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Abstract
We propose a new primal-dual interior-point algorithm based on a new kernel function
for linear optimization problems. New search directions and proximity functions
are proposed based on the kernel function. We show that the new algorithm has
O(
√

n log n log(n/ε)) and O(
√

n log(n/ε)) iteration bounds for large-update and
small-update methods, respectively, which are currently the best known bounds for such
methods.
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1. Introduction

In this paper we propose a new primal-dual interior-point method (IPM) for the
following standard linear optimization (LO) problem:

min{cT x : Ax = b, x ≥ 0}, (1.1)

where A ∈ Rm×n , c, x ∈ Rn , and b ∈ Rm . Without loss of generality, we assume that
m ≤ n and rank(A)= m. The dual problem to (1.1) is

max{bT y : AT y + s = c, s ≥ 0}, (1.2)

where y ∈ Rm and s ∈ Rn .
Since Karmarkar’s paper [13] in 1984, IPMs have shown their efficiency in

solving large-scale linear programming problems with a wide variety of successful
applications. In this paper we propose a new primal-dual interior-point algorithm
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which is the most efficient from a computational point of view [3]. It is generally
agreed that the iteration complexity of the algorithm is an appropriate measure for its
efficiency [10].

Most polynomial-time interior-point algorithms for LO are based on the logarithmic
kernel function [3, 9, 12, 19]. Peng et al. [15, 16] proposed a new variant of IPMs
based on self-regular kernel functions and achieved so far the best known complexity,
O(
√

n log n log(n/ε)) for large-update methods with a specific self-regular function.
Roos et al. [4–8, 10, 11] proposed new primal-dual IPMs for LO problems based on
eligible kernel functions. They also proposed a scheme for analysing the algorithms
based on four conditions on the kernel function [5] and obtained an O(

√
n log(n/ε))

iteration bound for small-update IPMs in all cases and an O(
√

n log n log(n/ε))
iteration bound for large-update methods with a specific kernel function [4]. At
present, the open question in this area is the existence of a kernel function whose
complexity bound for large-update methods is the same as or better than the best
known complexity result. Recently, Amini and Haseli [1] proposed a generalized
version of the kernel function in [5], achieved the best known iteration bound for
large-update methods for LO and extended to linear complementarity problems [2].
Motivated by their work, we define a new kernel function and propose a new primal-
dual interior-point algorithm for LO based on this kernel function. We analyse the
complexity for large-update and small-update methods based on the kernel function
and obtain O(

√
n log n log(n/ε)) and O(

√
n log(n/ε)) iteration bounds, respectively,

which are the best known results so far.
The paper is organized as follows. In Section 2 we recall the generic IPM and the

motivation for the new algorithm. In Section 3 we define a new kernel function and
give its properties which are essential for complexity analysis. In Section 4 we derive
the complexity result for the new algorithm.

We use the following notation throughout the paper. We let Rn
+ and Rn

++ denote
the set of n-dimensional nonnegative vectors and positive vectors, respectively. For
x, s ∈ Rn , xmin and xs denote the smallest component of the vector x and the
componentwise product of the vectors x and s, respectively. We let e denote the
n-dimensional vector (1, 1, . . . , 1). For x, s ∈ Rn

++ and µ > 0, we define v :=
√

xs/µ, v−1
:=
√
µe/(xs) whose i th components are

√
xi si/µ and

√
µ/(xi si ),

respectively. We denote by X the diagonal matrix obtained from a vector x , that
is, X = diag(x). For f (x), g(x) : R++→ R++, we write f (x)=O(g(x)) if there
exists a positive constant c1 such that f (x)≤ c1g(x) and f (x)=2(g(x)) if there
exist positive constants c2 and c3 such that c2g(x)≤ f (x)≤ c3g(x), for all x > 0.

