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Abstract

We study the one-dimensional random motionX = X(t), t ≥ 0,which takes two different
velocities with two different alternating intensities. The closed-form formulae for the
density functions of X and for the moments of any order, as well as the distributions of
the first passage times, are obtained. The limit behaviour of the moments is analysed
under nonstandard Kac’s scaling.
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1. Introduction

The main subject of study in this paper is the mathematical description of noninteracting
particles moving in one dimension with alternating finite velocities; this is the so-called
telegraph (or telegrapher’s) stochastic process. Beginning with the 1956 lecture notes by Kac
[13], the telegraph processes and their numerous generalisations have been studied in great
detail; see, e.g. [2], [5], [4], [7], [17], [18], [19], [20], [24], with applications in physics [23],
biology [10], [11], ecology [16], and, more recently, in financial market modelling [21] (see
also the bibliographies in these papers).

In the symmetric case, where the particles move with symmetric velocities ±c and switch
their directions with the intensity λ, λ > 0, the density function p = p(x, t) of particles’
positions satisfies the hyperbolic second-order differential equation

∂2p(x, t)

∂t2
+ 2λ

∂p(x, t)

∂t
= c2 ∂

2p(x, t)

∂x2 , t > 0, (1.1)

known as the telegraph (or damped wave) equation; see [13]. Under a scaling condition on λ
and c such that c2/λ → σ 2 as λ → ∞, it was noticed by Kac that (1.1) converges to the heat
equation and that the dynamical particles’ distribution weakly converges to the diffusion with
the diffusion coefficient σ 2.

If the velocities are different in different directions, the particles’ movement holds only
an additional drift. In this paper we assume that the movement is asymmetric not only with
respect to the velocities but also with respect to the distinct switching intensities. This type
of asymmetry of the movement is necessary in order to develop adequate applications of the
theory in science and technology, as well as in financial modelling. In the latter case the
asymmetry serves as a natural medium for the description of a risk-neutral measure; see [21].

Received 25 January 2013; revision received 14 June 2013.
∗ Postal address: Universidad del Rosario, Cl. 12c, No. 4–69, Bogotá, Colombia.
∗∗ Email address: oscar.lopez@urosario.edu.co
∗∗∗ Email address: nratanov@urosario.edu.co

569

https://doi.org/10.1239/jap/1402578644 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578644


570 O. LÓPEZ AND N. RATANOV

In comparison with the classical case, the properties of the asymmetric telegraph processes are
less well known; see [2], [21], and, with symmetric switching intensities, [22]. Moreover, some
existing results are formulated with mistakes.

In order to describe the distribution of the telegraph process, we systematically exploit
a noninfinitesimal approach based on integral equations instead of the traditional differential
telegraph equation (1.1). We also derive moment generating functions and conditional densities,
given the initial direction and the number of switchings.

In the same manner we study some important functionals of the asymmetric telegraph
processes. We obtain explicit formulae for the distributions of first passage times and for
the moments. The distributions of the first passage times are described by using the Laplace
transforms and their inversions.

The moments of the telegraph processes in the homogeneous symmetric setting have been
described by Iacus and Yoshida, [12], in terms of modified Bessel functions; see also [14]. Our
approach produces expressions that are a bit more simple. In this paper we present a survey of
the explicit formulae of the moments in the asymmetric case by using confluent hypergeometric
functions.

We also analyse the limit behaviour of the moments under Kac’s scaling, when switching
intensities are ‘asymptotically’ similar. Surprisingly, the standard result under Kac’s condition
does not hold without some additional assumptions on the rate of this similarity. Moreover,
a very moderate difference in the asymptotic behaviour of switching intensities provides an
additional drift in the limiting diffusion. This result is in accordance with the authors’ previous
study of the asymptotical distributions of the inhomogeneous jump-telegraph processes [15].

The paper is organised as follows. Section 2 deals with the detailed description of the
distributions. We begin this section with the transition densities of telegraph processes, and then
we present the explicit formulae for the moment generating functions and for the conditional
distributions. Section 3 concerns the distributions of time T (x) when the particle hits the fixed
level x. In Section 4 we derive the formulae for the moments by using a similar technique in
terms of linear combination of Kummer functions. The asymptotical behaviour of the moments
under Kac’s condition is analysed in Section 5.

