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A SLOW MOTION OF VISCOUS LIQUID CAUSED BY A SLOWLY
MOVING SOLID SPHERE

M. E. O'NEILL

1. A slow steady motion of incompressible viscous liquid, bounded
by an infinite rigid plane, which is generated when a rigid sphere of
radius a moves steadily without rotation in a direction parallel to, and
at a distance d from, the plane is considered. Use is made of bispherical
coordinates, which were employed some years ago by G. B. Jeffery [1]
and Stimson and Jeffery [2] in solving the axi-symmetrical problems in
which the sphere is fixed and rotates about a diameter perpendicular to
the plane, or when two spheres move without rotation along their line
of centres in infinite liquid. The coordinate system has been used recently
by Dean and O'Neill [3] in solving the problem in which the sphere is
fixed and rotates about a diameter parallel to the plane.

Since the equations governing the motion of the liquid are linear, the
solution of the problem in which the sphere has a uniform velocity
(U, V, W) of translation and (O1, Q2, Q3) of rotation, referred to a
system of Cartesian coordinates in which the plane is given by z = 0 and
the coordinates of the centre of the sphere by (0, 0, d), may be obtained
by combining the solutions of the problems in which only one of U, V, W,
D,v Q2> ^3 *s non-zero. For those problems not discussed here, the solu-
tions at any instant may be obtamed by the method of [1] for the case
when Q3 ^ 0, by a method similar to that of [2] for the case when W ^ 0,
and by the method of [3] for the cases when Qx or Q2 is non-zero.

2. Let us suppose that the sphere has a velocity (U, 0, 0); from the
solution for this case may be deduced the solution for the case when the
sphere has a velocity (0, V, 0). The fluid velocity V must vanish at all
points of the plane z = 0 and at any point of the sphere with cylindrical
coordinates (r, 8, z), the cylindrical components (u, v, w) of V must satisfy
the conditions

u=U cos 0, v=—U sind, w = 0. (1)

3. If the liquid has a constant density p and coefficient of viscosity /*,,
the equations for the motion of the liquid are satisfied if the pressure p
and u, v, w are given by

cp = (i1UQ1 cos0, cu = $U[rQ1+c(U2+U0)]cosd, (2)

cv = \Uc{U2— Uo) sin9, cw = |[7[ZQ1+2CM;1] COS0, (3)

where c is a constant length which is defined later and Qv Uo, U2 and wx
are functions of r, z only, satisfying

V Uo = W U2 = V Qx = L*wx = 0; (4)
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the operators being defined by

The equation of continuity is satisfied if

It is now convenient to introduce coordinates (£, rj) defined by

csinij csinh£
z =cosh £—cos -q ' " cosh £—00377

This definition determines the constant c of (2) and (3). The plane is
defined by $ = 0, and the sphere is defined by £ = a. > 0, if a = c cosech a
and d = c coth a. The equations (4) for Uo, U2, Qx and wx are satisfied
[4] if

wx = (cosh f—JU.)* sin r) S [ i n sinh (»+£) f] P n ' (ft), (6)
n=l

^ = (cosh t-rf sinr, | [5n cosh (n+i) f+CB sinh (n+J) fl Pre'(/a), (7)

?70 = (cosh £-ft)* £ [Z)n cosh (n+1) ^+^m sinh (»+J) fl Pn(/a), (8)

n=2

where fi denotes cosrj, Pm(ft) the Legendre polynomial of order n, and
the accents differentiations with respect to /u..

