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A VOLUME ESTIMATE FOR STRONG
SUBHARMONICITY AND MAXIMUM PRINCIPLE
ON COMPLETE RIEMANNIAN MANIFOLDS

KENSHO TAKEGOSHI

Abstract. A generalized maximum principle on a complete Riemannian man-
ifold (M, g) is shown under a certain volume growth condition of (M, g) and its
geometric applications are given.

Introduction

Let (M,g) be a complete and connected Riemannian manifold of di-
mension m > 1. In this article we study the following problem:

PROBLEM. For any € > 0 and a smooth function f bounded from
above on M does there exist zc € M such that (i) supy f — ¢ < f(ze)
(ii) |grad f|(ze) < € and (iii) Af(z:) <e?

Omori first formulated such a maximum principle on a complete Rie-
mannian manifold with sectional curvature bounded from below (cf. [Om]).
Since then, the maximum principle has been generalized by several authors
and applied to the study of value distribution of maps between manifolds
as first observed by Omori, [Om]|. Especially Yau generalized Omori’s re-
sult to a complete Riemannian manifold with Ricci curvature bounded from
below (cf. [C-Y], [Y-1]). Recently Chen & Xin [C-X] and Ratto, Rigoli &
Setti [R-R-S| have extended the principle to a complete Riemannian mani-
fold whose Ricci curvature decays slower than a certain decreasing function
tending to minus infinity. Their curvature condition is optimal in a sense,
and the idea of the proof heavily depends on an upper estimate for the
Laplacian of the distance function by the curvature condition.

On the other hand it is known that the maximum principle no longer
holds on a general complete non-compact Riemannian manifold and the
problem is deeply related to the volume growth property of (M,g). Here
for any z € M and r > 0 we define a function hy by hg(r) := log V() /72,
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where V,(r) is the volume of the geodesic ball B,(r) centered at z € M
of radius » > 0. Every complete Riemannian manifold (M,g) in the
articles [Om]|, [C-Y], [C-X], [R-R-S], [Y-1] admits a point z € M with
/, 1+°° dr /Thz(r) = 400 in view of their curvature condition. Furthermore for
a given smooth monotone increasing function h(r) satisfying f1+°° dr/rh(r)
< 400, we can construct a two dimensional complete Riemannian manifold
(N, gp) admitting a bounded strongly subharmonic function v > 0; i.e.,
Au > c¢>0on N and supy u < +00, and a point z such that hy(r) ~ h(r)
for sufficiently large  (cf. §2, Remark 2.4). From this observation we would
like to propose the following conjecture:

CONJECTURE. Suppose a complete Riemannian manifold (M, g) of di-
mension m > 1 admits a point x € M such that f1+°° dr/rhy(r) = +o0.
Then the mazimum principle holds on (M, g).

In this article we show the following theorem which is weaker than the
above conjecture.

THEOREM. Let (M,g) be a complete Riemannian manifold of dimen-
ston m > 1. Suppose M admits a point x such that liminf hy(r) < 4o0.
r—+00

Then the mazimum principle holds on (M, g).

As far as we know, this result is the first one for the maximum principle
on complete Riemannian manifolds without any curvature condition and it
generalizes the maximum principle obtained in [C-Y], [Om], [Kr], [Y-1].
Our method is based on a volume estimate for strong subharmonicity on
complete Riemannian manifolds. Furthermore there exists a two dimen-
sional complete Riemannian manifold with finite volume whose Gaussian
curvature decays faster than the curvature condition assumed by [C-X] or
[R-R-S] (cf. [L-S], §3, Example 1).

The author would like to express his thanks to Prof. A. Atsuji during
the development of this article.

81. A volume estimate for strong subharmonicity on complete
Riemannian manifolds

Let (M, g) be a complete non-compact Riemannian manifold of dimen-
sion m > 1 and let V,(r) denote the volume of the geodesic ball By(r)
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centered at € M of radius 7 > 0. Let u (resp. K) be a smooth (resp. non-
negative continuous) function on M. We define subsets of M as follows: for
given constants a > —1, 8 > 0, we set

Qu, o, B) :={z € M ; u(z) > 0 and Au(z) > 8K (z)u(z)*"},
where Au := Tracegvzu, and for a given constant v > 0, we set
M(u,v) :=={z € M ; u(z) >~}
The following theorem plays a crucial role in this article.

