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Abstract
The Turán number ex(n,H) of a graphH is the maximal number of edges in anH-free graph on n vertices.
In 1983, Chung and Erdős asked which graphsH with e edges minimise ex(n,H). They resolved this ques-
tion asymptotically for most of the range of e and asked to complete the picture. In this paper, we answer
their question by resolving all remaining cases. Our result translates directly to the setting of universality,
a well-studied notion of finding graphs which contain every graph belonging to a certain family. In this
setting, we extend previous work done by Babai, Chung, Erdős, Graham and Spencer, and by Alon and
Asodi.

2020 MSC Codes: 05C80, 05C60, 05D40, 05C35

1. Introduction
The following question of Turán dating back to 1941 [27] is one of the most classical problems
of graph theory. Given a fixed graph H, what is the maximal number of edges one can have in an
n vertex graph which does not contain a copy of H as a subgraph? The answer to this question,
denoted ex(n,H), is called the Turán number ofH. Turán numbers have been extensively studied
in the last 70 years, see, for example, the surveys [25, 23, 20, 26, 21].

Turán’s problem leads to another very natural extremal question—what is the largest size of a
graph which we cannot avoid as a subgraph in any graph on n vertices and e edges? In other words,
what kind of a graphH with a fixed number of edges (possibly depending on n) hasminimal Turán
number?

This question was first asked by Chung and Erdős [10] in 1983 and many questions of a similar
flavour were later considered in [11, 8, 12, 17]. Some of these questions have also featured in an
Erdős open problem collection [9].

In this paper, we revisit the original question of Chung and Erdős. They say a graphH is (n, e)-
unavoidable if every graph on n vertices and e edges contains a copy ofH as a subgraph. Let f (n, e)
be the maximum number of edges in an (n, e)-unavoidable graph. Chung and Erdős obtain the
following bounds on f (n, e):
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i. f (n, e)= �
(�e/n�2) if e≤ n4/3.

ii. f (n, e)= �
( √

e log n
log((n2)/e)

)
if cn4/3 < e<

(n
2
)− n1+c for any 0< c< 1.

iii. �
(

m2

log2 m

)
≤ (n2)− f (n, e) ≤O

(
m2 log logm

logm

)
wherem= (n

2
)− e, and

(n
2
)− cn< e,

for some c> 0.

In fact for certain regimes from parts (i) and (ii) they obtain even more precise bounds, some of
which appear in a later paper [11]. However, there is a gap between regimes of part (ii) and (iii)
for which their methods fail to give an answer. Given this, they naturally ask what is the correct
behaviour of f (n, e) towards the end of the range, so when e>

(n
2
)− n1+o(1). In this paper, we

resolve this question and determine f (n, e) for the remaining values of e.

Theorem 1.1. For any ε > 0, if we let m= (n
2
)− e

f (n, e) =

⎧⎪⎨
⎪⎩
(n
2
)− �

(
m2

log2 m

)
if m≤ n log n

�
(
n3 log n

m

)
if n log n<m< n3/2−ε

.

It is worth noting that the unavoidable graph we use in order to obtain the lower bound in the
second part of the above theorem is the random Erdős–Renyi graph. This is in stark contrast to the
very structured graph used by Chung and Erdős in regimes of (ii)a and (iii) above. In particular,
they use a disjoint union of complete bipartite graphs. Furthermore, for part of the regime both of
these very different examples are extremal, up to a constant factor.

1.1 Universality
An (n, e)-unavoidable graph H on n vertices is contained in every graph G on n vertices and
e edges. Another way of saying this is that the complement of H contains the complement of
G. Since G was arbitrary, this means that H is (n, e)-unavoidable if and only if its complement
contains every graph on n vertices andm= (n

2
)− e edges as a subgraph. This observation, made by

Chung and Erdős, links unavoidability to perhaps an even more natural and well-studied notion,
namely that of universality.

For a given family of graphsH, we call a graphH-universal if it contains a copy of each graph in
H. GivenH one usually wants to find the smallestH-universal graph with respect to the number
of edges or both vertices and edges. Chung and Graham [13] were the first to use this general
notion of universality in 1979. In [13], they survey a number of results in this setting. Universality
problems have been extensively studied ever since, for some examples, see [14, 16, 24, 4, 6] and
references therein.

