspace of functions in C^GCA)1) which equal 
the characteristic function of a maximal compact subgroup away from S. 
Suppose for the moment that G has Q-rank 1 and that M is the minimal 
Levi subgroup. Consider the distribution 

(3) - W / ) - \ vo l (M(Q) \M(A)V w ( l , / ) , / e C~(G(QS) ') . 

Since 

\<\ l < r ' ^ l P ( g ) = \ vol(M(Q)\M(A)')g(l) 

= ]-vo\(M(Q)\M(\)])J%(\,g) 

for any g e C^°(M(Q5)1), the distribution (3) is invariant. It also 
annihilates any function which vanishes on the unipotent set in G(QS) . 
From this one can show that (3) equals a linear combination 

2aG(S,u)JG(u,f) 
u 

of invariant orbital integrals over the unipotent conjugacy classes in 
G(QS)

]. Thus, Jun[p(f) may be written as a linear combination of 
(weighted) orbital integrals. If G is of general rank, a similar argument can 
be made. The combinatorics are reminiscent of those involved in putting 
the trace formula into invariant form, and are actually a special case of 
Proposition 4.1 of [3]. We present them in Section 8. 

We summarize our results as follows. There are unique constants 
{aM(S, u) }, defined for every M which contains a fixed minimal Levi 
subgroup M0 and every unipotent conjugacy class u in M(QS), such that 

Junip(f) = 2 2 \<\ \W%rlaM(S, u)JM(u,f), 
M u 

for a n y / G CC(G(QS)
]). Moreover, aM(S, u) vanishes unless u is the image 

of a unipotent class in M(Q). Finally, 

aM(S9 1) = vo\(M(Q)\M(A)]) 

for any M and S. 
It is the latter two assertions which cause most of the trouble. The 

problem is essentially the one mentioned above. That is, Jun[Jf) is defined 
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in terms of the polynomial Jun[p(f), which in turn is given by a concrete 
expression only for certain T depending on/ . We confront the difficulty in 
Theorem 3.1. We find a second expression, which approximates Jun[Jf) 
for large T, but which is defined for T in a domain which is independent of 
/ . This second expression readily decomposes into a sum of terms, indexed 
by the unipotent classes U of G which are defined over Q. Theorem 4.2 
then asserts that the term corresponding to a given U is asymptotic to a 
unique polynomial JT

V (f) in T and hence that 

/LpOO = 2 Jl(f). 
u 

Theorem 4.2 is the heart of the paper. Taken with its Corollaries 4.3 and 
4.4, it provides the means for us to finally prove the required properties of 
the constants {aM(S, u) } in Section 8. 

Most of the burden of the proof of Theorem 4.2 falls into a technical 
result, Lemma 4.1. In Section 5 we reduce Lemma 4.1 to a kind of lattice 
point problem (Lemma 5.1). Lemma 5.1 is then proved in Section 6, by 
combining various elementary estimates with the Poisson summation 
formula. 

Finally, we mention that/u n i , and more generally the distributions {J0}, 
are dual to the distributions {Jx} in the trace formula which come from 
Eisenstein series. The problem of finding a local formula for Jx(f) was 
solved in [4] and [5]. It is worth noting that some of the results of this 
paper have direct analogues for the distributions {Jx}. For example, 
Theorem 3.1 corresponds to Theorem 3.2 of [2], while Theorem 4.2 
corresponds to Proposition 5.1 of [4]. We comment further on this in 
Section 2. 

1. The distribution / u n i p . Let G be a reductive algebraic group defined 
over Q. We fix a subgroup M0 of G which is defined over Q and which is a 
Levi component of a minimal parabolic subgroup of G defined over Q. Let 
J^be the set of parabolic subgroups of G which contain M0 and are defined 
over Q, and let «£?be the set of subgroups of G which contain M0 and are 
Levi components of groups in &. Suppose that ? E j ^ Then we write 

P = MPNP 

where NP is the unipotent radical of P and MP belongs to J£ Let AP = AM 

be the split component of the center of Mp. If X(MP)Q is the group of 
characters of MP which are defined over Q, 

aMP = aP = Hom(X(MP)Q, R) 

is a real vector space whose dimension equals that of AP. It can be 
regarded in a natural way as both a quotient and a subspace of aM . We 
shall usually write A0 = AM and a0 = aM . 
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We shall also fix a maximal compact subgroup K of the adèlized group 
G(A) which is admissible relative to M0 in the sense of Section 1 of [3]. 
Then for any P we have the usual function HP from G(A) to aP. (See [1], 
p. 917.) As in previous papers we write G(A)1 for the kernel of HG in G(A). 
Then G(Q) is a discrete subgroup of G(A)1 such that G(Q)\G(A)1 has 
finite invariant volume. 

Unless otherwise specified, any integral on a group or homogenous 
space will be with respect to the invariant measure. Such measures are of 
course determined only up to scalar multiples, which we prefer not to 
normalize. We assume only that in a given context they satisfy any 
obvious compatibility conditions. 

The distribution we will study is one of those introduced in [1]. It 
depends on a minimal parabolic subgroup 

P0 = M0NQ 

defined over Q. It also depends on a point T in a0 , the positive cham
ber in Q0 associated to P0, which initially is suitably regular in the sense 
that its distance from the walls of a0 is large. Let <%G denote the Zariski 
closure in G of the unipotent set in G(Q). It is a closed algebraic 
subvariety of G which is defined over Q. The set 

of rational points in °UG consists, of course, of the unipotent elements in 
G(Q). It is one of the equivalence classes in G(Q) defined on p. 921 of [1]. 
Let 

'Lp(/> = ^ ( A f^ OG(A)1), 
be the corresponding distribution. We shall briefly recall its definition. 

The minimal parabolic subgroup P0 will be fixed from Sections 2 to 6. 
During this time all parabolic subgroups P will be understood to 
contain P0. For any such P9 following Section 1 of [1], we let AP denote 
the simple roots of (P, AP) and we let AP denote the basis of aP/aG 

which is dual to the simple "co-roots" {av:a e A^}. If / e C^CGCA)1) 
and T e a0 is suitably regular, J^nipif) ^s the integral over x in 
G(Q)\G(A)1 of the function 

2 ( - l ) d W ^ 2 A>fUnip(*jc, 8x)îP(HP(8x) - n 
P 8eP(Q)\G(Q) 

where rp is the characteristic function of 

{H G a0 :a(/ /) > 0, a G Âp}, 

and 

Kp,umP(y> y) = 2 / (AJ(y~lyny)dn. 
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As a function of T, J^n[v{f) is a polynomial of total degree at most 

d0 = dim a0. 

(See Section 2 of [3].) Its definition can therefore be extended to all 
T G Û0. There is a point T0 in a0, determined uniquely by K and M0, such 
that the distribution 

•Ainipv/) = ^un ipv / ) 

is independent of P0. (See Section 1 and Section 2 of [3].) In Sections 7 and 
8 we will confine our attention to this distribution, and we will forget 
about P0. Then parabolic subgroups will be taken from the set ^ as for 
example in the formula 

(i.i) Junip(f)= 2 \wft\\w$\-lj%(fQj, 

which describes the failure of Juni to be invariant under conjugation by 
elements y in G(A)1. (Theorem 3.2 of [3].) Here W% stands for the Weyl 
group of (G, A0)9 and 

is the transform from C™(G(A)1) to C™(MQ{\)X) defined by formula 3.3 
of [3]. 

2. A remark on the truncation operator. The distribution / u n i p arises 
from the trace formula. It is the most troublesome of those terms in the 
formula which are associated to conjugacy classes. The terms on the other 
side of the trace formula are associated to "cuspidal automorphic data" x, 
and have been evaluated explicitly in [5]. The two kinds of terms are in a 
sense dual to each other, and it is worthwhile to look for analogies 
between them. 

We obtained J^Jif) by integrating an alternating sum over standard 
parabolic subgroups. A similar alternating sum occurs in the definition 
of the distributions JÏ(f) ( [2], p. 107). However, to actually calculate 
Jx(f) we had to introduce a second formula (see [2], Lemma 2.4 and 
Theorem 3.2), based on a truncation operator. We showed that J^(f) 
could be obtained by taking the leading term Kx(x, x) in the alternating 
sum, truncating in each variable separately, and then integrating. We shall 
do a similar thing for J^Jf) in the next section. The situations are not 
entirely analogous, for in this case the second formula will be asymptotic 
rather than exact. Moreover, it will be used in a somewhat different 
way. 