THEOREM 1.1. Suppose M (u,7y) is a non-empty subset of Q(u,a, 3)
for some o > 1.
(1) If K(z) =1 on M, then for any point x € M there exist a positive
constant r(z,vy) such that

log Vol(Bg(r) N M (u,~)) S Blog 2
r2 —\ 2%¢,

> ¥* for any r>r(z,7),

where ¢, 1S a positive constant independent of «a, 3,y and x € M. In par-
ticular, 1t holds

lim inf —log Va(r)

5 = 400 for any x € M.
7—-+400 T

(i1) If there exist a point z1 € M, positive constants ¢; and 7. such
that K(z) > ¢1/d(z1,x) for any x € M \ By, (r«) and v > sup  u(y),
yEle (7'*)
then there exists a positive constant r(zy,~y) such that

log Vol(By, (1) N M (u, 7)) S (,@cl log 2

r 27¢,

) ¥ for any T > r(x1,7).

In particular, it holds

. log V.. (7
lim inf g—xl(—) = +oo.
T—-400 T
(iil) If there exist a point zo € M, positive constants c; and T4 such
that K (z) > cz/d(x2,x)? for any x € M\ By, (T4x) and v> sup  u(y),
yEB«'Ez(T**)
then there exists a positive constant r(z2,7) such that

log Vol(Bay (r) 1 M(u, 7))
logr

> <2ic: ) y* for any 7 2> r(x2,7).
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In particular, it holds

log V,
limijng 128V _
T—+00 logr
Remark 1.2. In Theorem 1.1 if u* := sup,,; u < 400, then we have only
to consider an unbounded function v := 1/(u* — u) such that M(v,1/(u* —
7)) is a non empty subset of Q(v,1,3v**1). The above volume growth

properties follow immediately from this observation.

To show Theorem 1.1 we need the following lemma, which can be proved
by a direct calculation.

LEMMA 1.3. Let v (resp. w) be a smooth (resp. Lipschitz continuous)
function on M and let X be a smooth function on a real line R. Then the
following holds

div(w?grad A(v?))
= 22N (W) (vAv + |dv]?) + N'(v))|dv??} + 4wl (v?)(dw, dv)

where Av = div(grad v).

Proof of Theorem 1.1. Since M(u,vy) = M(u/v,1) and Q(u, @, 3) =
Q(u/v, a, By*), we replace u by u/vy and set § := By*. Hence we have
M (u,1)(# ¢) C Q(u, a, §). For any positive number p > 1, setting vP = uP/?
we obtain the following on the subset M (u,1) :

(14)  P(AWP) + [P > (6_?25) wre 4 20— 50
p

For a fixed positive number p > 1 with M(u,p) # ¢, let A be a smooth
function defined on real line such that A(¢) = 0 if t < 1, A(¢) > 0, N(t) >
0,\"(t) > 0ift > 1 and A(¢) =t ift > p > 1. Since the Riemannian
manifold (M, g) is complete, for any fixed point z € M and r > 0 there
exists a Lipschitz continuous function w, with 0 < w, <1 on M such that
wy =1 on By(r), supp w, C B;(2r) and |dw,|? < ¢,/r?, where ¢, > 0 does
not depend on z and r. We apply Lemma 1.3 to w = WP and v = oP.
Integrating the left hand side of Lemma 1.3 and using (1.4), we obtain for

any € > 0 and B;(2r,7) := By(2r) \ B(r) the following:

4(p-1) [wg(p+a)Al(up)|dvp|2 n 6p/wa(p+°‘)/\’(up)up+°‘
p
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< —4(p+ ) /wf(pJ"a)_l)\'(up)vp(dwr, dvP)

2(p + a)?
€

< 2€/w2(p+°‘))\'(up)|dvp|2 + / w2PHa=1) N (yPYuP | duw, |2
B;(2r,r)