2. Preliminaries

In this section we recall some basic concepts and the generic IPM. Without loss
of generality, we assume that both (1.1) and (1.2) satisfy the interior-point condition
(IPC) [17], that is, there exists (x0, y0, s0) such that

Ax0
= b, x0 > 0, AT y0

+ s0
= c, s0 > 0.
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By the duality theorem [17, Theorem II.2], finding an optimal solution of (1.1)
and (1.2) is equivalent to solving the following system:

Ax = b, x ≥ 0, AT y + s = c, s ≥ 0, xs = 0. (2.1)

The basic idea of primal-dual IPMs is to replace the third equation in (2.1) by the
parameterized equation xs = µe with µ > 0. We now consider the following system:

Ax = b, x > 0, AT y + s = c, s > 0, xs = µe. (2.2)

If the IPC holds, then (2.2) has a unique solution for each µ > 0 [14]. We denote this
solution by (x(µ), y(µ), s(µ)) and call x(µ) the µ-centre of (1.1) and (y(µ), s(µ))
the µ-centre of (1.2). The set of µ-centres, µ > 0, is called the central path of (1.1)
and (1.2) [18]. The limit of the central path as µ goes to zero exists and since the limit
point satisfies (2.1), it naturally yields the optimal solution for (1.1) and (1.2) [17].
Primal-dual IPMs follow the central path approximately and approach the solution
of (1.1) and (1.2) as µ goes to zero.

For given (x, y, s) := (x0, y0, s0), by applying Newton’s method to system (2.2)
we have the following Newton system:

A1x = 0, AT1y +1s = 0, s1x + x1s = µe − xs. (2.3)

Since A has full row rank, (2.3) has a unique solution (1x, 1y, 1s) which is called
the search direction [17]. By taking a step along the search direction (1x, 1y, 1s),
one constructs a new iterate (x+, y+, s+),

x+ = x + α1x, y+ = y + α1y, s+ = s + α1s, (2.4)

for some α > 0.
To motivate our new algorithm we define the following scaled vectors: for (x, s)>0

and µ > 0,
dx := v1x/x, ds := v1s/s. (2.5)

Using (2.5), we can rewrite system (2.3) as follows:

Ādx = 0, ĀT1y + ds = 0, dx + ds = v
−1
− v, (2.6)

where Ā := (1/µ)AV−1 X , V := diag(v), and X := diag(x). Note that the right-hand
side of the third equation in (2.6) equals the negative gradient of the logarithmic barrier
function 9l(v), that is,

dx + ds =−∇9l(v), (2.7)

where

9l(v) :=

n∑
i=1

ψl(vi ), ψl(t)=
n∑

i=1

((t2
− 1)/2− log t).

We call ψl the classical logarithmic kernel function of 9l(v). In this paper we replace
ψl(t) with a new kernel function ψ(t) which will be defined in (3.2). In what follows,
and throughout the paper we assume that τ ≥ 1.
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The generic interior-point algorithm works as follows. Assume that we are given a
strictly feasible point (x, y, s) which is in a τ -neighbourhood of the given µ-centre.
Then we decrease µ to µ+ = (1− θ)µ, for some fixed θ ∈ (0, 1), and then solve
the Newton system (2.3) to obtain the unique search direction. The positivity of a
new iterate is ensured by an appropriate choice of the step size α which is defined
by some line search rule. This procedure is repeated until we find a new iterate
(x+, y+, s+) that is in a τ -neighbourhood of the µ+-centre, and then we let µ := µ+
and (x, y, s) := (x+, y+, s+). Then µ is again reduced by the factor 1− θ and we
solve the Newton system targeting at the new µ+-centre, and so on. This process is
repeated until µ is small enough, say until nµ < ε.

Generic primal-dual algorithm for LO

Input:
a threshold parameter τ > 0;
an accuracy parameter ε > 0;
a fixed barrier-update parameter θ, 0< θ < 1;
(x0, s0) and µ0

:= 1 such that 9l(
√

x0s0/µ0)≤ τ ;
begin

x := x0
; s := s0

; µ := µ0;
while nµ≥ ε do
begin
µ := (1− θ)µ;
while 9l(v) > τ do
begin

solve system (2.3) for 1x, 1y, 1s;
determine a step size α;
x := x + α1x ;
s := s + α1s;
y := y + α1y;
v :=
√

xs/µ;
end

end
end

REMARK 2.1. If θ is a constant independent of the dimension of the problem, n, for
example θ = 1/2, then we call the algorithm a large-update method. If θ depends on n,
for example θ = 1/

√
n, then the algorithm is called a small-update method.