4. The boundary conditions on the plane may now be expressed as

u i 2(1—c
and

Wl = 0 (£ = 0), (11)

and since u = v = 0 when £ = 0, it is clear from the equation of continuity
that dw/dz = 0 when £ = 0. Hence

= —2clim —. (12)
(g=0) g->0 Z

Equation (11) is clearly satisfied by wx given by (6), and equations (10)
and (12) will be satisfied [3] if

Bn=(n~l)An_1-(2n+l)An+(n+2)An+1 (n>l), (13)

Dn=-i(n-l)nAn_1+Un+l)(n+2)An+1 (n>0), (14)

4n+1) (» > 2). (15)
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5. The boundary conditions (1) on the sphere may be expressed as

U02U=U2=40 2 2 (cosh a—

and

2 (cosh a—COST?)
(17)

Equations (16) and (17) can be shown to be satisfied by wv Qv Uo, U2

given by (6), (7), (8) and (9), if

n

_ ^ r(n.- l )n^n_1

)<* nL 2w—1sinh (»+£)<* nL 2w—1 2?i+3

(n>0) , (19)

[ ^ 3 — ^ ] (w>2)' (20)

where
lcn — (n-\-\) coth (w-f!)«—coth a (?i > 0).

5. I t can be shown that each of the functions

dU0 Id 2\TT a dwx

is a solution of the equation Lx
2 <f> = 0. Hence, (5) will be satisfied at all

points of the fluid if the sums of the coefficients of

(cosh £—/*)* sin -q cosh (»+£) I P n ' (/*) (n > 1)

and

(cosh^~/i)i sin?? sinh (n+J) ^Pn'(fi) (n > 1)

in each of the functions is zero. It therefore follows that (5) is satisfied if

6Bn-(n-l) Bn_x+ (n+2) Bn+1-Dn_1+2Dn-Dn+1

+ (n-2)(n-l)Fn_1-2(n-l)(n+2)Fn+(n+2)(n+3)Fn+1

-2(n-l)An_1+2(2n+l)An-2(n+2)An+1 = 0 (n > 1), (21)

and

5Cn-(n-l)Cn^1+(n+2)Cn+1-En_1+2En-En+1

flin+(n+2)(n+3) GM+1 = 0

(»>1) . (22)
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The equation of continuity when £ = 0 has been used to deduce (13),
(14) and (15). Consequently, if Bn, Dn and Fn are substituted by these
equations, the set of equations (21) is identically satisfied. When (18),
(19) and (20) are used to express Cn, En and 6n in terms of An, (22) gives

= (V2)[2 coth (n+ | ) a—coth (n—\) a -coth (w+f) a] (n > 1). (23)

The structure of (23) does not permit the direct determination of the
coefficients An. However, An necessarily converges to zero for every
non-zero value of a, hence the significant solution of (23) may be derived
numerically by a successive approximation technique. Satisfactory
solutions have been obtained using an electronic digital computer over
a range of values of a between 3-0 and 0-02.

6. The components Fx, Fy, Fz of the total force exerted by the fluid
on the sphere are given by

x
Fx = ̂  Vc j [-Ti - - — -r BQ, du

2c d£ d£

and

Defining a non-dimensional force coefficient F* by
w

F* = ~- f! Ua'

it follows that

12^cosecha= (+1 d-£
J-i 01;

f § ^ + 2 ( £
-i 01; (cosh a—(i)2 J-i 01; (cosh a—/x)

+sinha . \ ' r.. .
J-i (cosh a—ju,)3

By use of the relations

J_i (cosha—/(cosh

(24)

(25)
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it can be shown that the formula for F* is

î * = i(V2)sinha £ [(Dn+En)+n(n+l)(Bn+Cn)],

which, by (13) and (14), reduces to

^ * - i ( V 2 ) s i n h a i [En+n(n+l)Cn]. (26)
m=0

7. The components 6X, Gy, Gz of the couple exerted on the sphere
when moments of the forces acting on its surface are taken about the
centre are given by

GX = G. = O,

and

Gy= — TT/^t/cosechocJ l^jiifcQi+cwj)— — —{irQi+cUJldtJi,.