The leading term in the alternating sum for / u n i p ( / ) is 

^unip(*> * ) = *G,unip(*. * ) = 2 f(x~Xyx). 
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It is the restriction to the diagonal of a function of two variables, but 
unlike Kx(x, JC), it is not left G(Q)-invariant in each variable separately. It 
is therefore more appropriate to truncate over the diagonal rather than in 
each variable separately. We shall show that the integral of the resulting 
function can be rewritten in a more elementary way. 

If Px c P2 are (standard) parabolic subgroups, we write A™ 
for Ap (R)°, the identity component of AP (R), and 

AfiJ>2 = AP] n M^A) 1 . 

Then Hp maps A™P isomorphically onto a£2, the orthogonal comple
ment of up in aP. If Tx and T are points in a0, set A^P(TU T) equal to 
the set 

{a G A™p2:a(HP](a) - Tx) > 0, a e A^; 

®(HP](a) - T) < 0, a G Ap2}, 

where as in [1], 

àp] = àP]nMP! and Â£ = Â , ^ 

From now on we shall fix Tx so that —Tx is suitably regular. (In [1] we 
denoted this point by T0. In this paper we have agreed that T0 should stand 
for the point defined by Lemma 1.1 of [3].) Suppose that T is suitably 
regular. We define 

F(x, T) = FG(x, T) 

as on p. 941 of [1]. It is the characteristic function of the compact subset of 
G(Q)\G(A) obtained by projecting 

JV0(A) • Mo(A)1 A^G(TX,T)K 

onto G(Q)\G(A)1. 
The truncation operator AT is defined on p. 89 of [2]. It maps certain 

functions on G(Q)\G(A) ] to functions on G(Q)\G(A)1 which are rapidly 
decreasing. 

LEMMA 2.1. A \G = F(-, T), where \G is the function which is identically 
1 on G(Q)\G(A)1. 

Proof. The formula is a consequence of Lemma 6.4 of [1] and Lemma 1.5 
of [2]. For the first lemma states that 

2 2 Fp(8x, T)rp(Hp(Sx) - T) = 1, 
P 8^P(Q)\G(Q) 

where rP is the characteristic function of 

{// G a0:a(H) > 0, a G AP} 
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and 

Fp(nrnk, T) = FMp(m, T), n G NP(A), m G MP(A), k G K. 

The second lemma tells us that for all x, 

2 2 (AT'P\G)(ôx) • TP(HP(8X) - T) = 1, 
/> 5eP(Q)\C(Q) 

where A r , p is the partial truncation operator defined on p. 97 of [2]. Our 
result is immediately obtained by induction. 

T 
unip' Our second formula for J^n[Jf) will be in terms of 

<2-!> X(Q,\C(A,' A ^ u n i p U X)dx, JG(Q)\G(A)1 

where A^ refers to the truncation operator acting on the diagonal. 

LEMMA 2.2. The integral (2.1) is equal to 

W X(Q)XC(A)1F(x,r)(^2Q)/(x-'yx))^. 

Proof. Set 

k(xj) = Kump(x, x)= 2 f(x-]yx). 

Any left invariant differential operator on G(R)1 transforms k(x,f) to a 
finite sum of functions of the form 

*(*,/•). / e C"(6(A)'). 
This follows from the chain rule and the definition of Kunip(x, x). 
Therefore by Lemma 1.4 of [2] and Lemma 4.3 of [1], ATk(-,f) is rapidly 
decreasing. In particular, it is integrable over G(Q)\G(A)1. Writing (•, •) 
for the inner product on L2(G(Q)\G(A)]), we see that (2.1) equals 

(ATk(;f)9 lc) 

= ((AT)2k(-Jl\G) 

= {ATk(-J\AT\G) 

by two results of [2] (Corollary 1.2 and Lemma 1.3). But A r l c is of course 
also rapidly decreasing, so we can repeat the argument. We obtain 

(ATk(;f), AT\G) 

= (k(;f),(AT)2\c) 

= (k(;f), AT\G) 

= {k(;f),F{;T)), 
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by Lemma 2.1. This last inner product is just (2.2). 

The variety °UG is a finite union of (geometric) unipotent conjugacy 
classes of G. The Galois group, Gal(Q/Q), operates on these conju
gacy classes. We shall write (°l/G) for the set of Gal(Q/Q)-orbits. Then any 
U e (<%G) is a locally closed subset of G, which is defined over Q, and 
which consists of a finite union of unipotent conjugacy classes of G. It is 
clear that if R is any ring which contains Q, *%G(R) is the disjoint union 
over U e (qiG) of the set U(R). In particular, we can write 

^unipC*' x) = 2J Ka(x, x), 

where 

Ka(x, x) = 2 f(x~lyx). 

In Section 4 we shall use this as a starting point to construct a 
decomposition o f /„ n i ( / ) . Observe that if Ky{x, x) does not vanish, the 
set U(Q) is not empty, and U consists of a single unipotent conjugacy 
class of G. 

The following lemma is proved exactly as the last one. 

LEMMA 2.3. For any U e (<%G), 

/ , G(Q)\G<A>' AdKu(*> X)dx 

equals 

3. An alternate characterization. Fix a Euclidean norm ||-|| on a0, and 
set 

d(T) = min {a(T) }. 
aGAp 

In this section we shall let T vary over suitably regular points such that 

d(T) ^ colim, 

for some fixed positive number €0. 

THEOREM 3.1. There is a continuous semi-norm \\-\\ on C ^ ( A ) K such 
that 

r 
AinipC/) ~ JG(Q)\G(\)] AdKump(x> X)dx e-(d(T)/2) 

for all/e O G ( A ) 1 ) . 
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Proof. The theorem is a refinement of Theorem 7.1 of [1]. We will need 
to go over the proof of this result, taking o = ^ ( Q ) , and keeping track of 
the dependence on / and T. 

In the proof of Theorem 7.1 of [1] it was established that /unip(/) c o u l d 
be written as a sum over standard parabolic subgroups Px c P2 of terms 
involving the function 

F\nmk) = FM\m), n e A^(A), m e mPj(A), k e K, 

and the characteristic function Op2 on a0 defined on p. 938 of [1]. The 
term corresponding to Px = P2 equals zero if Px ^ G, and equals 

if P] = G. Consequently (see p. 945 of [1] ), 

k v / ) - L ^ ^ TiyJc(Q/ix~]yx))dx\ 
is bounded by the sum over [Ph P2'.P\ Ç Z^} of 

ye*,(Q) fen^(Q)' 

where we have set 

*i(Q) = % ( Q ) = *c(Q) n ^ , ( Q ) . 

and 

*«(^. r ) = lp(X)f(y~'m « P W - V W <x> Y) )dx> Y G M*), 
for y e G (A) and m e MP (A) . (Here nP is the Lie algebra of NP and 
the symbols n£2(-)', and (•, •) are as defined on p. 945 of [1].) Note that 
®m(y, •) is a Schwartz-Bruhat function on nP (A) which varies smoothly 
with m and j \ Moreover, if y remains within a compact set, ®m(y, ) will 
vanish identically for all m outside a compact subset of MP (A)1. 

As in [1] we will use the decomposition 

P,(Q)\G(A)1 = NP(Q)\NP(A) X MP(Q)\MP(A)1 X A^>G X K 
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to rewrite the integral in (3.1). It will also be convenient to decompose 
the resulting integral over Mp(Q)\MP(A)]. Any element in this coset 
space on which the function Fpi(-, T) does not vanish has a representative 
in 

(N0(A) • A%Px(Tl9 T) • Mo(A)1 • K) n M^A) 1 . 

Therefore (3.1) is bounded by the integral over k e K, 

a e AZPST^ r ) ' a' G A°PvG 

and m, n and «" in fixed compact fundamental domains in M0(A) , 
N0(A) O Mp(A)1 and NP(A) respectively, of 

8PMa)-lo%(HP(a') - T) • 2 2 |$Y(/i ' 'miWr, f) |. 
ye^(Q) £€=ftJj(Q)' 

(Here, SP is the modular function of P0(A).) In view of the definition of $, 
we can write 

\<by(n"na'amk, f) | = \$y(na'amk, f) | 

= |$y(fl'fl • (ctayxn(a'a)mk9 f) | 

= «^(fl'fl) l*fl-iyfl( ( f l ' f l ) " ^ ^ ^ ) ^ , Ad(û'fl)?) |. 

If we assume that oP
2(HP(a') — T) is not zero, the projection of 

Hp(a'a) — T onto a p will belong to a translate of the positive chamber. 
(See Corollary 6.2 of [1], and if necessary the discussion below on the 
decomposition of the vector HP(a'a).) This means that { (a'a)~xn{a'a) } 
will remain in a fixed compact set. Since 

8Po(a'a) = SPf}Q(a) • 8Pi(a'a), 

we see that (3.1) is bounded by the integral over a' e A°£G and 
a e A%Pi(Tt, T) of 

(3.2) « 5 ( A ) - ' 2 o&(HP(a') - T) 
ye*,(Q) 

X S U<l>a-*yJi;y> Ad(a'a)f) | ^ , 

where Jy stands for a Radon measure on a fixed compact subset T of 
G(A)1. 