3. The new kernel function

In this section we define a new kernel function which is neither self-regular nor
logarithmic and gives the best known complexity result. We call ψ : R++→ R+ a
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kernel function if ψ is twice differentiable and satisfies the following conditions:

ψ ′(1)= ψ(1)= 0, ψ ′′(t) > 0, t > 0, lim
t→0+

ψ(t)= lim
t→∞

ψ(t)=∞. (3.1)

Now we define a new function ψ(t) as follows:

ψ(t) :=
t2
− 1
2
+

ep(g(t)−1)
− 1

pq
, p ≥ 1, q ≥ 1, t > 0, (3.2)

where g(t) := eq(t−1
−1). Then we have the following:

ψ ′(t) = t − ep(g(t)−1)g(t)t−2,

ψ ′′(t) = 1+ ep(g(t)−1)g(t)t−4(pqg(t)+ q + 2t),

ψ ′′′(t) = −ep(g(t)−1)g(t)t−6
(

p2q2g(t)2 + 3pq2g(t)
+ 6pqg(t)t + q2

+ 6qt + 6t2
)
.

(3.3)

From (3.3), ψ(t) is clearly a kernel function and

ψ ′′(t) > 1, t > 0. (3.4)

In this paper, we replace the function 9l(v) in (2.7) with the function 9(v) defined as
follows:

dx + ds =−∇9(v), (3.5)

where9(v)=
∑n

i=1 ψ(vi )withψ(t) defined by (3.2). Hence the new search direction
(1x, 1y, 1s) is obtained by solving the following modified Newton system:

A1x = 0, AT1y +1s = 0, s1x + x1s =−µv∇9(v). (3.6)

Note that dx and ds are orthogonal because the vector dx belongs to the null space and
ds to the row space of the matrix Ā. Since dx and ds are orthogonal, we have

9(v)= 0⇔ v = e⇔∇9(v)= 0⇔ dx = ds = 0⇔ x = x(µ) and s = s(µ).

We use 9(v) as the proximity function to measure the distance between the current
iterate and the µ-centre for given µ > 0. We also define the norm-based proximity
measure δ(v) as follows:

δ(v) := 1
2‖∇9(v)‖ =

1
2‖dx + ds‖. (3.7)

LEMMA 3.1. For ψ(t), the following results hold:

(i) ψ(t) is exponentially convex, that is,

ψ(
√

t1t2)≤ 1
2 (ψ(t1)+ ψ(t2)), t1, t2 > 0;

(ii) ψ ′′(t) is monotonically decreasing, t > 0;
(iii) tψ ′′(t)− ψ ′(t) > 0, t > 0;
(iv) 2(ψ ′′(t))2 − ψ ′(t)ψ ′′′(t) > 0, t > 0.
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PROOF. For (i), by [16, Lemma 2.1.2], it suffices to show that ψ(t) satisfies
tψ ′′(t)+ ψ ′(t) > 0, t > 0. For t > 0, using (3.3),

tψ ′′(t)+ ψ ′(t)= 2t + ep(g(t)−1)g(t)t−3(pqg(t)+ q + t) > 0,

with g(t) defined as before. For (ii), from (3.3),ψ ′′′(t) < 0, t > 0. For (iii), using (3.3),
we have for t > 0,

tψ ′′(t)− ψ ′(t)= ep(g(t)−1)g(t)t−3(pqg(t)+ q + 3t) > 0.

For (iv), using (3.3), we have for t > 0,

2(ψ ′′(t))2 − ψ ′(t)ψ ′′′(t) = 2+ ep(g(t)−1)g(t)t−8(10pqg(t)t4
+ 10qt4

+ 14t5
+ p2q2ep(g(t)−1)g(t)3 + q2ep(g(t)−1)g(t)

+ 2ep(g(t)−1)g(t)t2
+ pq2ep(g(t)−1)g(t)2

+ 2pqep(g(t)−1)g(t)2t + 2qep(g(t)−1)g(t)t

+ p2q2g(t)2t3
+ 3pq2ep(g(t)−1)g(t)t3)> 0.

This completes the proof. 2

LEMMA 3.2. For ψ(t), the following results hold:

(i) (t − 1)2/2≤ ψ(t)≤ (ψ ′(t))2/2, t > 0;
(ii) ψ(t)≤ (pq + q + 3)(t − 1)2/2, p ≥ 1, q ≥ 1, t ≥ 1.