Following the above observation by Chung and Erdős, the relevant family in our case is that
of all graphs on n vertices and m edges, which we denote as H(n,m). We denote by g(n,m) the
minimum number of edges in an H(n,m)-universal graph on n vertices. The above observation
of Chung and Erdős boils down to the following relation between the functions f and g:

g(n,m)=
(
n
2

)
− f (n, e) , (1)

where m= (n
2
)− e. This relation allows us to easily translate results between unavoidability and

universality. For example, Theorem 1.1 is equivalent to the following statement.

aNote that the bound of Chung and Erdős agrees, after some simplification, with our bound in Theorem 1.1, for the part of
the range where they overlap.
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Theorem 1.2. For any ε > 0 we have

g(n,m)=

⎧⎪⎨
⎪⎩

�
(

m2

log2 m

)
if m≤ n log n

(n
2
)− �

(
n3 log n

m

)
if n log n<m< n3/2−ε

.

While in the unavoidability case, one might arguably think that the very end of the regime is not
that interesting since it only involves determining the behaviour of the second-order term, we
see here that this second-order term becomes the main and only term for the case of universal-
ity. This regime, in particular is related to previous work on universality for the family E(m) of
graphs with exactlym edges (and no isolated vertices). This was first considered by Babai, Chung,
Erdős, Graham and Spencer [5] in 1982. They show that there exist E(m)-universal graphs with
at most O

(
m2 log logm

logm

)
edges. This was later improved upon by Alon and Asodi [1] who show

the upper bound of O
(

m2

log2 m

)
, which matches the lower bound. Our bound on g(2m,m) recov-

ers the result of Alon and Asodi as any graph on m edges can use at most 2m vertices, so any
graph which isH(2m,m)-universal is also E(m)-universal. On the other hand whenm> n/2 their
results cannot be used to obtain a bound on g(n,m) for the following reason. In order to bound
g(n,m) one needs to find anH(n,m)-universal graph on n vertices. This can never come from an
E(m)-universal graph as any such graph needs to have at least 2m> n vertices, in order to con-
tain a matching of m edges. Furthermore, E(m)-universal construction of Alon and Asodi uses
more than 4m vertices. Since any graph in E(m) has at most 2m vertices, this affords them a lot
of leeway during the embedding process. In contrast, in our problem we need to find spanning
universal graphs, which requires a different embedding technique. Proving such spanning results
is often a harder problem. While neither our nor the universal graphs used by Alon and Asodi are
explicit, our embedding technique allows us to work with a weaker and simpler property of ran-
dom graphs, which might be helpful in answering their question about finding explicit universal
graphs.

Another related notion of universality deals with the family E(n, d) of graphs on n vertices with
degree bounded by d. Alon and Capalbo [3] show that �

(
n2−2/d

)
is the least possible number

of edges in an E(n, d)-universal graph. The E(n, d)-universal graph they construct has more than
(1+ ε)n vertices and it is a seemingly hard open problem in the area to obtain such a graph on
exactly n vertices. The best result in this direction is due to the same authors [2] where they exhibit
such a graph with O

(
n2−2/d log4/d n

)
edges. As already mentioned, we need to overcome a sim-

ilar difficulty in our setting since we require our universal graphs to be of the same order as the
graphs we want to embed.

Notation. We will abbreviate H(n,m)-universal by (n,m)-universal throughout the paper. Let
G= (V , E) be a graph and U ⊆V . We denote with G[U] the subgraph of G induced by U. We
denote with G(n, p) the standard Erdős–Renyi random graph, i.e. the probability distribution on
the set of all graphs on n vertices where each graphH has probability measure pe(H)(1− p)(

n
2)−e(H).

We say that G(n, p) satisfies a property with high probability (whp) if a sample from G(n, p) sat-
isfies this property with probability tending to 1 as n tends to infinity. Let f , g be functions from
N to R

+. Then f =O(g) if there exists a constant C such that f (n)≤ Cg(n) for all n ∈N. Also,
f = �(g) if g =O( f ). Furthermore, f = �(g) if g =O( f ) and g = �( f ). If limn−→∞ f (n)

g(n) = 0 then
we write f = o(g) and g = ω( f ). With log n we denote the natural logarithm of n. We omit floors
and ceilings whenever they are not essential.
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2. Lower bounds for g(n,m)
We start our proof of Theorem 1.2 with the lower bounds.

Lemma 2.1. Let G be an (n,m)-universal graph with t edges. Then the following holds:

• If m> n log n then t ≥ (n2) (1− n log n
m

)
.

• If m≤ n log n then t ≥ 1
4
(m/ logm

2
)
.