In order to estimate the sum over y in (3.2) we will need a familiar 
lemma. As explained in Section 5, it can be regarded as a special case 
of a future result (Lemma 4.1), whose proof will be given in Sections 5 
and 6. 

LEMMA 3.2. Suppose that <f> is a bounded, nonnegative function on G(A) 
of compact support. Then 
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Sp(a) ] 2 <t>(a lya) 

is bounded independently of a in the set 

A?IJX) = (a s A™:a(HPo(a) - Tt) > 0, a e A,,}. 

Assuming the lemma, we proceed to estimate (3.2). Let 

be a decomposition of nP
2 into eigenspaces under the action of A0. Each À 

stands for a linear function on a0 which vanishes on the subspace aPy 

Choose a basis of n/>2(Q) with respect to which (,) is the standard positive 
definite inner product, and such that each basis element lies in some 
nx(Q). The basis gives us a Euclidean norm on n£2(R) and allows us to 
speak of nP

2(Z) and rix(Z). Fix a large integer n. It follows from Lemma 
3.2 (applied to the group MP) and the properties of the function 
&m(y, Y) that (3.2) is bounded by an expression 

(3.3) \\f\\xo%(HP(a') ~ T) 2 | | A d ( ^ K I H . 

Here 11 -111 is a continuous semi-norm 

k 

(3.4) Il/H, = C / 2 sup \(Xlf)(x)l 

where cy-is a number which depends only on the support of / a n d each Xi 

is a left invariant differential operator on G(R)1. The number 

N(/) = n^(/) 

p 

is a positive integer determined by the support of $m(y, •) at the finite 
completions of Q. Defining it in terms of the Fourier transform of 
®m(y> ")> w e t ake n (f) to be the smallest nonnegative integer such that 
the function 

X^f(y-]me(X)y), X e n^(A), 

is invariant under 

{Xp e n^Q,):!!*,!! , ê / T ^ / ) } 

for a\\ y ^ Y and m G M^(A)1. (The norm on n£2(Q ) is the natural one 
associated to our basis of n£2(Q).) 

Now each X above is a unique nonnegative integral combination of the 
simple roots A^2. Suppose that S is a subset of elements X with the prop
erty that for any a in the complement of A^1 in AP

2, there is a X in S 
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whose a co-ordinate is positive. Let %(Q) ' be the set of those elements in 
nP

2(Q) whose projections onto nx are nonzero if X belongs to S, and are 
zero otherwise. Then the sum over n£2(iV(/)_1Z)' in (3.3) can be replaced 
by the double sum over all such S and over f in ns (N(f)~]Zy. Clearly 

2 \\Ad(a'a)S\rn 

$ens(N(f) ]ZY 

^Ux.s 2 , \\Ad(a>a)i\rns 

^nx(N(f) ]Zy 

X^nx(N(f)-]Zy / 

where nx(N(f)~]Zy is the set of nonzero elements in nx(N(f)~]Z) and ns 

is the quotient of n by the number of roots in S. For large enough n this 
last expression is bounded by a constant multiple of 

N(ff ' I I e~"sMHp»{a'a)). 

It follows that (3.2) is bounded by 

(3.5) Il/H, • N(ff • ofrHpiaT) - T) U e~k^H^a)) 

where \\-\\x is of the form (3.4), n is a positive integer, and each ka is a 
nonnegative integer which is positive if a belongs to the complement of 
An1 in An2. 

M) M) 

We can decompose the vector 

HPya) = HPi(a') + HPo(a) 

as 

( 2 tffl} + / / * ) - ( 2 r8ôA + T9 

where /^ and rs are real numbers and H* is a vector in aP. (As in [1], 
{£5^} stands for the basis of aft which is dual to {/? e A^2}.) The point 
a belongs to A°£ p{Tx, T) so that for each 8 e Ap1, the number r8 is non-
negative and 

8(HP(a'a)) = 8(HP(a)) i? 8(TX). 

We are trying to estimate the integral of (3.5), so we can certainly assume 
that the number 

o%(HP[(a>) -T) = o%( 2 „ tfâ + H*) 
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is not zero. It follows from Corollary 6.2 of [1] that each tp is positive and 
that H* belongs to a compact subset whose volume can be bounded by 
some polynomial, say 

n pup), 

in the numbers {^}. Finally, recall that each root a e A P
2 \ A ? ' projects 

onto a unique root /? e Ap2, and that a(5v) ^ 0 for each 8. It follows 
from these facts that 

Yl e~
k«a{Hpta'a)) ^ c{Tx) I I e-ka<fipSa'a)) 

a G An2 a e An2 \ An1 

M) r ( ) M) 

^ C(7i) I I e-°Wfl>> 
aeA' ! \Ap' 

0eA£2 

where 

5GA 

a constant that depends only on Tx. We conclude that the integral over a! 
and a of (3.5) is bounded by a constant multiple of the product of 

11/11, • iv(/)» • voi(^Pi(ro, D ) 
and 

E, (.-*" />*-'«*»)• 
/8GA 

The second expression is certainly bounded by a constant multiple of 
e~d{T)^ jfo volume of A™ P(T]9 T) is certainly bounded by a polynomial 
in | |r | | . Taking into account our constraints on T, we see that the integral 
of (3.5) is bounded by a constant multiple of 

(i . N(fr . e-«T>nK 

Incorporating the constant into |H|j, we obtain this quantity as a bound 
for our original expression 

'£*,(/) - /C(Q)XC(A)1 H*, T)(^Q) f(x-*yx))dx\. 

Recalling Lemma 2.2, we see that Theorem 3.2 follows with 

ll/ll = 11/11, • N(ff. 
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We shall later want to truncate functions / around certain conjugacy 
classes. This will require that we evaluate the semi-norm ||-|| of the theorem 
at certain functions obtained from/. Fix a valuation v of Q. If v is discrete, 
define 

Pv:R -» R 

to be the characteristic function of the interval [—1, 1]. If v is 

Archimedean, let pv be any fixed function in C^°(R) which vanishes out

side the interval [—1, 1], which equals 1 on the interval — - , - and 

takes values between 0 and 1 at all other points. Suppose that q is a 
polynomial function which is defined over Q. For a n y / e C^0(G(A)1) and 
« > 0, consider the function 

/',„(*) = f{x)pv{t-\(x)\v), x e G(A)\ 

where \q(x) |v is the absolute value of the v component of the adèle q(x). It 
also belongs to C™(G(A)]). We would like to study | | / < J . 

We saw that we could take 

(3.6) 11/11 = 11/11, • AW, / e C(G(A)'), 
where | | | | , is the semi-norm (3.4) and N(f) is the positive integer defined 
in the proof of the theorem. 

COROLLARY 3.3. There is a positive integer m, and another semi-norm ||-||' 
of the form (3.6) such that 

n/;,vii ^ <_ 

for allf e C?(G(A)1) and c with 0 < e ^ 1. 

Proof. If v is Archimedean, N(f€ ) = N(f). The corollary then follows 
immediately from the formula (3.4) and the chain rule. 

Suppose that v is discrete. It is clear that 

ll/;,vlll = H/Hl, 

so we need only study the integer 

JV(/€,,v) = II/A<A->. 
P 

Moreover, n (f€ ) = n ( / ) unless/? is the rational prime which defines v. 
Assume then that this is the case. Take an embedding G c GLN into a 
general linear group defined over Q. There is a positive number t0 such 
that for any e > 0 the function 

x -> pv(t~
]\q(x) |v), x G supp(Z), 

is bi-invariant under 
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{kv e GLN(QV) n G:\kv - I\v < t0e}. 

(Here / stands for the identity matrix in GLN(QV).) Choose parabolic 
subgroups Px Ç P2, and recall the notation of the proof of the theorem. It 
is easily established from the property above that there is a positive 
number t} such that for any £, 0 < e ^ 1, the function 

X-*flv(y-'mexp(X)y) 

is invariant under 

{Xp G 9lp
P](Qp):\\Xp\\v =i min[(f ,e) , / rV/>]} 

for all j G I\ m e AfP|(A)' a n d / G Cf(G(A)'). Consequently 

pipi/l,) g m a x [ ( ï ] £ ) - \p"p(f)) 

srj-»e-y^>. 
The corollary follows. 