2. Asymmetric telegraph process and its transition densities

Let (�,F, {Ft }t≥0,P) be a filtered probability space. First, we consider a two-state Markov
process ε = ε(t), ε(t) ∈ {0, 1}, t ≥ 0, with alternating transition intensities λ0 > 0 and
λ1 > 0, such that the generator is defined by the matrix

� :=
(−λ0 λ0
λ1 −λ1

)
. (2.1)

The process ε = ε(t), t ≥ 0, is assumed to be adapted to the filtration {Ft }t≥0.
By definition, the point process of switching times 0 = τ0 < τ1 < τ2 < · · · of the Markov

process ε has exponentially distributed and independent increments: for n = 0, 1, 2, . . .,
P{τn+1 − τn > t | Fτn} = exp(−λε(τn)t).

Let c0, c1 ∈ (−∞,∞) be two arbitrary real numbers, c0 > c1. Consider the processes
V (t) = cε(t) and X(t) = ∫ t

0 V (s) ds, t ≥ 0. The process X = X(t), t ≥ 0, is called the
inhomogeneous (or asymmetric) telegraph process with the alternating states (c0, λ0) and
(c1, λ1). Note that process X starts at the origin, X(0) = 0.

We fix the initial state ε(0) = i ∈ {0, 1}. Hence, the process X starts with the fixed velocity
ci ; at time τ1 = τ

(i)
1 (which is exponentially distributed with the parameter λi) X(t) takes the
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opposite state 1− i with the velocity c1−i and the switching intensity λ1−i . Thus, for any t > 0,
we have the equality in distribution

X(t)
d= ci t1{t<τ1} + [ciτ1 + X̃(t − τ1)]1{t>τ1}. (2.2)

Here the process X̃ = X̃(t) is a telegraph process independent of X, driven by the same
parameters, but X̃ starts from the opposite state 1 − i.

Throughout the paper, we use the notation

2c = c0 − c1, 2a = c0 + c1, 2β = λ0 − λ1, 2λ = λ0 + λ1. (2.3)

2.1. Transition densities

Denote by Pi{·} = P{· | ε(0) = i} and Ei{·} = E{· | ε(0) = i} the conditional probabilities
and the conditional expectations respectively, given the initial state value ε(0) = i for
i = 0, 1. Denote by pi(x, t), i = 0, 1, the density functions of X(t), t ≥ 0: pi(x, t) :=
Pi{X(t) ∈ dx}/dx, i = 0, 1, which can be decomposed as

pi(x, t) =
∞∑
n=0

pi(x, t; n). (2.4)

Here
pi(x, t; n) := Pi{X(t) ∈ dx, N(t) = n}/dx,

where N(t), t ≥ 0, is the inhomogeneous counting Poisson process related to the rates λ0
and λ1.

Applying (2.2), we immediately get the following two sets of integral equations:

p0(x, t) = e−λ0t δ(x − c0t)+
∫ t

0
p1(x − c0τ, t − τ)λ0e−λ0τ dτ, (2.5a)

p1(x, t) = e−λ1t δ(x − c1t)+
∫ t

0
p0(x − c1τ, t − τ)λ1e−λ1τ dτ, (2.5b)

and

p0(x, t; 0) = e−λ0t δ(x − c0t), p1(x, t; 0) = e−λ1t δ(x − c1t), (2.6a)

p0(x, t; n) =
∫ t

0
p1(x − c0τ, t − τ ; n− 1)λ0e−λ0τ dτ, n ≥ 1, (2.6b)

p1(x, t; n) =
∫ t

0
p0(x − c1τ, t − τ ; n− 1)λ1e−λ1τ dτ, n ≥ 1, (2.6c)

where δ is the Dirac δ-function and the term e−λi t δ(x−ci t) corresponds to the movement without
any change of the initial direction. Here, and everywhere below, we set

∫ ∞
−∞ δ(x−cτ)ϕ(τ) dτ =

ϕ(x/c)/c for any continuous test function ϕ.
Differentiating the integral equations of (2.5) and then integrating the result by parts, we

easily derive the equivalent Cauchy problem

∂p0

∂t
(x, t)+ c0

∂p0

∂x
(x, t) = −λ0p0(x, t)+ λ0p1(x, t), (2.7a)

∂p1

∂t
(x, t)+ c1

∂p1

∂x
(x, t) = −λ1p1(x, t)+ λ1p0(x, t), (2.7b)

for t > 0, with the initial conditionsp0(x, 0) = p1(x, 0) = δ(x). Indeed, applying the operator
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∂/∂t + c0∂/∂x to the first equation of (2.5) we have(
∂

∂t
+ c0

∂

∂x

)
p0(x, t) = −λ0e−λ0t δ(x − c0t)+ p1(x − c0t, 0)λ0e−λ0t

−
∫ t

0

∂

∂τ
[p1(x − c0τ, t − τ)]λ0e−λ0τ dτ

= −λ0e−λ0t δ(x − c0t)+ p1(x − c0t, 0)λ0e−λ0t

− p1(x − c0t, 0)λ0e−λ0t + λ0p1(x, t)