PROOF. For (i), using the first condition of (3.1) and (3.4),

ψ(t)=
∫ t

1

∫ ξ

1
ψ ′′(ζ ) dζ dξ ≥

∫ t

1

∫ ξ

1
dζ dξ =

1
2
(t − 1)2,

which proves the first inequality. The second inequality is obtained as follows:

ψ(t) =
∫ t

1

∫ ξ

1
ψ ′′(ζ ) dζ dξ ≤

∫ t

1

∫ ξ

1
ψ ′′(ξ)ψ ′′(ζ ) dζ dξ

=

∫ t

1
ψ ′′(ξ)ψ ′(ξ) dξ =

∫ t

1
ψ ′(ξ) dψ ′(ξ)=

1
2
(ψ ′(t))2.

For (ii), using Taylor’s theorem and noting that ψ(1)= ψ ′(1)= 0, ψ ′′′(t) < 0, for all
t > 0, and ψ ′′(1)= pq + q + 3,

ψ(t) = ψ(1)+ ψ ′(1)(t − 1)+
1
2
ψ ′′(1)(t − 1)2 +

1
3!
ψ ′′′(ξ)(ξ − 1)3

=
1
2
ψ ′′(1)(t − 1)2 +

1
3!
ψ ′′′(ξ)(ξ − 1)3 <

pq + q + 3
2

(t − 1)2,

for some ξ , 1≤ ξ ≤ t . This completes the proof. 2
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LEMMA 3.3 ([5, Lemma 2.4]). If ψ(t) satisfies Lemma 3.1(ii) and (iii), then ψ(t)
satisfies

ψ ′′(t)ψ ′(βt)− βψ ′(t)ψ ′′(βt) > 0, t > 1, β > 1.

REMARK 3.4. Let ϕ(t)= (ep(g(t)−1)
− 1)/(pq). Then ψ(t)= (t2

− 1)/2+ ϕ(t).
Since ϕ′(t)=−ep(g(t)−1)g(t)t−2 < 0, ϕ(t) is monotonically decreasing with respect
to t > 0.

Let % : [0,∞)→ [1,∞) be the inverse function of ψ(t) for t ≥ 1 and
ρ : [0,∞)→ (0, 1] the inverse function of −ψ ′(t)/2 for t ∈ (0, 1]. Then we have the
following lemma.

LEMMA 3.5. We have:

(i)
√

2u + 1≤ %(u)≤ 1+
√

2u, u ≥ 0;
(ii) ρ(z)≥ 1/(1+ q−1 log(1+ p−1 log(1+ 2z))), z ≥ 0.

PROOF. For (i), let u = ψ(t) for t ≥ 1. Then %(u)= t , t ≥ 1. Using Lemma 3.2(i), we
have u = ψ(t)≥ (t − 1)2/2. Then

t = %(u)≤ 1+
√

2u.

By the definition of ϕ(t), we have u = ψ(t)= (t2
− 1)/2+ ϕ(t). Using Remark 3.4

and ϕ(1)= 0, we have ϕ(t)≤ 0, t ≥ 1. Hence,

t2/2= u + 1/2− ϕ(t)≥ u + 1/2.

Thus
t = %(u)≥

√
2u + 1.

For (ii), let z =−ψ ′(t)/2 for 0< t ≤ 1. Due to the definition of ρ, ρ(z)= t for z ≥ 0.
From (3.3), we have −t + ep(g(t)−1)g(t)t−2

= 2z and

ep(g(t)−1)g(t)t−2
= t + 2z ≤ 1+ 2z, 0< t ≤ 1. (3.8)

By taking the logarithm of both sides of (3.8), we obtain

p(g(t)− 1)+ q(t−1
− 1)− 2 log t ≤ log(1+ 2z).

Since 0< t ≤ 1,
g(t)≤ 1+ p−1 log(1+ 2z). (3.9)

Taking the logarithm of both sides of (3.9), we obtain

q(t−1
− 1)≤ log(1+ p−1 log(1+ 2z))

and hence
t−1
≤ 1+ q−1 log(1+ p−1 log(1+ 2z)).

That is,

ρ(z)= t ≥
1

1+ q−1 log(1+ p−1 log(1+ 2z))
.