4. More distributions. We shall show that Ju n i p can be decomposed 
into a sum of distributions indexed by the orbits in (°UQ). This is in rather 
close analogy with what was done in Section 5 of [4] for the distributions 
JT

X. First, however, we must state a lemma. 
Fix an orbit U e (<%G). Its Zariski closure U is a closed subvariety of G 

which is defined over Q. The ideal of polynomial functions on G which 
vanish on U is of the form {qx,. . . , qf), where qv . . . , q( are polynomials 
on G defined over Q. We have 

JJ = [x G G\qx(x) = . . . = qt(x) = 0}. 

Fix a valuation v of Q, and recall the functions pv defined in Section 3. For 
a n y / G C™(G(A)]) and € > 0, define 

(4.1) PUv{x) =f(x)Pv(€-l\q](x) |v) . . . p v ( € ~ V * ) U x e G(A)1. 

Then f€
Uv also belongs to C^GCA)1). Observe that it equals / o n a 

neighborhood of the set U(A). 

LEMMA 4.1. There is a positive number r and a continuous semi-norm ||*|| 
on C^°(G(A)]) such that for any e > 0, 

X(Q)\C(A)' F<*' T) 2 - \fu,M~^)\dx 
. / O ( W A O I A ) yeC(Q) \ t / (Q) 

g|i/ik r(i + i i m A 

/or each f e C^°(G(A) ) Û«J e^c/j suitably regular T. 

The proof of this lemma is quite long and will be given in Sections 5 and 
6. Assuming it in the meantime, we will establish 
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THEOREM 4.2. There are distributions 

[Jl-.U £(%)} 

which are polynomials in T of total degree at most d0 such that 

(4.2) 7u
r
ni ( / ) = 2 4 GO, / e C™(G(A)1), 

u 

and which satisfy the following property. There is a continuous semi-norm 
on C^(G(A) ) and positive numbers t0 and € such that 

(4.3) JvW - X(Q)\C(AV A ^ * . *** 
e-«HT) 

for all U e (^G), / e C^°(G(A) ) and every suitably regular T with 
d(T) S e0||r||. 

Remark. Since it is a polynomial in T, Jv ( / ) is uniquely determined 
by the inequality (4.3). In particular, Ju annihilates any function which 
vanishes on U(A). Moreover, ŷ y is zero if U(Q) is empty. 

Proof Fix an orbit U e (<%G) and let v be any valuation of Q. We shall 
construct J v by examining the behaviour of 

'unip(/ï/,v)> / e C f (G(A)1), 

as c approaches 0. 
We would like to estimate 

(4.4) 

where 

'Lp( / î / ,v ) - X(Q)y;<A)' A j ^ ( x , x ) r f x 

A^Cx, x) = 2J _ K^ix, x). 

Invoking Lemma 2.3, and observing that 

K0(x,x)= 2 f(x~]yx)= 2 fuv(x~]y*)> 

we bound (4.4) by the sum of two expressions, 

k n , P ( / U - /G ( Q ) X C ( A ) , Fix, T)( J r a ^ y x ) )<tx\ 

and 

<Ye^c(Q) 

* / 0 ( g A ° ( A ) ye4rc(Q)\f/(Q) 

The first expression has a bound 
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ll/ï,>-W7*2) 

by Theorem 3.1. This in turn is bounded by 

e-Im\\f\\'e-(d(T)/2\ 

with |H|' a continuous semi-norm on C^°(G(\)1), as we can see with / 
applications of Corollary 3.3. In the second expression we can sum over 
G(Q)\D(Q) instead of ^G(Q)\É7(Q), and then use the estimate provided 
by Lemma 4.1. It follows that there is a positive integer k = Im and a 
continuous semi-norm ||-||' on C^°(G(\)1) such that (4.4) is bounded by 

(4.5) ||/ir(c"^-(l/(r)/2) + cr(i + ||r||)*). 
In the expression (4.4) we set 

€ = e(n) = 8", n = 1,2, 3 , . . . , 

for any number 8 with 0 < 8 < 1. The result is bounded by 
||y||/^|log«|/c/i-(£/(r)/2) + 5™(1 + 11711)̂ 0). 

This in turn can clearly be bounded by an expression 

(4.6) ii/ii • srn • (i + i i m A 
provided that 

d(T) S C|log 8\n, 

with C some positive constant and ||*|| a continuous semi-norm on 
C^°(G(A)1). Consider this last estimate for two successive values of n. We 
obtain an inequality 

\J unipU U,v ) J unipW u,v ) I 

S2ii/imi +imiA 
valid for any positive integer « and any r with 

d(T) > C|log 6| (n + 1). 

But 

•'unipW U,v) JunipU £/,v ) 

is a polynomial in T of total degree at most d0. By interpolating, (see [4], 
Lemma 5.2), we can estimate its absolute value without the restriction on 
T. We obtain a constant A such that it is bounded by 

A - H/ll • 8rn • ( |log 5| (n + 1 ) ) * - ( 1 + i m i ) * 

for all T. Observe that 

oo 

2 8r"( |log 5| (« + 1) )rfo 
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is bounded by a constant multiple of Srn/ . By telescoping the last 
estimate, we see that the sequence 

VLpiftfr" ==1.2,...} 
converges. Let Jy(f) denote its limit. It is a distribution in / , and a 
polynomial in T of total degree at most d0. Moreover, the quantity 

(4-7) Ul^ffJ) - JTD(f)\ 
is bounded by a constant multiple of 

ii/ns™/2(i + i imA 

for al l / , 8, n and T. 
Finally, we combine the estimate for (4.7) with the bound (4.6) of our 

original expression (4.4) (with e = e(n) ). Fix 5, and for a given suitably 
regular T take n to be the largest integer such that 

d(T) â C|log 8\n. 

We find that we can define | | | | and also redefine € > 0, so that 

(4.8) J0(f) ~ I(Q)\C(A). ^D(X,x)dX\ ^ ll/lk-'-™. 
In particular, Jg{f) is independent of v as the notation suggests. 

Now U(Q) is the disjoint union, over those orbits U e (°UG) which are 

by 
contained in [/, of the sets U'(Q). Define Ju(f) by induction on dim U 

Jl(f) = Jo(f) - 2 jUf). 
{U'czUiU'^U} 

Since (°UG) is finite, the required inequality (4.3) follows from (4.8). The 
required property (4.2) follows immediately from (4.3) and Theorem 3.1. 

The following corollary will be especially important to us. 

COROLLARY 4.3. The distribution 

JTu(f) = 2 Jlr(f) 

equals 

l i m JuniP(/l/,v)' 

for any valuation v of Q. In particular, the limit is independent of v and 
annihilates any function which vanishes on U(X). 

Proof Set n = 1 in the estimate for (4.7) given in the proof of the 
theorem. We see that there is a continuous semi-norm | | | | and a positive 
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number r0 such that 

(4.9) \jT
D(f) - yLp(/î/,v) I s 11/11 • «r° • (i + \\n )d° 

for all / , T and 8 > 0. The first assertion of the corollary follows. If / 
vanishes on U(\) it vanishes on each of the spaces U'(A), and so each 
Ju>(f) equals 0. This gives the second assertion. 

Of particular interest is the case that U = {1}, the class of the identity 
element. The corresponding distribution has a simple formula. 

COROLLARY 4.4. JT
[x)(f) = vol(G(Q)\G(A)1)/(l). 

Proof. If U = {1} we have 

X(Q,\6(A, A f o < * ' *>* « X(Q)\C(A,' *"<*' T)dx-f(l), 
by Lemma 2.3. This approaches 

vol(G(Q)\G(A)') / ( l ) 

by the dominated convergence theorem. The corollary is then a con
sequence of the theorem. 

5. Reduction of lemma 4.1. We have still to establish Lemma 4.1, as well 
as Lemma 3.2 from Section 3. In this section we shall reduce the proofs to 
that of a third lemma, whose proof will be the content of the next section. 
Actually, Lemma 3.2 is much easier. It is essentially a special case of 
Lemma 4.1, so most of our discussion will concern this second result. 

Lemma 4.1 pertains to the func t ion /^ defined by (4.1). We are 
required to estimate 

jL)\c(A)' F(*> r> 2 _ \ffuM~xyx) \dx. 

This is bounded by the integral over k e K, a e ^4/?G(TO> ^) an(^ m anc* 
n in fixed compact fundamental domains in M0(A) and N0(A) respective
ly, of 

SP(a)-] 2 \f€
Uv(k'lm-la-ln-[ynamk) |. 

y^G(Q)\U(Q) 

Since {a~]na} remains in a fixed compact set, the original expression will 
be no greater than 

ic (r>»<a)" 2 /r IA.(>-,«-W)I4M«, 

where dy stands for a Radon measure on a fixed compact subset 
T of G(A)1. This in turn is evidently bounded by the integral over 
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^ c ( r „ r ) o f 

(5.1) SPn(a)-x 2 Ha~]ya), 

where 

° y^G((a) 

ro 

G€(a) = {y e G(Q)\ I / (Q) : inf sup |9/(j> ^ ]yay)\v^e) 

and 

<K*) = fT\f(y~lxy)\dy. 