Proof. The idea behind the proof is quite simple, we will count howmany non-isomorphic graphs
there are on n vertices and m edges and we will count how many subgraphs with m edges we can
find in our a graph with t edges. The existence of an (n,m)-universal graph G on t edges implies
that the former count must be smaller than the latter (since all n-vertex m-edge graphs must
appear as subgraphs of G); the desired bounds then follow after some simplifications, which will
differ depending on the regime.

The number of non-isomorphic graphs on n vertices andm edges is at least((n
2
)

m

)
1
n! ,

here the first term counts the number of labelled graphs on n vertices andm edges, and we counted
each graph at most n! many times.

Since G contains all these graphs, and there are
( t
m
)
subgraphs of G withm edges, we get((n

2
)

m

)
1
n! ≤

(
t
m

)
.

By using the inequality
(b
c
)≤ (ac)( ba )c that holds for all a> b> c≥ 0 we conclude

1
n! ≤

(
t(n
2
)
)m

,

which gives

t >
(
n
2

)
(n!)−1/m ≥

(
n
2

)
n−n/m. (2)

Since n−n/m ≥ 1− n log n
m the first claim follows. For the case whenm< n log n let k=m/ logm<

n. So G is also (k,m)-universal and the bound (2) implies

t >
(
k
2

)
k−k/m =

(
k
2

)(
m

logm

)−1/ logm
>

(
k
2

)
m−1/ logm =

(
k
2

)
e−1.

3. Upper bounds for g(n,m)
In order to give an upper bound on g(n,m) one needs to exhibit an example of an (n,m)-
universal graph. We distinguish two regimes, corresponding to the relations between n and m
which give us different behaviours in Theorem 1.2. Namely, in the first regime, we will work with
n log n<m< n3/2−ε and in the secondwithm≤ n log n. In both regimes, we have different exam-
ples but they share some common traits. We begin with a few results which will be useful for both
regimes.
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Let us state an immediate observation which we will use frequently, without further mention.

Observation 3.1. Let G be a graph with m edges. If G′ is the subgraph of G obtained by delet-
ing k vertices of highest degree, then �(G′)≤ 2m/k. In fact, any vertex of G′ has degree at most
2m/k in G.

The following lemma will allow us to pass from almost spanning universal graphs to spanning
ones. Here, and in the rest of the paper when we say that we add full-degree vertices to a graph,
we mean that we create a new graph, which consists of an induced copy of the original graph and
a number of new ‘full-degree’ vertices that are adjacent to every other vertex of the new graph.

Lemma 3.2. Let n> k and suppose there is a k-vertex (k−
⌊
k(n−k)
2m+k

⌋
,m) universal graph U. By

adding n− k new full-degree vertices to U we obtain an n-vertex (n,m)-universal graph.

Proof. LetU be the universal graph given by the assumption. We construct G by adding a set F of
n− k new vertices to U and joining each vertex of F to all other vertices in U ∪ F. We claim that
G is (n,m)-universal. To show this we consider an arbitrary n-vertex graph H with m edges. We
prove that H can be embedded into G.

Before turning to the details let us explain the idea how we will achieve this. Let � :=⌊
k(n− k)/(2m+ k)

⌋
so that U is (k− �,m)-universal. We will first find an independent set of

S of � vertices in H with the property that there are at least k vertices of H having no edges to S
(including vertices of S themselves). We embed the remaining n− k vertices into vertices of G of
full degree, we then embed the remaining k− � vertices not in S inside U, using the universality
of U, finally we may embed the vertices in S as we please to the remainder of U since they send no
edges to the part of H embedded in U and will be joined to every other vertex in G.

Let us now fill in the details. We pick a vertex v1 inH0 := H of minimum degree and remove v1
and all its neighbours fromH to obtainH1. We repeat � times, in step i we pick a vertex vi inHi−1
of minimum degree and createHi by removing vi and all its neighbours inHi−1. By induction it is
easy to see that after each step, we are left with at least k vertices inHi. Indeed, ifHi−1 has at least k
vertices, then for j≤ i vertex vj has a degree of at most 2|E(Hj−1)|/|Hj−1| ≤ 2m/k inHj−1, since vj
is a vertex of minimum degree in Hj−1 and |Hj−1| ≥ |Hi−1| ≥ k. So after deleting all such vj’s and
their neighbours, we have in total deleted at most i · (2m/k+ 1)≤ �(2m/k+ 1)≤ n− k vertices,
so indeed we do have at least k vertices in Hi for each i ∈ [�].