Taking € = (p — 1)/p we obtain the following:

2
/ Kw o)\ (yP)yPte < M / W2PHa=1) \/ (P)y P
6(]) - l)T Bz (2r,r)

On the other hand since > 1 and X (wP) > 0 if and only if v > 1, we
obtain

/ w2\ (PP
Bz (2r,r)

< (/ ng(p'{'a))\’(up)up(p-f—a)/(p-}-a_l)

1/(p+e)
x / K~ (a1 y/(,p)
Bz(2r,r)

(pta-1)/(p+e)
< (/ wa(ﬁ+a))"(up)up+a>

1/(p+a)
X / K~ (pra=1)\I(yP) .
B.(2r,r)

(1.5) / Ku2+e) y () ypte

+a
< (20*(1) + a)Z i / K*(P+a—1))‘/(up)
- 6(]) - 1)T2 B.(2r,r)

for any p > 1 and r > rg = ro(z,y) with Bg(rg) N M(u,1) # ¢. If
infyep, @2rr) K(y) 2 co/(2r)7 for any 7 > 79 and ¢, > 0 with o € {0, 1,2},
then setting F(p,r) := fo(r) X (uP) and taking p > max{2,a} we obtain
the following from (1.5) :

) (p+a-1)/(p+a)

Hence we obtain the following:

+
27t eup )p aF(p 2r)

Scor2—7

(1.6) F(p,r) < (
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for any r > rg.

We first show (i). For ¢ = 0, put ¢o = 1 and set p(r) = 672/2%¢, >
max{2,a} with § = By*. We define F(r) := F(p(r),7). Then putting
o =01in (1.6) , we have the following:

1.7 Fr) < G)p(r)%amr)

for any r > rg. We fix r such that » > 2ry. Since there exists £ > 1 such
that 2=+ < ro/r < 27F by putting 7; = 2%y and by (1.7) we obtain

F(rg) < (%)Z:;lp(nHkaF(rk) < (%>6T2/266* (%)OIF(T)

for any r > 71. Therefore there exists 7(z,v) > 0 such that
1
w8 log F(r) (ﬂ ogz) -

r2 26¢,

for any r > r(z,~). Since u was replaced by u /v in the beginning and it may
be assumed that supg A'(t) = 1, it holds that F(r) < Vol(Bg(r) N M (u,))
for any 7 > 0. Therefore we can obtain the desired estimate in (i) from
(1.8). To show (ii) (resp. (iii)) we have only to put z = z; (resp. z = z3),
o =1 (resp. 0 = 2) in (1.6) and set p(r) = c1r/2%¢. (resp. p(r) = ca/27cy)
in (1.7). The desired estimate follows from the same argument as above
respectively. This completes the proof of Theorem 1.1.

§2. Maximum principle on a complete Riemannian manifold
satisfying a certain volume growth condition

Let u be a smooth function on a Riemannian manifold M. For given
constants « and 3, we set

I(u,0,B):={z€M; ulx)>0 and Au(z) < Bu(x)>T! }.
First we show the following maximum principle:

THEOREM 2.1. Let (M,g) be a complete Riemannian manifold of
dimension m > 1. Suppose M admits a point x such that the following
volume growth condition holds

log V(r)
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For a given smooth function w on M such that 0 < supy,u < 400, and for
a>0,8>0, the following holds by setting u* = sup,,u :

(i) I'(u,e, 3) is non-empty. In particular, M admaits no non-zero smooth
solution w > 0 (resp. v > 0) satisfying Aw > Bw®*! (resp. Alogv > Bv®)
on M (cf.[Os]).

(i1) If u* < 400 and o > —1, then I'(u,0,3) is non-empty. In par-
ticular, M admits no non-zero smooth solution v > 0 with supy, v < 400
satisfying Av > fv°t! on M.

(iil) u(z) < u*(e, B) := suPyer(u,a,8) w(y) for any x € M. Especially
if u*(a, B) is finite for a certain pair (o, ), then u*(a,B) is independent
of a and B and hence u* = u*(a, 3).