The volume of A™G(TU T) is bounded by a multiple of (1 + | | r | | f 
Therefore, to complete the proof of Lemma 4.1 it would suffice to bound 
(5.1) independently of a e A^T^ by cer, where r is a positive constant 
and c is a positive number depending only on <j>. We might just as well take 
<t> to be an arbitrary bounded nonnegative function on G (A)1 of compact 
support. Notice that (5.1) is similar to the expression to be estimated in 
Lemma 3.2. If we include the case that U is the empty set, with 

qx = . . . = q( = 1, 

the required estimate for (5.1) will also provide a proof of Lemma 3.2. 
Let P be a (standard) parabolic subgroup. Consider an element y 

which belongs to P(Q) but to no (standard) parabolic subgroup P'(QX 
with P' Ç pm Then y can be written 

Y = nWIT, 7] G JV0(Q), 7T G P 0 ( Q ) , 

where w is an element of the Weyl group of (G, A0) whose space of fixed 
vectors in a0 contains aP but no space aP>, with P' Ç P. Let A be a rational 
representation of G whose highest weight À is a positive integral 

A A 

combination of all the fundamental dominant weights in A P \A P . Then 
X — wX is a positive integral combination of all the roots in Ap. Let 
IHI be a height function relative to a basis of the underlying space of A 
which contains a highest weight vector v and also the vector A(w)v. (See 
[1], p. 944.) For each a e A^T^ the component of A(a~lya)v in the 
direction of A(w)v is 

Consequently 

\\A(a~]ya)v\\ ^ e<x-w XXW>. 

Fix <£, and assume that <j>(a~]ya) ¥* 0. Then the left hand side of this 
inequality will be bounded independently of a and y. It follows that for 
each a e A£ , the number a(HP(a) ) will be bounded independently of a 
and y. We may therefore write a = ba]9 where ax belongs to A^G (T}) and 
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b belongs to a fixed compact set B. Notice that if we put 

y = /iv, p G MP(Q), v G 7VP(Q), 

then 

# ya = b • \mx vax - b. 

Consequently \i itself will belong to a fixed compact set. 
For each \i G MP(Q), set 

^( / i ) = sup(8P(b)-x<Kb-lpnb))9 n G JVP(A). 

Since 5 is a fixed compact set, <J> is bounded, has compact support, and 
vanishes for all but finitely many JU. The expression (5.1) is bounded by the 
sum over P and over JU, G MP(Q) of 

(5.2) Sp^i) -1 2 V f l i " W 

Here # j stands for the projection of a onto A™G, and the sum is to be taken 
over those elements v in NP(Q) such that the \w does not belong to U(Q) 
and such that 

inf sup ^ . ( z ' V r ^ û i ^ l v = €-
zErs / 

Now the functions 

x -» ^ (z _ 1 xz) , z G G, 1 ë / ë /, 

belong to the ideal of polynomials that vanish on U. It follows that there 
are polynomial functions 

p,p,x), I S i . y S / , 

on G X G such that 

qt(z~Xxz) = 2 Pjj{z, x)qj(x). 
J 

If ûj, /A and *> are as in (5.2), we have 

sup |tf/(jLwi"1i'a1)|v ^ c0 inf sup |?Az~xiia^}vaxz) |v ^ c0£, 
i zeT* y 

where c0 is the supremum over (z, x) in the compact set 

(TB) X (5 • supp <j> • £ ) 

of 

sup 2 I/>/,{*, zxz - 1 ) | v . 

Then the value of (5.2) will not be decreased if the sum is taken over those 
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v <E NP(Q) with \iv £ f/(Q), and with 

sup Iq^iia^va^l ^ c0c. 
i 

It will be enough to estimate (5.2) for fixed P and jti. Let n be the Lie 
algebra of NP. It is an affine space equipped with an action of AP. Consider 
the Zariski closed set of points X in n such that fi exp X belongs to U. The 
ideal J^of polynomials on n which vanish on this set is defined over Q and 
is AP invariant, since the same is true of the set itself. We can therefore 
write 

where each Ei is an ,4P-equivariant polynomial on n with rational co
efficients. That is, 

with Xi a rational character on AP. However, J is the radical of the ideal 
generated by the functions 

J f - ^ O i e x p * ) , 1 § ) S /. 

Consequently we can find a positive integer n and polynomials Ft{X), 
defined over Q, such that 

/ 
EjiX)" = 2 F0{X)qj(jL exp X)9 

7 = 1 

for each /'. Let c] be the supremum over /, and over those points X e n(A) 
such that exp X belongs to the support of <> , of 

/ 
2 \F0{X) I, 

7 = 1 

Then (5.2) is bounded by 

(5.3) SP(axr
l S ^ i 1 -exp * • * , ) , 

x 

where X is summed over those elements in n(Q) such that 

\Ei(Ad(a]y
lX)\v ^(c]Coe)]/n 

for each /', and such that /x exp X does not belong to U(Q). But /x exp X 
belongs to U(Q) if and only if each Et(X) vanishes. It follows that (5.3) is 
bounded by 

(5.4) 2 ( M ^ I ) _ 1 2 V i " 1 • exp X ax) ), 
i v X ' 
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with the inner sum now taken over the set 

{X e „(Q):0 < \Ei(Ad(aO~lX)\f ^ ( w ) 1 ' " } . 

It is certainly enough to estimate the expression in the brackets of (5.4). 
Therefore, we let E be any rational polynomial on n such that 

E(Ad(a)-]U) = X(a)~]E(U), a e AP, U e n, 

for some rational character x of Ap. We shall also replace the function 
<J>jtA(exp() ) with an arbitrary bounded, nonnegative function $ on n(A) of 
compact support. We have reduced Lemma 4.1 (as well as Lemma 3.2) to 
the following assertion. 

LEMMA 5.1. There are positive numbers c and r such that for any e > 0 
and any a in the set 

A™{TX) = {a e A™:a(HP(a) - T,) > 0, a e AP}, 

the inequality 

(5.5) 8P(a)~] 2 $(Ad(a)~lX) ^ cer 

x 

holds, where X is summed over the points in n(Q) with 

0 < \E(Ad(a)-]X)\v^e. 

We shall prove this result in the next section. There is nothing to show if 
P = G, so we shall assume that P is a proper (standard) parabolic 
subgroup of G. 

6. Proof of lemma 5.1. Lemma 5.1 is really a lattice point problem. Our 
main tool will be the usual one: the Poisson summation formula. To be 
able to exploit it, we note that any bounded function of compact support 
can be bounded by a smooth function of compact support. Consequently, 
it is enough to prove the lemma with 4> a nonnegative function in 
C^°(n(A) ). For any € > 0, the function 

<D€(F) = $(V)pv(e-l\E(V) |v), V G n(A), 

is also in C^°(n(A) ). It is obviously enough to prove the lemma with the 
left hand side of (5.5) replaced by the expression 

(6.1) 8P(a)-] 2 ^(AcKfl)"1*). 
{X^n(Q):E(X)*Q} 

We shall first show that the existence of an X which gives a nonzero 
contribution to (6.1) already poses a restriction on a and c. The image 
under E of the support of $ is a compact subset of A. If X contributes to 
the sum in (6.1), the adèle 

https://doi.org/10.4153/CJM-1985-067-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-067-0


1260 JAMES ARTHUR 

E(Ad(a)-]X) = X(ar]E(X) 

will belong to this set. This gives us inequalities 

\E(Ad(a)~iX)\w^bw, 

where bw is a positive number for each valuation w of Q which equals 1 for 
almost all w. At the place v there is the additional constraint 

\E(Ad(aylX)\v ^ e. 

Now E(X) is a nonzero rational number, so 

H\E(X)\W = 1, 

by the product formula. Combining the inequalities as a product, we see 
that 

where 

b=Ubw. 
W=£ V 

Let r0 and 8 be small positive numbers. Given a parabolic subgroup P b 

with P c Pj ç G, consider the set points a in ^^ (T , ) such that 

8 • x (û/o g 0(a) 

for each root /? of (P, ^4P) which is nontrivial on AP . (Such roots exist since 
P, ^ G.) It is clearly possible to choose r0 and S so that any point a in 
A^(T}) belongs to a set of this form. (In fact, one can always arrange that 
P, is maximal parabolic.) We may therefore fix Px for the rest of the proof, 
and only estimate (6.1) for those a in the corresponding set. Our two 
constraints on a and e will be used together. Combined, they will tell us 
that there is a constant c0 such that 

(6.2) s u p ^ r 1 ) ^ c</°9 

where /? ranges over the roots of (P, AP) which are nontrivial on AP. Set 

R = p n M?x. 