In particular, we obtain a subgraph H� of H of size at least k and an independent set S=
{v1 . . . , v�} of � vertices each with no neighbours in H�. We embed all vertices of H \ (H� ∪ S)
into F (which we can since |H \H�| ≤ n− k) as well as as many vertices of H� as we can. If we
are only left with vertices of S we can embed them into U (since they make an independent set).
Otherwise we are left with a graphH′ such that S⊆H′ ⊆H� ∪ S. Note thatH′ has |G \ F| = k ver-
tices, � of which are independent (depicted by the first and last part ofH in Figure 1). Since U was
(k− �,m)-universal we can embed H′ \ S into U and place S into unused vertices. This is permis-
sible since vertices in S were isolated in H′. Furthermore, since all other vertices got embedded
into F (whose vertices have full degree in G), we have found our embedding of H.

This lemma shows that if we can establish a sufficiently strong version of almost spanning
universality it only costs us a very few extra vertices of full degree in order to obtain spanning uni-
versality. On the other hand since we want universality for n-vertex graphs withm edges, we know
that provided m≥ n− 1 the host graph must contain some vertices of full degree, as the graphs
we want to embed might also have some vertices of full degree. We note that this simple lemma is
one of the main ingredients that allow us to find spanning universal graphs, which is usually a very
hard problem. In addition, it allows us to greatly simplify certain technical parts of our arguments.

We will construct a part of our universal graph G to satisfy a property of the following type,
which will allow us to embed any graph on n vertices andm edges into G.
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Figure 1. Illustration of the final state of the embedding process when passing from almost spanning universality to
spanning universality.

Definition. A graph is said to have the (r, s, t)-domination property if for any set R of size r and
any t disjoint sets S1, . . . , St of size s which are disjoint from R, there is a vertex v in R and a set Si
such that v is a common neighbour of all vertices in Si.

A part of our universal graphs which will satisfy the above property is going to be provided by a
random graph. Towards this end, the following lemma establishes a condition on the parameters
r, s, t, which implies that the random graph G(n, p) has the (r, s, t)-domination property.

Lemma 3.3. The random graph G(n, p) has the (r, s, t)-domination property whp provided

3 log n≤ ps ·min
( r
s
, t
)
.

Proof. The probability that a fixed vertex is a common neighbour of every vertex in a fixed set S
of size s is ps. By independence, the probability that a fixed set R of size r and t fixed disjoint sets
S1, . . . , St of size s are such that no vertex in R is a common neighbour of every vertex in some Si
is (1− ps)tr. So, by a union bound, the probability that some choice of sets R, S1, . . . , St fails the
desired condition is at most(

n
r

)(
n
s

)t
(1− ps)tr ≤ nr+tse−pstr = nr+ts−pstr/ log n ≤ n−r = o(1).

3.1 The first regime
Let us now turn to the first regime, so when n log n<m< n3/2−ε . As part of our construction of
an (n,m)-universal graph with n vertices we first find a smaller almost spanning universal graph,
in particular a graph on k< n vertices, which is (k− r,m)-universal for appropriately chosen
parameters k and r. We then finish the construction by applying Lemma 3.2.

Let ε > 0 and k,m be integers such that k log k<m< 3k3/2−ε and k is sufficiently large
depending only on ε. We let G be a k-vertex graph consisting of

• a set F of k/2 vertices joined to every vertex and
• a set V of k/2 vertices inducing a graph G′ with the (r, s, t)-domination property missing at
least εk3 log k

28m edges
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Figure 2. The picture on the left illustrates the embedding process while the one on the right illustrates the final state of the
embedding.

where t = k3
29m2 , s= 8m

k and r = k2
4m . In order to ensure we can find such a graph G′ =G[V] we let

p= 1− εk log k
16m > 1

2 . Then we have

ps = (1− (1− p))s ≥ e−2(1−p)s = k−ε ,

where we used that 1− x≥ e−2x, provided 0≤ x< 1/2. In addition, since m< 3k3/2−ε , we also
have

min
( r
s
, t
)

= t = k3/(29m2)≥ k2ε/(3229)> 3kε log k,

as k is large enough compared to ε. So, by Lemma 3.3 G(k/2, p) has the (r, s, t)-domination prop-
erty whp. Notice further that G(k/2, p) is also missing at least (1− p)k2/16= εk3 log k

28m edges whp.
So, in particular, it provides us with our G′. We now show G is universal for almost spanning
graphs withm edges.

Claim. G is
(
k− r,m

)
-universal.