(iv) If u* < 400 and I'(u) := {x € M;u(z) > 0 and Au(z) < 0} s
non-empty, then u* = supyer) U

Proof for the case o > 1. If M is compact, then the above assertions
are obvious. We may assume that M is non-compact. First remark that
the hypothesis (*) implies (i) by Theorem 1.1, (i). (ii) follows from Remark
1.2 and (i). To see (iii) if u*(a, 8) = 400, then the assertion is trivial. If
u*(a, B) is finite and there exists a point z € M with u*(ea, 8) < u(z), then
it is clear that M(u,u*(e, 3)) is a non-empty subset of Q(u, o, 8), which
contradicts to the assumed growth condition (%) by Theorem 1.1, (i). By
the same argument, we can see the latter half of (iii). (iv) follows from (iii)
immediately. 0

PROPOSITION 2.2. Let (X,gx) be a complete Riemannian manifold of
dimension n > 1 and let f be a smooth function bounded from above on X.
For any € > 0 take a point y. € X with supy f — €2 < f(ye). Then there
ezists a point . € X such that (i) f(ye) < f(ze), (ii) dx(ze,ye) < € and
(iil) |grad f|(z.) < e, where dx is the distance function relative to gx.

Proof. This was proved in [H] in the case X = R"™. In this general
case the proof is essentially the same and therefore omitted. a

Now we are in a position to show the following our main result.

THEOREM 2.3. Under the volume growth condition (x) of Theorem 2.1
let f be a smooth function bounded from above on M. Then for any given
point © € M and € > 0 there exists a point . € M depending on x such

that (i) f(z) < f(ze), (i) |grad f|(ze) <e and (iii) Af(ze) < e.
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Proof. Since the assertion is trivial, if f attains f* := sup,, f,
we suppose that f does not attain f* on M. We put e, := min{e, f* —
f(2)}/(1 + min{e, f* — f(z)}) > 0. Set w :=1/(1 + f*— f) > 0 and
M, == M(wP,1 — e2) for any positive integer p. Then clearly M, C M,
and OM, NOM, = ¢ if p > ¢ > 1. On the other hand I}, := I'(w?,1,¢,) is
non-empty by Theorem 2.1, (i). By the fact (p — 1)AwP > pwAwP™! for
any p > 2and 0 <w < 1on M, weobtain I, C I'; and I, N0l = ¢ if
p > q > 1. Setting X, := I}, N M, X, is also non-empty and supp, wP =1
by Theorem 2.1, (iii). In particular £, C ¥ and 0X,N0%,; = ¢ifp > ¢ > 1.
Suppose X, converges to a non-empty subset Yoo C M containing a point
Too as p tends to infinity. Then w should attain 1 at xo. This is a con-
tradiction. Hence M \ X, converges to the whole space M as p tends
to infinity. This implies that dps(z«, Xp) is unbounded for a fixed point
z« € M. Set \p 1= supycsyx, dm(y,021) for any p > 1. Then A, € (0, +o0]
and A, is non-decreasing in p. We claim that lim,_ 1o Ap = +00. Oth-
erwise there exists a constant ¢ > 0 with limp .4 Ap < ¢ < 4+00. Then
we obtain 8%, C {y € M;dy(y,0%1) < c} for any p > 1. This implies
dy(zy, Tp) < dp(4,0%1) 4+ ¢ < 400, which is a contradiction. There-
fore there exists a large positive integer p, such that e, < A, < +o0
for any integer p with p > p.. For a fixed p > p., there exists a point
Y« € 90X, with dp(ys, 8%1) > e,. Clearly such a point admits a small
positive constant &, such that B,(e,) C Xy if z € By, (6,) N X,. Now we
take a point z. € By, (6,) N Xp. By Proposition 2.2, there exists a point
ze € B, (ex) N M, C ¥; such that |dwP|(z.) < e,. If p is large enough,
then z. is the desired point. This completes the proof of Theorem 2.3.

Using Theorem 2.3 we complete the proof of Theorem 2.1.