It is a parabolic subgroup of MP. Let n^ be the Lie algebra of its 
unipotent radical. We shall assume inductively that Lemma 5.1 holds if 
(G, P, n) is replaced by (Mp, R, nR). 

Let nj be the Lie algebra of A >̂. Then 

n = nj © n#. 

Let n^(Q) + be the set of elements Y in n^(Q) such that the polynomial 
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U-*E(U + Y), U e n„ 

does not vanish identically. Then (6.1) is bounded by 

B(e, a) 

= SP(a)~l 2 2 ^(Ad^)""1*, + Ad(a)~lY). 
YenR(Q) + r,Gn,(Q) 

Apply the Poisson summation formula to the sum over Xx. The result is 

Y^nR(Q) + *,€=n,(Q) 

where 

^ ( t / ' V) = l i (A) *W + F W < ^ ' ^> ^ ' ' 

1/ e n,(A), V <E n^(A), 

a partial Fourier transform of $£. Here \p is an additive character on A/Q 
and (,) is the standard inner product on n^Q) relative to a fixed basis 
{Xx,. . . , Xd) of eigenvectors oiAP. We decompose this last expression for 
B(e, a) as the sum of 

*,(€, A) = M*)"1 2 2 $e(Ad(a)*„ 
Y*nR(Q) + {^enrfQ):*,^} 

Ad(a)~]Y) 

and 

B2(e, a) = « (̂A)"1 2 LA . *«(£/ + AdCfl)"^)^. 

Now B(e, a) is an increasing function of 6. If we take c to be less than 1, we 
have 

B(e9 a) ^ Btf, a) + £2(c
5, A) 

for any number s, with 0 < 5 ^ 1. We shall presently show how to choose 
s so that the constraint (6.2) leads to a good estimate. 

LEMMA 6.1. There is a bounded, nonnegative function $R of compact 
support on n^(A) such that for any c and a, /^(c, a) is bounded by 

( M * ) " 1 2 $R(Ad(arlY) ) L l supOS(tf)-1) )2d im ' \ 

with fi varying as in (6.2). 
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Proof. Let d = dim x\x. The basis {Xu . . . , Xd) of n^Q), mentioned 
above, gives us a natural norm IHÎ  on n^Q^) for each valuation w of Q. It 
also gives us a Laplacian A on nj(R). 

Consider the formula above for B}(e, a). The inner sum over Xx can 
actually be taken over the nonzero points in the lattice x\\{N~ Z), where 

* = n p 
p 

is a positive integer defined as follows. For each prime/?, take n to be the 
smallest nonnegative integer such that $€ is invariant under the open 
compact subgroup 

{Xp e n.CQ,):!!*,!!, =i p-"'}. 

The integer N thus obtained is independent of € if the original valuation v 
is Archimedean. If v is discrete it follows from the definition of Oc that 
N ^ *-1N()> w n e r e No is independent of c. 

From its formula, we see that Bx(t, a) is bounded by the product of 

-2d 2 ||Ad(fl)AlHR
: 

Wen,(iV %:X^0} 

with 

2 L SR(a) ' 2 , / ,A. |Atf*c(£/ + A d ^ ) " ^ ) \dU. 

The first term is clearly bounded by a constant multiple of 

(JV sup 03(a)-1) )2J, 
P 

where /? ranges over the roots of (P, AP) which are nontrivial on AP. It is 
independent of £ if v is infinite, and is bounded by a multiple of e~ 
if v is finite. The same is true of the second term, but with the conditions 
on v reversed. Moreover, the second term vanishes unless Ad(a)~] Y lies in 
a fixed compact subset of n^(A). Consequently, we can find a bounded 
function ®R of compact support on n^ (A) such that 

5,(6, a) S 8R(a)-] 2 ^ (AcKf l )" 1 ^) • c ^ s u p C ^ ) - 1 ) ) 2 ' , 
Y P 

as required. 

Combining the lemma with (6.2) we see that B}(^, a) is bounded by the 
product of 

_ „ „ 2dimn, 
( € S • C</0) 

with 
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SR(a) ] 2 *R(Ad(a) lY). 
Y^nR(Q) 

The induction hypothesis applied to nR (with E replaced by the constant 

polynomial 1) tells us that this second expression is bounded independent

ly of a. Set s = -r0. We obtain positive numbers cx and r, and an 

estimate 

Btf, a) ^ c/\ 
valid for all c > 0 and all a e A™(TX) which satisfy (6.2). 

We must next deal with B2(e\ a). The estimate we will derive for this 
quantity will not depend on the inequality (6.2). We shall expand the 
polynomial E in terms of the basis [Xl9 . . . , Xd) of n^Q). If K E n#(A) 
and 

X == v-^i? • • • » ^v//» -̂ y **» 

we can write 

(6.3) E(xxXx + ... + xdXd + V) = 2 £ a ( * V , 
a 

where 

a = ( a , , . . . , a j ) 

is a multi-index, 

xa = * ? ' . . . J # , 

and £ a is a rational polynomial on n^. Clearly 

Ea(Ad(aylV) = Xa(°)~lEJLn 

for some rational character x« of ^4P. If Y is an element in nR(Q)~*~, one of 
the coefficients Ea(Y) will be nonzero. We shall let aY denote the highest 
such multi-index, relative to the lexicographic order. 

Define a function B'2(t, a) by the formula 

sR(a)-] 2 2 j[i(A) *e(£/ + Ad^r'yyi/, 

in which 7 is summed over the set 

{Y G n* (Q) + : a y = a, \EaY(Ad(a)-]Y) |v S c1 / 2}. 

Define i ? ^ , ^) similarly, 7 running over the same set except with 

| ^ y ( A d ( a ) - 1 7 ) | v > € 1 / 2 . 
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Then 

£2(£, a) = B'2(t, a) + B'{(e, a). 

The first function B'2(e, a) is clearly bounded by an expression 

2 (sR(a)'] 2vR(Aà(arlY))9 
a V Y ' 

where this time Y is summed over 

{Y G n«(Q):0 < \Ea(Ad(ay
{Y) |v ^ e1/2} 

and where 

*'R (V) = j [ i ( R ) *(U+ V)dU, V e n«(A), 

a bounded function of compact support. The sum over a is certainly finite. 
Therefore the induction hypothesis applied to n^ (with E replaced by Ea) 
tells us that there are positive constants c' and r' such that 

B'2(€, a) ^ cV\ 

for all € > 0 and all a e A™(TX). 
To deal with B'{(e, a) we shall make use of an elementary estimate for 

polynomials. Suppose that y = (y l 5 . . . , yd) is a multi-index. For each 
S > 0 let ^y(8) denote the set of polynomials 

2 eax
a, ea e Qv, 

in Qv[xj,..., xd] which satisfy the following two conditions. 
(i) ea vanishes unless at ^ yt for every /'. 

(ii) If a is the highest multi-index such that ea ¥* 0, then \ea\v > 8. 
Let Tv be a compact subset of Qv, and set 

Tv(p,c) = {x G Tv:\p(x)\v<e}9 

for each p e ^(8) and e > 0. Then there are positive constants C and t 
such that for any e > 0, S > 0, and /> G ^,(8), 

(6.4) voirv(/7,6) ^ c t f - 'c) ' . 

We leave this estimate as an exercise. Alternatively, it can be justified as a 
special case of Lemma 7.1 of [6]. 

We choose the compact subset Tv of Qv , as well as a compact subset Tv 

of (Av / , so that the function 

$(* ,* , 4- . . . + xdXd + V), xt G A, F G nu (A), 

is supported on Tvr
v X n#(A). (Here Av denotes those adèles which are 0 

at v.) Look back at the definition of B'^e, a). The integrand Oc is defined in 
terms of 0 and the polynomial 
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2 Ea(Ad(a) iY)xa = E(X]X{ + ... + xdXd + Ad(a) *Y). 
a 

Let Ea(Ad(a)~lY)v be the component of the adèle 

Ea(Ad(a)-lY) 

at v, and set 

Prix) = l,Ea{M{a)-'Y\xa. 
a 

We can certainly choose the multi-index y so that every £a(Ad(tf)_1 Y)v 

vanishes unless a, ^ y. for every /. Then an element Y e nR(Q)+ occurs 
1/9 

in the sum which defines B'{{<L, a) if and only if pY belongs to 0>y(t ). It is 
clear that B'fa, a) is bounded by the sum over all such Y, and the integral 
over (xj xd) in Tv(pY, t)T\ of 

8R(ay}Q(xxXi + . . . + xdXd + Ad(tf) -1 Y). 