Proof. Let H be a graph on k− r vertices and m edges. Our goal is to embed H into G. Let us
first delete k/4 vertices of largest degrees fromH to obtainH′ ⊆H with�(H′)≤ 8m/k and |H′| =
3k/4− r. The deleted k/4 vertices we embed into F, leaving us with k/4 remaining vertices in F.

We continue by embedding vertices from H′ one by one into G′, making sure that whenever
two embedded vertices make an edge inH′, their images alsomake an edge inG′. Let S be the set of
already embedded vertices fromH′, i.e. assume that we have already found a distinct vertex π(v) ∈
V(G′) for every v ∈ S⊆V(H′). If |S| ≥ k/2− r we stop, so let us assume that |S| < k/2− r, which
implies that we have at least k/4 vertices in H′ \ S. For each v ∈H′ \ S, let Sv = π(S∩NH′(v)), so
the set of vertices of G′ which were already assigned to a neighbour of v (see Figure 2). We know
that |Sv| ≤ 8m/k= s since �(H′)≤ 8m/k. Furthermore, the same max degree condition tells us
that each Sv can intersect at most (8m/k)2 other such sets (since Sv has size at most 8m/k and
every vertex of Sv can belong to at most 8m/k other Su’s). This implies the existence of a family
of at least |H′\S|

(8m/k)2+1 ≥ k3
29m2 = t disjoint sets Sv. We can find such a family by greedily choosing

the Sv’s.
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On the other hand we have a set R of at least |G′| − |S| ≥ r yet unassigned vertices of G′. Since
G′ is (r, s, t)-dominating, we know that there is a vertex u in R and one of the sets Sv such that u is
a common neighbour of every vertex in Sv. So we may embed π(v)= u and repeat.

When we stop (i.e. when |S| ≥ k/2− r), we will have embedded at least k/2− r vertices of H′.
We now embed the remaining k/4 vertices of H′ to the remaining k/4 vertices of F to obtain the
desired copy of H′ in G′.

Theorem 3.4. Let ε > 0 and n log n<m< n3/2−ε . There is an n-vertex graph missing at least
εn3 log n
212m edges which is (n,m)-universal, provided n is large enough depending only on ε.

Proof. Let k= n/2, so k log k<m< 3k3/2−ε . By the previous claim G is a (k− r,m)-universal
graph that misses at least εk3 log k

28m ≥ εn3 log n
212m edges. Since r = k2

4m ≤
⌊
k(n−k)
2m+k

⌋
Lemma 3.2 implies

that adding n− k= n/2 vertices of full degree to G gives us the desired graph.

Note that our final example for above theorem consisted of 3n/4 vertices of full degree and
n/4 vertices spanning a graph satisfying certain properties, which hold for the random graph
G(n/4, p) whp. Upon taking complements, what we have shown is that whp the random graph
G(n/4, q), where q= 1− p, has Turán number on n vertices of at most

(n
2
)−m= (n

2
)− εn log n

2
32q =

(1− �( log nnq ))
(n
2
)
, where we may choose an arbitrary q such that 1/2> q> n−1/2+ε . Since in this

regime χ(G(n, q))= �(nq/ log n) this is approximately what we would obtain by applying Erdős–
Stone–Simonovits theorem, despite the fact that our graph is of linear order while the usual
Erdős–Stone–Simonovits applies only to small forbidden graphs. We postpone further discussion
to concluding remarks.

3.2 The second regime
In this subsection, we deal with the case when n/2<m< n log n. In this regime, our goal is to
construct an (n,m)-universal graph on �

(
m2

log2 m

)
edges to show the desired upper bound.

A part of our construction will again use a graph satisfying an appropriate domination property
with few edges, similarly as in the first regime. We, however, require slightly different relation
between parameters. The next lemma shows that the random graph still provides us with such a
graph.

Lemma 3.5. G(n, p) whp has the (n 3
4 , log n

2 log 1
p
, n

3
4 )-domination property for p< 1

2 .

Proof. Using Lemma 3.3 and setting r = n
3
4 , s= log n

2 log 1
p
and t = n

3
4 , it is enough to show

that 3 log n≤ ps ·min
( r
s , t
)
, which is equivalent to 3 log n≤ 1√

n · n
3
4
s and since s≤ log n, we

are done.

To upper bound g(n,m) we will give a recursive construction of an (n,m)-universal graph. It
will not be hard to ‘extract’ the constructed graph later, but we use the recursive definition as it
provides us with a convenient way of controlling the bounds.