Proof of Theorem 2.1, (i) and (iii) for the case 0 < a < 1. To show (i)
suppose I'(u,a, ) is empty. Let A be a smooth function defined on the
real line such that A(t) = 0 for t < 0, M'(t) > 0,A\"(t) > 0 fort > 0
and A(t) = t for t > ¢ > 0. Taking c arbitrarily we may assume that
v := Mu) satisfies Av > Bv®*! on {v > 6} # ¢ with § := A(c) > 0. Set
w:= —1/(1 +v)P with p = a/2 > 0 and &, := min{sup,; w — w(6),1} > 0.
By Theorem 2.3 for any ¢ > 0 with 0 < € < &,, there exists a point
ze € M such that (1) supp,w — e < w(ze), (2) |grad w|(z:) < €, (3)
Aw(z,) < e. Since Aw = pAv/(1 + v)PT1— p(p + 1)|grad v|?/(1 + v)P*+?
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and Av(z.) > Bv*Tl(z.), we get the following :

(7)o = (52)

This implies v* := sup,; v < 400 and so there exists C > 0 independent
of € such that v(z.)?*! < Ce. Letting € — 0 we obtain v* = 0, which
implies v = 0 on {u > 0} # ¢. This is a contradiction. To show (iii)
suppose u*(a, 3) is finite and there exists a point z € M with u*(a, 8) <
u(z). Then u satisfies that Au > fu®*! on {u > u*(a, B)} # ¢. By the
similar argument as in the proof of (i) we can conclude u = u*(«, 8) on
{u > u*(a, 8)} # &, which is a contradiction. This completes the proof of
Theorem 2.1.

Remark 2.4. For a given smooth monotone increasing function h(r)
satisfying ¢; = f1+°° dr/rh(r) < 400, the example stated in the introduc-
tion is constructed as follows: Take a function f(r) such that (1) f(0) = 0,
/(0 =1, f(r) > 0, f'(r) > 0, f'(r) > 0if r > 0, and (2) f(r) =
ca(exp(r2h(r)))’ with c; > 0 (is determined later) if r > 1. We de-
fine a complete metric g on ([0, +00) x S1,(r,0)) by g = dr? + f(r)2d6?.
Since Au(r) = (f(r)ur(r))r/f(r), Au = 1 and supu < ¢ if u(r) :=
f;{(fg f(s)ds/f(t)}dt. Setting v(r) = the volume of S* = S! x {r} rela-
tive to g, (log(f(r)/v(r)))r = 0 for any 7 > 0 (cf. [G-W]). Put ¢ =
f(r)/v(r) > 0. Since Vo(r) = [ v(t)dt, setting ho(r) = (log Vo(r))/r?, it
can be easily verified that h(r)/2 < ho(r) < 2h(r) for any 7 > 0.

83. Applications

The maximum principle is closely related to several problems in differ-
ential geometry and geometric function theory; i.e., Liouville type theorem
and Ahlfors-Schwarz type lemma for maps, minimal submanifolds in R,
conformal deformation of Riemann structure, etc. By replacing curvature
condition by volume growth condition to assure the maximum principle, a
few results related to those problems can be stated without proof. With
respect to the details of the proof and the related topics the reader should
see the references cited in the end of each statement.

THEOREM 3.1. Let (M,g) be a complete Riemannian manifold of di-
mension m > 1. Suppose (M, g) admits a point z1 (resp. z2) such that

log V,
lim inf log Va, (r) < +oo (resp. lim inf log Vay (r) < +oo)
r—+o0 T r—+00 logr
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Then for a non-negative continuous function Ky (resp. K3) on M satisfying
Ki(z) > ci/d(z1,2), € M\ By, (r4) (resp. Ko(x) > co/d(z2,7)?, z €
M \ Bg,(r4)) for r« > 0 and c. > 0, there exists no non-zero smooth
solution u > 0 satisfying Au > Kiju® (resp. Au > Kou®) on M if o > 2.
In particular, there exists no non-zero smooth solution u > 0 with supy; u <
+oo satisfying Au > Kyu? (resp. Au > Kyu?) on M if o > 0. Furthermore
there exists no non-zero smooth solution v > 0 satisfying Alogv > Kyv
(resp. Alogv > Kyv) on M (cf. [C-L], Theorems 2.1 and 5.1, [L], [N], §3,
[R-R-S], Theorems 3.1, 4.1 and 4.2, and [Y-2], Theorems 1 and 5).