This completes the proof. 2
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LEMMA 3.6. Let β ≥ 1. Then ψ(βt)≤ ψ(t)+ t2(β2
− 1)/2.

PROOF. Using Remark 3.4, we have ϕ(βt)− ϕ(t)≤ 0 for β ≥ 1. Hence

ψ(βt) = ((βt)2 − 1)/2+ ϕ(βt)

= (t2
− 1)/2+ ϕ(t)+ (β2t2

− t2)/2+ ϕ(βt)− ϕ(t)

= ψ(t)+ (t2β2
− t2)/2+ ϕ(βt)− ϕ(t)

≤ ψ(t)+ t2(β2
− 1)/2.

This completes the proof. 2

Using Lemma 3.3, we have the following. The reader can refer to [5, Theorem 3.2]
for the proof.

LEMMA 3.7. Let % : [0,∞)→ [1,∞) be the inverse function of ψ(t), t ≥ 1. Then

9(βv)≤ nψ(β%(9(v)/n)), v ∈ Rn
++, β ≥ 1.

In the following theorem we compute two upper bounds for the effect of a µ-update
on the value of 9(v).

THEOREM 3.8. Let 0≤ θ < 1 and v+ = v/
√

1− θ . If 9(v)≤ τ , then:

(i) 9(v+)≤ (2τ + θ
√

8nτ + θn)/(2(1− θ));
(ii) 9(v+)≤ (

√
nθ +

√
2τ)2(pq + q + 3)/(2(1− θ)).

PROOF. For (i), using Lemma 3.6 with β = 1/
√

1− θ , we obtain

9(v+)=9(βv)≤

n∑
i=1

(
ψ(vi )+

1
2
(β2
− 1)v2

i

)
=9(v)+

θ‖v‖2

2(1− θ)
. (3.10)

By the first inequality in Lemma 3.2(i) and the Cauchy–Schwarz inequality,

29(v)= 2
n∑

i=1

ψ(vi )≥

n∑
i=1

(vi − 1)2 = ‖v‖2 − 2eT v + n ≥ (‖v‖ − ‖e‖)2.

Hence,
‖v‖ ≤ ‖e‖ +

√
29(v)=

√
n +

√
29(v). (3.11)

From (3.10), (3.11), and 9(v)≤ τ we have

9(v+) ≤ 9(v)+
θ

2(1− θ)
(29(v)+

√
8n9(v)+ n)

≤
1

2(1− θ)
(2τ + θ

√
8nτ + θn).

For (ii), since 1/
√

1− θ ≥ 1 and %(9(v)/n)≥ 1, we have %(9(v)/n)/
√

1− θ ≥ 1.
Using Lemma 3.7 with β = 1/

√
1− θ , Lemma 3.2(ii), the second inequality in
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Lemma 3.5(i), and 9(v)≤ τ ,

9(v+) ≤ nψ

(
%(9(v)/n)
√

1− θ

)
≤
(pq + q + 3)n

2

(
%(9(v)/n)
√

1− θ
− 1

)2

=
(pq + q + 3)n

2

(
%(9(v)/n)−

√
1− θ

√
1− θ

)2

≤
(pq + q + 3)n

2

(
1+
√

2τ/n −
√

1− θ
√

1− θ

)2

≤
(pq + q + 3)n

2

(
θ +
√

2τ/n
√

1− θ

)2

=
pq + q + 3
2(1− θ)

(
√

nθ +
√

2τ)2, (3.12)

where the last inequality holds because

1−
√

1− θ = θ/(1+
√

1− θ)≤ θ, 0< θ < 1.

This completes the proof. 2

Define

9̄0 :=
2τ + θ

√
8nτ + θn

2(1− θ)
, 9̃0 :=

pq + q + 3
2(1− θ)

(
√

nθ +
√

2τ)2. (3.13)

We will use 9̄0 and 9̃0 for the upper bounds of9(v) for large-update and small-update
methods, respectively.

REMARK 3.9. By Theorem 3.8 and the assumption that 9(v)≤ τ just before the
update of µ, 9(v+)≤min{9̄0, 9̃0}. For large-update methods with τ =O(n) and
θ =2(1), we have 9̄0 =O(n), and for small-update methods with τ =O(1) and
θ =2(1/

√
n), we have 9̃0 =O(pq + q).