Lemma 3.6. For n/2≤m≤ n log n
210 we have

g(n,m)≤ 32m3

n log3 n
+ g

(
n′,m

)
,

where n′ = 32m · log (n log nm )/ log n.
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Figure 3. Final state of the embedding process in the second regime.

Proof. Note that n′ is increasing inm form≤ n log n
210 so

n′ ≤ 32
n log n
210

· log (2
10)

log n
≤ 2

3
n. (3)

Let k= n− n
log3 n . Our initial goal is to find a k-vertex, (k− n

4
5 ,m)-universal graphGwith at most

g(n′,m)+ 17m3

n log3 n edges. After this is done, we will finish the proof by applying Lemma 3.2.

We construct G as follows. Let p= m3

n3 log3 n < 1
2 . Let the vertex set V of G be the union of three

disjoint sets V =V1 ∪V2 ∪V3, of sizes |V1| = n
log3 n + n

4
5 , |V2| = n′ and |V3| = k− |V1| − |V2|.

We construct the edge set in three steps as follows:

• Let V induce a graph with the (n
3
4 , log n

2 log 1
p
, n

3
4 )-domination property that has at most n2p

edges.
• Make each vertex in V1 adjacent to all other vertices.
• Finally, add at most g(n′,m) edges within V2 to make G[V2] an (n′,m)-universal graph.

The graph from the first step exists due to Lemma 3.5, as G(n, p) has both the (n
3
4 , log n

2 log 1
p
, n

3
4 )-

domination property and at most n2p edges whp, and since both these properties are hereditary
we may take any subgraph on k< n vertices for our graph. Observe that G has at most

n2p+ n|V1| + g(n′,m)≤ n2p+ 2n2

log3 n
+ g(n′,m)≤ 17m3

n log3 n
+ g(n′,m)

edges, as n/2<m.
We now show that G is indeed (k− n

4
5 ,m)-universal. Let H be an arbitrary graph on k− n

4
5

vertices andm edges. Our task is to find an embedding ofH into G (see Figure 3 for an illustration
of the final state of the embedding process).

First, embed the n
log3 n vertices of highest degree from H arbitrarily into V1, and note that n

4
5

vertices in V1 remain free. Second, embed the next n′ vertices of highest degree into V2. As the
subgraph of H induced by those vertices has less than m edges, it can be embedded into V2, as
G[V2] is (n′,m)-universal.
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Let H′ be the subgraph consisting of the remaining vertices of H. Note that |H′| = k− n
4
5 −

n
log3 n − n′ = |V3|. We embed vertices ofH′ one by one into V3 and delete them fromH′ until only

n
4
5 are left. For each v ∈H′ let Sv be the image set of all v’s neighbours in H, which are already

embedded into V2 ∪V3. At each step, we argue that we can find a vertex v ∈H′ and a free vertex
u ∈V3 such that u is a common neighbour of Sv and we embed v into u.

Note that the size of each Sv at each step is at most �1 = 2m/n′ = 2 log n
32 log ( n log nm )

≤ log n
2 log 1

p
≤ log n,

because�1 is an upper bound on the degree of vertices inH′. Note also that each vertex inV2 ∪V3
can only be in at most �2 = 2m/( n

log3 n )≤ log5 n sets Sv, as vertices in V2 ∪V3 cannot be images
of one of the n

log3 n vertices of highest degree inH, so their degree inH is at most 2m/( n
log3 n ). Now

we find a disjoint collection of Sv’s, by choosing them one by one and each time deleting all other
sets which intersect the chosen one. Thus we get a collection of at least |H′|

�1�2+1 ≥ n
3
4 disjoint sets

Si, since |H′| ≥ n
4
5 .

To summarise we have found n
3
4 disjoint sets Sv each of size at most log n

2 log ( 1p )
. The set of remain-

ing free vertices of V3 has size |H′| ≥ n
4
5 and is disjoint from these Sv’s. Therefore, the domination

property of G implies that there is a free vertex in V3, which is a common neighbour of all vertices
in some set Sv. We embed v into this vertex. We update each Sv after every single embedding.
When fewer than n

4
5 vertices are left in H′ we embed them into the remaining free part of V1 and

are done.
We have shown the existence of a k-vertex graph G which is (k− n

4
5 ,m)-universal. By making

use of Lemma 3.2 and noting that

k−
⌊
k(n− k)
2m+ k

⌋
≤ k− n(n− k)

9m
≤ k− n− k

log n
≤ k− n

log4 n
≤ k− n

4
5 ,

we conclude that by adding n− k= n
log3 n full-degree vertices to G we get an n-vertex, (n,m)-

universal graph. The number of edges of this graph is at most

g(n′,m)+ 17m3

n log3 n
+ n2

log3 n
≤ g(n′,m)+ 25m3

n log3 n

as n/2≤m, which finishes the proof.