Therefore, by the inequality (6.4), B'^e, a) is bounded by 

C(e-1 /2c)' • vol(rv) • ÔR(a)-' 2 ^(Ad(a)-lY)9 
yen^(Q) 

where 

^ ( A d ( « ) _ 1 Y ) = sup <&(U + Ad(a) - 1Y). 
(/en,(A) 

Applying our original induction hypothesis to n^, we see that 

B'fc, a) ^ cV", 

where c" and r" are positive numbers, independent of e and a. 
We are now essentially done. Combining our estimates we obtain 

B(e, a) ^ ^(e5 , a) + B'2(i
s, a) + 2 ? ^ , a) 

^ c /» 4- c V / + c"(es)r" 

for positive constants c and r. Since B(e, a) was a bound for (6.1), our 
proof of Lemma 5.1 (and hence the earlier Lemmas 4.1 and 3.2) is finally 
complete. 

7. Weighted orbital integrals. We can now return to the discussion left 
off in Section 4. We shall take T = T0. We have already mentioned that 
the distribution 

/ = lT°-
^unip u unip 
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is independent of P0. Set 

Then (4.2) and Corollaries 4.3 and 4.4 hold for these distributions. From 
Corollary 4.3 we see that Jv is also independent of P0. Insofar as they 
define polynomials in T, Theorem 3.1 and Theorem 4.2 provide formulas 
for /u n i and Jv. However, these are not satisfactory. We need formu
las which are given in terms of locally defined objects. 

Examples of such objects are the weighted orbital integrals which are 
defined and studied in [6]. Suppose that S is a finite set of places of Q. 
Set 

G(QS)
1 = G(QS) n G(A)1, 

where 

Qs = n Q,. 

A weighted orbital integral is a distribution 

f^JM(y,f), / e OG(QS) 1 ) . 

on G(QS)
] which is associated to a Levi subgroup M e £g and a conjugacy 

class y in M(QS) n G(QS)
1. For this paper we need only consider the case 

that y is a unipotent conjugacy class. In fact, we shall see that it is enough 
to take the image in M(QS) of a unipotent conjugacy class in M(Q). 

For any u e ^G(Q) there is an associated unipotent conjugacy class 

us = IT uv 

in G(QS)
1. Call u and u' (G, S)-equivalent if the associated conjugacy 

classes us and u's are the same. Let (^G(Q) ) G S denote the set of such 
equivalence classes in ^ G (Q) . Any element u e ^G (Q) is contained in a 
unique geometric conjugacy class Uu = U„ in (<%G). It depends only on 
the (G, S) equivalence class of u. The set UU(QS) breaks up into finitely 
many G(QS) conjugacy classes, one of which is us. The next lemma tells 
us that they are all of this form. 

LEMMA 7.1. Suppose that U is any orbit in {°UQ) such that U(Q) is 
not empty. Then any G(QS) orbit in U(QS) is of form us for some 
u^ (%(Q))GyS-

Proof Let g be the Lie algebra of G. The exponential map gives an 
isomorphism from the nilpotent variety of g onto the unipotent variety of 
G. By assumption, log(£/) is a nilpotent G-orbit which contains a 
representative in g(Q). By the Jacobson-Morosov theorem there is a Lie 
algebra homomorphism 
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<M(2) -» g, 

defined over Q, such that 

* - ( S J ) 
belongs to \og(U). As usual, define 

" - *(i -?)• 
and 

g, = {€ e ©:ad(#)£ = /£}. 

Then 

is a parabolic subalgebra of g which is defined over Q. It has unipotent 
radical 

n = © fif-, 

and Levi component 

m = (j0, 

both defined also over Q. 
Now take v e S and suppose that uv is an element in U(QV). There is a 

homomorphism 

<i>v:sl(2) - » fi, 

defined over gv, such that 

*' = Moo) 
equals log(wv). We can introduce Hv, gz v, pv and mv as above. They are all 
defined over Qv. The vectors Xv and X are conjugate. By Kostant's 
theorem [7], <J>V and <J> are also conjugate; there is an element y e G (not 
necessarily defined over Qv) such that 

<t> = Ad(y) o <t>v. 

Therefore 

p = Ad(y)pv and m = Ad(y)mv. 

Since the parabolic subalgebras p and £v are both defined over Qv, they are 
conjugate over G(QV). The same is true of the Levi components m and 
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mv. Replacing uv by a G(Qv)-conjugate of itself if necessary, we may 
assume that $ = £v, m = mv, and that y belongs to the subgroup of G 
whose Lie algebra is m. This forces Hv and H to be equal. The spaces g, 
and qiv therefore coincide. 

The spaces g, are defined over Q and ô/(Q) is embedded in QjiQs)- The 
intersection of U with g2 is a subset which is open and dense in the Zariski 
topology. (See [9].) It follows that each G(Qs)-orbit in U(QS) meets 
Q2(Qs) m a n open subset. We have only to show that each such open 
subset intersects g2(Q)- Since ^ ( Q ) is a finite dimensional vector space 
over Q, the result is a consequence of the strong approximation 
theorem. 

The lemma implies that u —> us is a bijection from the set of u e 

(%(Q))c,s> w i t h uu = u> o n t o t h e s e t o f G(Q5)1-orbits in U(QS). We 
shall often drop the notation us and simply identify u with a G(QS) 
conjugacy class. The same will be true of (%M(Q) ) M S for any Levi 
subgroup M e X For any u e ( ^ ( Q ) )M,S> w e s r i a ^ w r i t e U% for the 
induced unipotent conjugacy class of G associated to U^f and G ( [8] ). It 
is the unique unipotent class in G which, for any P = MNP, intersects 
U^ • NP in a Zariski dense open set. 

For any M e £f, u e (%/(Q) ) M S a n d / e C^CGCQ^)1), we can take 
the weighted orbital integral JM(u, f). It has two properties which we 
should point out. The first concerns its behaviour under conjugation. 
Let &(M) be the set of P G & such that MP contains M. Then if 
y e G(QS)\ 

(7.1) JM{ujy) = 2 jfr(u9fQJ. 

(See [6j, Lemma 8.1.) Note the similarity with (1.1). The second property 
arises from the definition. Recall from [61 that JM(u, f) is an integral on 
UU(QS) with respect to a measure which is absolutely continuous relative 
to the sum of the invariant measures on the G(Q5)1-orbits in U^(QS). 
In particular, JM(u) annihilates any function which vanishes on 
U%(QS). Suppose that U is any class in (%) and that v G S. For e > 0 
we can define the function f€

Uv exactly as in (4.1). It belongs to 
C^(G(QS)

1). From the definitions we deduce that 

(7.2) l i m / „ ( M , A , v ) = { ^ ( « , / ) i f l / ? ç î 7 , 
e-H) v 0 otherwise. 

In particular, the limit is independent of v and annihilates any function 
which vanishes on U(QS). Again, recall that there is a similar property for 
•Ainip» described in Corollary 4.3. As we shall see, properties (7.1) and (7.2) 
allow us to compare the weighted orbital integrals with our globally 
defined distributions. 
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8. A comparison. We come now to our main result. Let S be any finite 
set of places of Q which contains the Archimedean place. We shall em
bed C™(G(QS)

]) in C™(G(A)]) by taking the product of functions in 
C^°(G(QS)

1) with the characteristic function of Y1V^SKV. Any func
tion in C^°(G(\)1) is the image of a function in C™(G(QS)

]) for some 
such S. 

Our theorem is to be proved by induction, so we shall state it for a Levi 
subgroup L of G. Everything we have done for G, of course, has an 
analogue for L. We shall use the same notation with the added super
script L. Thus we have the distribution 7u n i p on L(A)1 and distributions 
Jfa), M c L, on L(QS)

]). 

THEOREM 8.1. For any S there are uniquely determined numbers 

aM(S, ii), M G JZ u G (#„(Q) ) M S , 

such that for any L G Sfandf G C™(L(QS)
]), 

(8.1) J^(f) = S l ^ l l ^ o l " 1 2 aM(S^u)JL
M{uJ). 

Proof. Fix S and assume inductively that the numbers aM(S, u) have 
been defined for any M Ç L. Of course implicit in this assumption is the 
validity of (8.1) with L replaced by a proper Levi subgroup. Define 

2 iwtfiiwjr1 

X 2 aM(S,u)JL
M(uJ\ 

for / G C™(L(QS)
X). Then TL is a distribution on L(QS)

] which 
annihilates any function which vanishes on ^ L (Q 5 ) . We need 
to show that there are uniquely determined numbers {aL(S, u) } such 
that 

(8.2) TL(f)= 2 aL(S9u)JÏ(u,f), 
U^(®L(Q))L,S 

for every/. Recall that J^(u) is just the invariant orbital integral on the 
conjugacy class of u in L(QS)

]. The distributions {/£(w) } are linearly 
independent so that numbers {aL(S, u)} must be unique. Our charge, 
then, is to prove their existence. 