4. Complexity analysis

In this section we compute a proper step size and the decrease of the proximity
function during an inner iteration and give complexity results for the algorithm.
For fixed µ, if we take a step size α, then we have a new iterate x+ = x + α1x,
s+ = s + α1s. Using (2.5),

x+ = x

(
e + α

1x

x

)
= x

(
e + α

dx

v

)
=

x

v
(v + αdx )
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and

s+ = s

(
e + α

1s

s

)
= s

(
e + α

ds

v

)
=

s

v
(v + αds).

Thus we have

v+ :=

√
x+s+
µ
=

√
(v + αdx )(v + αds).

Define, for α > 0,
f (α)=9(v+)−9(v).

Then f (α) is the difference of proximities between a new iterate and a current iterate
for fixed µ. By Lemma 3.1(i),

9(v+)=9(
√
(v + αdx )(v + αds))≤

1
2 (9(v + αdx )+9(v + αds)).

Hence we have f (α)≤ f1(α), where

f1(α) :=
1
2 (9(v + αdx )+9(v + αds))−9(v). (4.1)

We have
f (0)= f1(0)= 0.

Taking the derivative of f1(α) with respect to α, we obtain

f ′1(α)=
1
2

n∑
i=1

(ψ ′(vi + α[dx ]i )[dx ]i + ψ
′(vi + α[ds]i )[ds]i ),

where [dx ]i and [ds]i denote the i th components of the vectors dx and ds , respectively.
Using (3.5) and (3.7),

f ′1(0)=
1
2∇9(v)

T (dx + ds)=−
1
2∇9(v)

T
∇9(v)=−2δ2(v). (4.2)

Differentiating f ′1(α) with respect to α, we obtain

f ′′1 (α)=
1
2

n∑
i=1

(ψ ′′(vi + α[dx ]i )[dx ]
2
i + ψ

′′(vi + α[ds]i )[ds]
2
i ). (4.3)

Since f ′′1 (α) > 0, f1(α) is strictly convex in α unless dx = ds = 0.

LEMMA 4.1. Let δ(v) be defined as in (3.7). Then

δ(v)≥
√
9(v)/2.

PROOF. Using Lemma 3.2(i),

δ(v)2 =
1
4
‖∇9(v)‖2 =

1
4

n∑
i=1

(ψ ′(vi ))
2
≥
9(v)

2
.

Hence δ(v)≥
√
9(v)/2. 2

For notational convenience we denote δ := δ(v) and 9 :=9(v).
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LEMMA 4.2 (Modification of [5, Lemma 4.1]). Let f1(α) be defined as in (4.1) and δ
as in (3.7). Then

f ′′1 (α)≤ 2δ2ψ ′′(vmin − 2αδ). (4.4)

LEMMA 4.3 (Modification of [5, Lemma 4.2]). If the step size α satisfies the
inequality

−ψ ′(vmin − 2αδ)+ ψ ′(vmin)≤ 2δ, (4.5)

then
f ′1(α)≤ 0.

LEMMA 4.4 (Modification of [5, Lemma 4.3]). Let ρ : [0,∞)→ (0, 1] denote the
inverse function of−ψ ′(t)/2 for all t ∈ (0, 1]. Then, in the worst case, the largest step
size ᾱ satisfying (4.5) is given by

ᾱ :=
1
2δ
(ρ(δ)− ρ(2δ)).

LEMMA 4.5 (Modification of [5, Lemma 4.4]). Let ρ and ᾱ be defined as in
Lemma 4.4. Then

ᾱ ≥
1

ψ ′′(ρ(2δ))
.

For later reference, we define

α̃ :=
1

ψ ′′(ρ(2δ))
. (4.6)

Then α̃ ≤ ᾱ.

LEMMA 4.6 ([16, Lemma 1.3.3]). Suppose that h(t) is a twice-differentiable convex
function with

h(0)= 0, h′(0) < 0,

and such that h(t) attains its (global) minimum at t∗ > 0, and h′′(t) is increasing with
respect to t . Then for any t ∈ [0, t∗],

h(t)≤
th′(0)

2
.