Corollary 3.7. For n/2≤m we have

g(n,m)≤O
(

m2

log2 m

)
.

Proof. If n< 16m
logm then the statement holds trivially since a graph on n vertices has at most

(n
2
)

edges.
For any fixedm we will use the previous lemma and induction on n to show

g(n,m)≤ 222m2

log2 m

(
1− 2m

n log n

)
(4)

holds for all n such that 16m
logm ≤ n≤ 2m. The lower bound on n implies that n≥ √

m and therefore

logm≤ 2 log n. For the base of the induction consider all n in our range such that n≤ 211m
logm . In
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this case the inequality (4) holds, since n≥ 16m
logm implies 2m

n log n ≤ 1
2 and n2 ≤ 222m2

log2 m so the RHS is
at least n2/2 and as before any graph on n vertices has at most

(n
2
)
edges.

We now proceed to the induction step. Let 2m≥ n≥ 211m
logm and assume that the statement holds

for all smaller n (but still larger than 16m
logm ). Since our bounds on n imply n log n

210 ≥m≥ n/2 we have
that

g(n,m)≤ 32m3

n log3 n
+ g(n′,m),

where n′ = 32m
log n · log (n log nm ) is given by the previous lemma. By inequality (3) we have n′ < n and

from the definition n′ ≥ 32m
log n ≥ 16m

logm so we can apply the induction hypothesis to n′ to obtain

g(n,m)≤ 32m3

n log3 n
+ 222m2

log2 m

(
1− 2m

n′ log n′

)

= 222m2

log2 m

(
1+ m log2 m

217n log3 n
− 2m

n′ log n′

)
.

In order to finish the proof it is enough to show that:

2m
n′ log n′ − m log2 m

217n log3 n
≥ 2m

n log n

or equivalently

2 log n
n′ log n′ − log2 m

217n log2 n
≥ 2

n
.

Recall that logm≤ 2 log n and log n′ < log n (since n′ < n). Thus it is enough to show

2
n′ ≥ 3

n
,

which is true by inequality (3), so we are done.

If one looks at what kind of graph this recursive argument builds, in each step it will add a few
more vertices of full degree, in total at most O( m2

n log2 m ) since otherwise we would have used too
many edges. The rest of the graph consists of several blocks which are initially small and have
a large number (of randomly chosen) neighbours and progressively the blocks become bigger
and bigger but they have less (randomly chosen) neighbours. The number of blocks we see is the
number of times we needed to call upon the recursion and from definition of n′ we roughly have
n′ log n′

m ≈ log
(
n log n
m

)
where we used that log n′ ≈ log n as throughout the argument we stay in

the same range depending on m. What this means is that in each step, we take a logarithm of the
current value of n log n

m up until it reaches a constant. That is, we need O
(
log∗ (n log n

m

))
b many

steps. See Figure 4 for an illustration of the constructed graph.

blog∗ x is the function defined as the number of times we need to apply the logarithm function to x in order to get to 1,
applied to the number of atoms in the universe it evaluates to about 5.
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Figure 4. The (n, n)-universal graph constructed by the recursion. Each vertex in a block has an edge towards another vertex
in its own block or a vertex in a subsequent block with probability p. The density of the random edges, depicted by different
shades of grey, decreases as the size of the block increases.

3.3 Completing the picture
We are now ready to combine our results to show our main theorem.

Proof of Theorem 1.2. The lower bounds follow directly from Lemma 2.1. In Corollary 3.7 we
have proven the desired upper bound for g(n,m) when n/2≤m≤ n log n. Theorem 3.4 gives us
the bound when n log n<m< n3/2−ε .

The remaining case is whenm< n/2. Notice that in this case g(n,m)≤ g(2m,m)= �
(

m2

log2 m

)
since any graph with e edges has at most 2m non-isolated vertices.

Remark.We have shown that the function g(n,m) exhibits different behaviour in the two regimes.
Namely, when m= o(n log n) then g(n,m)= �

(
m2

log2 m

)
= o(n2) while if m= ω(n log n) we have

that g(n,m)= (n
2
)− �

(
n3 log n

m

)
= (1− o(1))

(n
2
)
. From our arguments one can see that as we tran-

sition from one regime to another both bounds become quadratic in n. The following corollary
shows thatm= �(n log n) is precisely the transitioning point between the two behaviours.