We shall first show that TL is invariant. For any>> G L(QS)\ TL(fv) 
equals 

JLPŒ)- 2 \w%\\wft-x 2 As,«)^(»,f). 
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By (1.1) and (7.1) this is the difference between 

2,i<*iiwtfr,'ly/(?.v) 

and 

2 2 I <\ I K\ 2 aM(S, u)jfr(u, /<,,„). 

Therefore, 

r / - ( / > ) _ r L ( / ) 

equals the sum over {Q e !FL\Q ^ L} of the product of 

l ^ l l ^ o l " 1 

with the expression 

TMO i r \ V I ÏJ/A/I i Tj/A/, ^P(/Gty) " 2„ l<l l < T ' 2 A * «)/^(«,/e,v). 

The assertion that this last expression vanishes is just the equation (8.1), 
with L replaced by MQ. It follows from our induction assumption. 
Therefore TL is an invariant distribution. 

For any integer d, let °llLd be the union of those orbits U in i^/L) with 
dim U ^ d. It is a Zariski closed subset of °UL which is defined over Q. The 
set 

%,AQs) = I I * W ( Q , ) 

of Q 5 valued points is a closed subspace of L(QS) consisting of a finite 
union of L(QS) conjugacy classes. Let 

denote the union over those orbits U e (<%L) such that dim U ^ d, and 
such that £/(Q) is not empty, of the spaces U(QS). It is the union of 
those L(QS) conjugacy classes which are parametrized by elements 
u e (<%L(Q) ) L S with dim l/£ ^ </. The numbers required for (8.2) are 
provided by the next lemma. 

LEMMA 8.2. There exist numbers 

aL(S, u), u e (*L(Q) ) L S , 

such that for any d the distribution 

TL
d(f) = TL(f) - 2 , ^ ( S , u)jfa,f) 

{ue(®L(Q))LS:dimUÏ>d} 

annihilates any function f e C^°(L(QS) ) wA/cA vanishes on <%Ld(Qs). 
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Proof. Suppose first that d ^ dim °UL. Then ^i^iQsY ls the union of all 
the spaces U(QS) such that U(Q) is not empty. Moreover, Td(f) is just 
equal to T ( / ) . It is the difference between the distribution 

JLP(/)= 2 4(f) 

and a sum of integrals over spaces U(QS), with U(Q) not empty. Since 
J v is zero when t/(Q) is empty, Td annihilates any function which van
ishes on *%Lj(Qs)'. Thus, the lemma holds if d â dim <%L. 

Suppose that d is arbitrary. Assume inductively that the numbers 
a (5, u) have been defined for any u with dim Uu > d, and that Td an
nihilates any function which vanishes on ^,</(Qs)'- Let °lPLd be the 
union over those orbits U in (<%L) with dim U = d, and let Cd be 
the complement of ^°i^(Qs) in ^ L ^ ( Q S ) - Then Cd equals the union over 
v e S and over those U e (^L) with dim U < d, of the sets 

< v = t/(Qv) I I *w(Qw). 
{we,S:w#v} 

It is a closed subset of L(Q5)1 . We shall consider the restriction of Td to 
^(Qs) 1 \ Cd, the complement of Cd in L(QS)K 

The space 

«UQs) ' \C = «rM(Qs)' n <^(QS) 
is a finite disjoint union of L(QS) conjugacy classes which are closed in 
L(Qs)

]\Cd. These conjugacy classes are parametrized by the elements 
u G (^L(Q))L v S with dim {/£ = rf. For each such w, let LM be the 
centralizer in L of a fixed representative of u in L(Q). There is a surjective, 
L(Q 5 )

1-equivariant map 

CT(L(Q5)
! \ Cd -> 0 C(L(Q5)/L„(QS) ). 

Its kernel consists of the functions in C^°(L(QS)
1 \Cd) which vanish on 

^ L j ( Q s ) ' . Any invariant distribution on L(QS)
] \Cd which annihilates 

the kernel is the pull-back of an L(QS)
X-invariant distribution on the 

second space. It follows that we can choose a number aL(S9 u) for each 
u e (#L(Q) )L 5 with dim l/£ = d, such that 

for a n y / G C™(L(Qs)
{\Cd). 

Now i f / i s an arbitrary function in C^°(L(QS)'), we can set 

7JL,(/) = ^ ( / ) ~ 2 , A S , «)/£(«,/)• 
{u:diml/£=<0 
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Then 7^/_, is an invariant distribution which is supported on C and 
annihilates any function that vanishes on ^</(Qs) ' . Suppose that fis a 
function which is assumed only to vanish on ^ j - i ( Q s ) ' . We want to 
show that 

7 j - i ( / ) = 0. 

Consider the collection of sets C^ v, as defined above, such that / does 
not vanish on a neighborhood of the closure C Uv. If there are no such 
sets,/belongs to C™(L(Qs)

l\Cd) and TL
d_x(f) = 0. Suppose then that 

there are exactly (k -f 1) such sets, with k i^ 0. Choose one set Cjj v from 
among these. If c > 0, the function f€

Uv vanishes whenever/does. More
over, fe

Uv is equal to / in a neighborhood of Cd
v v. Consequently, the 

function ( / — f€
Uv) will vanish in a neighborhood of the closure of all but 

at most k sets. We may therefore assume inductively that 

7 r f - i ( / - / l , v ) = 0. 

On the other hand, since T^_x(f) is the difference between J^nipif) anc* 

2 \W^\\W^r] 2 aM(S^u)JL
M(uJ) 

+ 2 aL(S, u)JL
L(u,f\ 

{u^(<%L(Q))LSAimUl
u^d} 

we will be able to write down the limit 

l i m ^ - l ( A v ) 

by (7.2) and Corollary 4.3. It equals 

jLu(f)- 2 \w%\\vtirx 

MÇ L 

X 2 aM(S,u)jh(u,f), 

since dim U < d. Since/vanishes on ^,</- i (Qs) ' , we see easily from the 
formula (4.3) that J^j(f) = 0. The other terms in this last expression are 
clearly also equal to 0. Therefore the limit vanishes, and 

?rf-i(/) = 0 

as required. 
We have shown that the assertion of the lemma holds if d is replaced by 

d — 1. This completes the induction step and gives the proof of the 
lemma. 

Our theorem now follows. For the lemma tells us that Tj vanishes if 
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d < 0. This establishes (8.2), which was what remained to be proved of the 
theorem. 

For convenience we write down separately the specialization of (8.1) to 
L = G. Since the distributions JM(u) are all measures, we have 

COROLLARY 8.3. For any f G C™(G(QS)
]), 

Jump(f)= 2 I ^ M ^ o V 2 aM(S,u)JM(uJ). 
M^se « É E ( ^ A / ( Q ) W 

In particular, the restriction of Jun- to G(QS) is a measure. 

COROLLARY 8.4. For any U G (%) andf G C C °°(G(Q S ) 1 ) , we have 

Ju(f)- 2 iwfiiwtfr1 

X 2 aM(S,u)JM(u,f). 
{»e(VM(Q))MtS:Uf=U) 

Proof. Take any v G S. Replace fin (8.1) byf€
Uv and let c approach 0. 

By (7.2) and Corollary 4.3 we obtain 

2 Juif) 

= 2 \K\\W%\-] 2 aM(S,u)JM(uJ). 

The corollary follows by increasing induction on the dimension of U. 

For many applications of the trace formula it is probably not necessary 
to be able to evaluate the numbers aM(S, u). Still, we can't help wondering 
whether reasonable formulas exist. The methods of this paper lead 
naturally to only one such formula. It is an immediate consequence of the 
theorem and Corollary 4.4. 

COROLLARY 8.5. aG(S, 1) = vol(G(Q)\G(A)1). 

Finally, we should say that Theorem 8.1 and its corollaries remain true 
if Q is replaced by an algebraic number field F. Of course results for Q can 
always be applied to groups defined over F by restricting scalars. This 
gives an immediate analogue of Theorem 8.1. However, restriction of 
scalars requires that S be the set of all valuations of F which lie over a 
finite set of valuations of Q. On the other hand, every argument of this 
paper can be applied equally as well to F as Q. We have chosen to work 
over Q only to avoid introducing extra notation in our discussion of the 
paper [1]. At any rate, Theorem 8.1 and its corollaries hold for F without 
the above restriction on S. 
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