LEMMA 4.7 (Modification of [5, Lemma 4.5]). If the step size α is such that α ≤ α̃,
then

f (α)≤−αδ2.

PROOF. Let the univariate function h be such that

h(0)= f1(0)= 0, h′(0)= f ′1(0)=−2δ2, h′′(α)= 2δ2ψ ′′(vmin − 2αδ).

Then h(t) is twice differentiable, h(0)= 0, and h′(0) < 0. Since h′′(α) > 0, h(t) is
strictly convex and hence has a global minimum at some α∗ > 0. From (4.4), we have
f ′′1 (α)≤ h′′(α). As a result, we have f ′1(α)≤ h′(α) and f1(α)≤ h(α). Taking α ≤ α̃
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and using (4.5), we obtain

h′(α) = h′(0)+
∫ α

0
h′′(ζ ) dζ

= −2δ2
+ 2δ2

∫ α

0
ψ ′′(vmin − 2ξδ) dξ

= −2δ2
−

2δ2

2δ

∫ α

0
ψ ′′(vmin − 2ξδ) d(vmin − 2ξδ)

= −2δ2
− δ(ψ ′(vmin − 2αδ)− ψ ′(vmin))

≤ −2δ2
+ 2δ2

= 0.

Hence we have α̃ ≤ α∗. Since

h′′′(α)=−4δ3ψ ′′′(vmin − 2αδ) > 0,

h′′(α) is monotonically increasing in α. Thus, using Lemma 4.6,

f1(α)≤ h(α)≤
αh′(0)

2
=−αδ2.

Since f (α)≤ f1(α), the lemma is proved. 2

Using Lemma 4.7 and (4.6), we have the following lemma.

LEMMA 4.8 (Modification of [5, Lemma 4.6]). Let α̃ be defined as in (4.6). Then

f (α̃)≤−
δ2

ψ ′′(ρ(2δ))
. (4.7)

Using Lemma 3.1(iv), we obtain the following.

LEMMA 4.9 (Modification of [5, Lemma 4.10]). The right-hand side in (4.7) is
monotonically decreasing with respect to δ.

Denote the value of 9(v) after the µ-update as 90. Then

90 ≤ 9̄0 and 90 ≤ 9̃0, (4.8)

where 9̄0 and 9̃0 are defined in (3.13). Define

L(9, p) := 1+ p−1 log(1+ 2
√

29). (4.9)

Then L(9, p) is monotonically increasing with respect to 9 and L(9, p)≥ 1.

THEOREM 4.10. Let α̃ be defined as in (4.6), X := 1+ q−1 log(L(9, p)), and
X0 := 1+ q−1 log(L(90, p)). Assume that 9 > τ ≥ 1. Then for p ≥ 1 and q ≥ 1,

f (α̃)≤−

√
9

10L(90, p)X4
0(pq L(90, p)+ q + 2)

,

where L(90, p) := 1+ p−1 log(1+ 2
√

290).
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PROOF. Using Lemma 3.5(ii),

ρ

(
2

√
9

2

)
≥

1

1+ q−1 log(1+ p−1 log(1+ 2
√

29))
. (4.10)

Using (4.10), ψ ′′′(t) < 0, for all t > 0, (3.3), and the assumption,

ψ ′′
(
ρ

(
2

√
9

2

))
≤ ψ ′′

(
1
X

)
= 1+

(
pq L(9, p)+ q +

2
X

)
(1+ 2

√
29)L(9, p)X4

≤ 2(1+
√

29)L(9, p)X4(pq L(9, p)+ q + 2)

≤ 5
√
9L(9, p)X4(pq L(9, p)+ q + 2), (4.11)

where the last inequality follows from the assumption 9 ≥ 1 and a simple calculation.
Using Lemmas 4.8, 4.9, 4.1, and (4.11),

f (α̃) ≤ −
δ2

ψ ′′(ρ(2δ))

≤ −
9/2

ψ ′′(ρ(2
√
9/2))

≤ −
9/2

5
√
9L(9, p)X4(pq L(9, p)+ q + 2)

= −

√
9

10L(9, p)X4(pq L(9, p)+ q + 2)

≤ −

√
9

10L(90, p)X4
0(pq L(90, p)+ q + 2)

,

where the last inequality follows from the assumption 90 ≥9. This completes the
proof. 2

LEMMA 4.11 ([15, Lemma 14]). Let t0, t1, . . . , tK be a sequence of finitely many
positive numbers such that

tk+1 ≤ tk − γ t1−β̃
k , k = 0, 1, . . . , K − 1,

where γ > 0 and 0< β̃ ≤ 1. Then K ≤ bt β̃0 /(γ β̃)c.