Corollary 3.8. Let μ > 0 be a positive constant. Then there exist positive constants 0< c1, c2 < 1
such that c1

(n
2
)≤ g(n,μn log n)≤ c2

(n
2
)
for all positive integers n.

Proof. The lower bound follows from Lemma 2.1. For the upper bound we have the following
cases:

• Whenm> n log n the claim follows from Theorem 3.4.
• Whenm<

n log n
212 the claim follows from (4).

• If n log n
212 ≤ e≤ n log n then we use the inequality g(n, x)≤ 2g(n/2, x)+ (n/2)2 iterating it a

constant number of times until we are able to use Theorem 3.4. This inequality holds as one
can construct an (n, x)-universal graph by taking two disjoint copies of a (n/2, x)-universal
graph and making every two vertices from different copies adjacent.

4. Concluding remarks
In this paper, we complete the study of the behaviour of f (n, e) defined as the maximum size of an
(n, e)-unavoidable graph.

As already mentioned in the introduction, in order to get a lower bound on f (n, e), we want
to find a graph H with f (n, e) edges and Turán number ex(n,H)≤ e. Inverting this statement, we
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want to find graphs with fixed number of edges which minimise the Turán number. The universal
graph we used in the proof of Theorem 3.4 consisted of a collection of vertices joined to every
other vertex and a random graph on the remainder. By transferring this result into unavoidability
language, as discussed at the end of Section 3.1, we obtain that whp the appropriate random graph
G(n/4, q) is the desired minimiser of the Turán number, provided 1/2> q> n−1/2+ε . Being a bit
more careful with our estimates one can even obtain an almost spanning version of this result.
Namely we can get:

Theorem 4.1. Let ε > 0. There is a δ > 0 such that for G∼ G((1− ε)n, q
)
we have whp that

ex(n,G)=
(
1− �

(
log n
nq

)) (n
2
)
, provided n−1/2+ε < q< δ.

Note that for this range of q the chromatic number of the above random graph G whp satis-
fies χ(G)= �

(
nq
log n

)
. Interestingly, this shows that ex(n,G) behaves essentially the same as we

would expect from the Erdős–Stone–Simonovits theorem [19, 18], i.e. ex(n,G)=
(
1− �(1)

χ(G)

) (n
2
)
,

despite the fact that G is almost spanning! In contrast, in order for the Erdős–Stone–Simonovits
theorem to apply, the size of the host graph is required to be significantly larger than the graph
being embedded. The question of the exact requirement on the parameters was considered by
Bollobás [7] and Chvátal and Szemerédi [15] who showed that the best one can hope for in gen-
eral is that the Erdős–Stone–Simonovits theorem holds for graphs of order O( log n), even in our
approximate sense.

It could be interesting to determine whether the above theorem extends for values of q smaller
than n−1/2. The main obstacle for our argument is that our current embedding strategy requires
too strong a domination property, which in particular is no longer satisfied by G(n, q). In light of
this, it might be interesting to try to find a weaker version of our property, which would suffice
for our embedding argument but is still satisfied by the sparser random graphs. Another possible
benefit of such a weaker property is that it could possibly allow one to construct explicit universal
graphs which one could use for our argument and answer a question of Alon and Asodi [1] and
later Hetterich, Parczyk and Person[22].

Several bounded-degree analogues of our universality problem arise quite naturally. Alon and
Capalbo [3] show that the minimal number of edges in a graph which is universal for the family
E(n, d) of n-vertex graphs of maximum degree at most a constant d is �

(
n2−2/d

)
. This is asymp-

totically very different from g(n, dn)= �
(

n2
log2 n

)
which we get from Theorem 1.2. We determine

g(n, dn) up to a constant factor for any values of n and d, even if we allow d to depend on n.
However, very little seems to be known about the above bounded-degree problem if one allows d
to grow with n. In particular, what is the minimal number of edges in an E(n, d)-universal graph
when d is allowed to depend on n. Another, possibly an even closer analogue, is what happens if
we consider the spanning variant of this problem. So, what is the smallest number of edges in a
graph on exactly n vertices which is E(n, d)-universal, where d is allowed to depend on n?
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[16] Conlon, D., Ferber, A., Nenadov, R. and Škorić, N. (2017) Almost-spanning universality in random graphs. Random

Struct. Algorithms 50(3) 380–393.
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