Remark 3.2. In Theorem 3.1 if m > 3, then the non-negativity con-
dition of K; (resp. K3) can be weakened in the following way: Under the
hypothesis of Theorem 3.1 there exists a constant € > 0 such that there is no
positive smooth solution satisfying Au > Kyu® (resp. Au > Kou®) provided
that o > 2 and K1 > —¢ (resp. K9 > —¢) on M (cf. § 1, Theorem 1.1 and
[R-R-S], Proposition 3.5).

THEOREM 3.3. Under the volume growth condition (x) of Theorem 2.1
the following holds :

(i) Suppose h : (M,g) — (N,gn) is ‘an isometric immersion into an
Hadamard manifold (N, gn) of dimension n > m such that the mean curva-
ture H of h satisfies Hy := sup,; |H| < 400, and h(M) C By, (R), y« € N.
Then R > 711—* (cf. [Kz], Theorem 3.1).

(i1) Suppose f : M — R™ is a smooth map whose energy density e(f)
satisfies e(f) > ¢ > 0 on M, and there ezists a unit vector £ at the origin of
R" such that (&, f(z)/||f(z)|]) > & > O for any z € M; i.e., f(M) lies inside
of a non-degenerate cone of R"™. Then there exists a point y € M such that
the tension field T(f) of f does not vanish aty (cf. [B-K], Theorem 3 and
[Om], Theorem B).

COROLLARY 3.4. Under the volume growth condition (x) of Theorem
2.1, M can not be isometrically immersed as a minimal submanifold into a
bounded set of a Riemannian manifold admitting a smooth strictly convez
function. In particular, of f: M — R™ is a minimal isometric immersion,
then f(M) does not lie inside of any non-degenerate cone of R™ (cf. [Ks],
Proposition 2 and Remarks).

THEOREM 3.5. Let (N,gn) be a Riemannian manifold with sectional
curvature bounded above by a constant K and let Br(y«) be inside the cut
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locus of y» € N (R < 7n/2VK if K > 0). Under the volume growth condition
() of Theorem 2.1 suppose h : M — N is a smooth map with |7(h)| <
Te, Tx € [0,400), and h(M) C Bgr(y«). Then setting e, := infpse(h) for
the energy density e(h) of h, the following holds (cf. [C-X], Theorem 3.1
and [R-R], Theorem 2.17) :

(1) R > VK tan~1(2v/Ke,/T,) when K >0
(i) R > 2e./Ts when K =0
(iii) R > /-Ktanh™1(2v/=Ke./T\) when K <0

COROLLARY 3.6. Under the volume growth condition (x) of Theorem
2.1, suppose M 1s a submanifold in R™ with parallel mean curvature and
the tmage of M of the Gauss map G : M — G, n_y, lies in the geodesic ball
BR(Z/*) C Gm,n—m; R < 7('/2\/]? and y, € Gm,n—m; (K =1f Gm,n—m
is the sphere, otherwise K = 2), then M should be minimal (cf. [C-X],
Theorem 3.3, [H-J-K], §4, Theorems 5 and 7, and [R-R], Corollary 2.24).

THEOREM 3.7. Let (M,wpr) be a complete Hermitian manifold of
dimension m whose scalar curvature bounded from below by —K; and let N
be a complez manifold of the same dimension with a volume form Vy whose
Ricci form is negative definite and satisfies AN™(1/—1/2)301log Vy > KoVy.
Suppose (M,wyr) satisfies the volume growth condition (x) of Theorem 2.1
and f : M — N 1s a holomorphic map whose Jacobian does not vanish at
some point. Then K; >0 and sup f*Vn/Vi < K[*/m™K,, where Vi
is the volume form relative to wys (cf. [M-Y], §1, [Ry], [Y-3]).
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