Defining a non-dimensional couple coefficient G* by

G = ^ _
87T/*! Ua2 '

it follows that

— 8G* cosecha J_i dg (cosh a—/x)2

— 4-^r cosha+-^-smha
(cosh a-/*)2

Therefore, by the use of the relations (24) and (25), together with

3 sinh2 a f+1 -—fn<^ ^l9 = 2n+1+2 coth a,
J_i (cosh a—/a)5'2

it may be shown that the formula for G* is

n=0

S [2-e-<2"+1)a][w(?i+l)5ncotha-(2w+l—cotha)DJ. (27)
0

8. The components FJ, Fy', Fe' of the total force exerted by the
fluid on the fixed plane £ = 0 are given by

d9

r°° /du
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which gives

which, by the use of the relations

f+i Pndix
J_! (l-/x)i =

| + 1 ( n-l— m+l)1

J_l (1 —a)3'2

(28)

can be shown to give

Fx' = {y/2) TT/*! Z7o sinh a £ [En+n(n+1) CJ . (30)
n=0

The components Gx, Gy', Gz' of the moment about the centre of the
sphere of the forces acting on the plane are given by

GX' = G; = o,
and

/*2lT fee / 9j#A
G ' = dd l-p+2^—)r3 cos 6dr-Fx'd,

Jo Jo \ oz]

which gives

^ T I d F

which on tising (28) and (29) can be shown to give

0' = (V2)"Hi Ua? sinh2a S (4n(w+l)^w— [En+n(n+l) Cn] cotha) .
n=0

(31)

Since the fluid is not acted on by body forces, and its motion is slow
and steady, the forces that are exerted on a volume of fluid bounded by
the sphere, a large hemisphere of radius Rv (i?j > a-\-d), drawn in the
fluid, and the part of the plane z = 0, r ^ Blt by the sphere, the plane
boundary, and the stresses over the hemisphere constitute a system of
forces in statical equilibrium. As i?1->oo, the force and couple about
the centre of the sphere, exerted by the plane boundary, tend to —Fx'l
and — Gy'j respectively, whilst the force and couple about the centre
of the sphere, exerted by the sphere, are — Fxi and — Gy] respectively.
But (26), (27), (30) and (31) show that

FX = FX', GV^GV'.

Consequently, the order of magnitude of the stresses at a large distance
R from the centre of the sphere is like 1/i?3 which shows that the effect
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of the plane in this problem is to diminish the order of magnitude of the
stresses (and velocity) at large distances due to the motion of the fluid
caused by the sphere. This effect contrasts with that of the previously
discussed problem [3], in which the corresponding orders of magnitude
were found to be unaltered by the presence of the plane.

9. The following table shows the calculated values of the force and
couple coefficients F* and 0* for some of the values of a in the range
considered. Subsequent to the publication of [3], further values of the
force and couple coefficients F and O were evaluated and some of these
values are also given here for completeness.

a

3-0
2-0
1-0
0-5
0-3
0-1
0-08
0-06
0-04
0-03
002

dfa

10-0677
3-7622
1-5431
1-1276
1-0453
1-0050
1-0032
1-0018
1-0008
1-0005
1-0002

F*

1-0591
1-1738
1-5675
2-1515
2-6475
3-7863
4-0223
4-3275
4-7587
5 0651
5-4973

O*

0-00001
0-00042
0-01465
0-07372
0-14552
0-34187
0-38496
0-44116
0-52120
0-57834
0-65912

F

0-04479
0-12357
0-33190
0-52392
0-63223
0-81018
0-84203
0-88220
0-93770
0-97662
—

O

1-0005
1-0090
11473
1•5585
1-9960
31121
3-3516
3-6629
4-1048
4-4197

— •

The numerical values above show consistency with F*, O tending to
unity and F, G* tending to zero as d tends to infinity with a remaining
constant. These limits give the forces and couples appropriate to the
motions generated by the sphere in isolation in unbounded fluid. If d = a,
the sphere touches one point of the plane. The shearing force on an element
of the surface of the sphere near the point of contact of area lira?- sin Bx ddv

where 0t is the angle between the positive z-axis and a radius of the sphere
through the element, is approximately

Ua sin 6X ddx

which shows that F* and G* should tend to infinity as a tends to zero.
This has also been shown to be the case with F and G. The numerical
values above show consistency with these conclusions; it is, however,
remarkable that for such small values of « as have been considered, the
variations in the coefficients from their limiting values as a tends to
infinity are so small.
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