After the µ-update we denote the subsequent values in the same outer iteration as
9k, k = 1, 2, . . . , K . Then

9K−1 > τ, 0≤9K ≤ τ.
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Denote

N (9, p, q) := L(9, p)(1+ q−1 log(L(9, p)))4(pq L(9, p)+ q + 2), (4.12)

where L(9, p) is defined in (4.9). Then N (9, p, q) is monotonically increasing with
respect to 9.

LEMMA 4.12. Let 9̄0 and 9̃0 be defined as in (3.13) and K1 and K2 be the total
number of inner iterations in the outer iteration for large-update and small-update
methods, respectively. Then for p ≥ 1 and q ≥ 1,

K1 ≤ 20N (9̄0, p, q)9̄1/2
0 and K2 ≤ 20N (9̃0, p, q)9̃1/2

0 .

PROOF. By Theorem 4.10, Lemma 4.11 with β̃ := 1/2 and γ := 1/(10N (90, p, q)),
and (4.8),

K1 ≤ 20N (90, p, q)91/2
0 ≤ 20N (9̄0, p, q)9̄1/2

0

and
K2 ≤ 20N (90, p, q)91/2

0 ≤ 20N (9̃0, p, q)9̃1/2
0 .

This completes the proof. 2

THEOREM 4.13. Let an LO be given and 9̄0, 9̃0 be defined as in (3.13). Then for
p ≥ 1, q ≥ 1, 0< θ < 1, and τ ≥ 1, the total number of iterations required to obtain
an approximate solution with nµ < ε is bounded by:

(i) d(20/θ)N (9̄0, p, q)9̄1/2
0 log(n/ε)e, for large-update methods;

(ii) d(20/θ)N (9̃0, p, q)9̃1/2
0 log(n/ε)e, for small-update methods.

PROOF. If the parameter µ has the initial value µ0
= 1 and is updated by multiplying

by 1− θ with 0< θ < 1, then after at most

d(1/θ) log(n/ε)e

iterations we have nµ < ε [17]. For the total number of iterations, we multiply the
number of inner iterations by the number of outer iterations. Hence the total numbers
of iterations for large-update and small-update methods are bounded by

d(20/θ)N (9̄0, p, q)9̄1/2
0 log(n/ε)e and d(20/θ)N (9̃0, p, q)9̃1/2

0 log(n/ε)e,

respectively. This completes the proof. 2

REMARK 4.14. By Remark 3.9 and Theorem 4.13, for large-update methods, taking
τ =O(n) and θ =2(1), the algorithm has

O(Y(1+ q−1 log(Y))4(pqY+ q + 2)
√

n log(n/ε))
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iteration complexity where Y := 1+ p−1 log(1+ 2
√

2n). In particular, choosing
p =O(log(1+ 2

√
2n)) and q = 1, the algorithm has O(

√
n log n log(n/ε)) iteration

complexity which is currently the best known result for large-update methods.
For small-update methods, taking τ =O(1) and θ =2(1/

√
n), the algorithm has

O(Z(1+ q−1 log(Z))4(pqZ+ q + 2)
√

n log(n/ε))

iteration complexity where Z := 1+ p−1 log(1+ 2
√

2(pq + q)). Choosing p = 1
and q = 1, we have O(

√
n log(n/ε)) iteration complexity which is the best known

complexity result for such methods.

5. Concluding remarks

Motivated by recent work of Amini and Haseli [1], we propose a new primal-
dual interior-point algorithm for LO problems based on a new kernel function and
analyse the iteration complexity of the algorithm. We obtain O(

√
n log n log(n/ε))

and O(
√

n log(n/ε)) iteration bounds for large-update and small-update methods,
respectively. These are the best known results for such methods.

Future research might focus on the extension to semidefinite optimization, second-
order cone optimization, and complementarity problems. Numerical tests will be
another topic for future research.
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