− λ0

∫ t

0
p1(x − c0τ, t − τ)λ0e−λ0τ dτ

= −λ0p0(x, t)+ λ0p1(x, t),

which produces (2.7a). The first equality here follows from(
∂

∂t
+ c0

∂

∂x

)
δ(x − c0t) = 0,(

∂

∂t
+ c0

∂

∂x

)
p1(x − c0τ, t − τ) = − ∂

∂τ
[p1(x − c0τ, t − τ)],

and the second equality, by integration by parts. Equation (2.7b) is derived similarly.
We express the solutions of (2.5) (and (2.7)) by means of the variables

ξ = ξ(x, t) := x − c1t

c0 − c1
and t − ξ = t − ξ(x, t) = c0t − x

c0 − c1
. (2.8)

These expressions (see below Proposition 2.1) repeat the existing results from [21], but we
include them for completeness of presentation.

Note that 0 < ξ(x, t) < t , if x ∈ (c1t, c0t). Using this notation, we define the functions
qi(x, t; n), i = 0, 1. For c1t < x < c0t ,

q0(x, t; 2n) = λn0λ
n
1

(n− 1)!n!ξ
n(t − ξ)n−1, q1(x, t; 2n) = λn0λ

n
1

(n− 1)!n!ξ
n−1(t − ξ)n (2.9)

for n ≥ 1, and

q0(x, t; 2n+ 1) = λn+1
0 λn1

(n!)2 ξn(t − ξ)n, q1(x, t; 2n+ 1) = λn0λ
n+1
1

(n!)2 ξn(t − ξ)n (2.10)

for n ≥ 0. Let

θ(x, t) = 1

c0 − c1
e−λ0ξ−λ1(t−ξ)1{0<ξ<t}. (2.11)

Proposition 2.1. The set of integral equations (2.6) has the following solution:

pi(x, t; n) = qi(x, t; n)θ(x, t), n ≥ 1, i = 0, 1. (2.12)

Proof. Let n ≥ 2. We substitute (2.12) and (2.9)–(2.11) directly into (2.6).
Note that, for 0 ≤ τ ≤ t and c1t < x < c0t , the following identities hold:

ξ(x − c0τ, t − τ) ≡ ξ(x, t)− τ, ξ(x − c1τ, t − τ) ≡ ξ(x, t); (2.13)
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hence,

λiτ + λ0ξ(x − ciτ, t − τ)+ λ1(t − τ − ξ(x − ciτ, t − τ)) ≡ λ0ξ(x, t)+ λ1(t − ξ(x, t)),

for i = 0, 1. The latter equality means that

e−λ0τ θ(x − c0τ, t − τ) ≡ θ(x, t)1{τ<ξ(x,t)},
e−λ1τ θ(x − c1τ, t − τ) ≡ θ(x, t)1{τ<t−ξ(x,t)}.

(2.14)

To solve (2.6), first note that, owing to (2.13) and (2.14), the following identities are fulfilled:
for m, k = 0, 1, 2, . . . ,∫ t

0
ξ(x − c0τ, t − τ)m(t − τ − ξ(x − c0τ, t − τ))ke−λ0τ θ(x − c0τ, t − τ) dτ

= θ(x, t)(t − ξ(x, t))k
∫ ξ(x,t)

0
(ξ(x, t)− τ)m dτ

= θ(x, t)(t − ξ(x, t))k
ξ(x, t)m+1

m+ 1

and ∫ t

0
ξ(x − c1τ, t − τ)m(t − τ − ξ(x − c1τ, t − τ))ke−λ1τ θ(x − c1τ, t − τ) dτ

= θ(x, t)ξ(x, t)m
∫ t−ξ(x,t)

0
(t − τ − ξ(x, t))k dτ

= θ(x, t)ξ(x, t)m
(t − ξ(x, t))k+1

k + 1
.

With this to hand, we can easily see that the functions pi(x, t; n), i = 0, 1, which are defined
by (2.9)–(2.12), satisfy the integral equations in (2.6).

For n = 1, (2.6) can be solved by inserting the initial functions into the equations. Thus,
from pi(x, t; 0) = e−λi t δ(x − ci t) we obtain pi(x, t; 1) = λiθ(x, t) (see (2.10)–(2.12)).

By means of (2.4), summing up the results presented in (2.9)–(2.12) we obtain the solution
to the equations in (2.5) (as well as in (2.7)): for i = 0, 1,

pi(x, t) = e−λi t δ(x − ci t)+
[
λiI0(2

√
λ0λ1ξ(t − ξ))

+ √
λ0λ1

(
ξ

t − ξ

) 1
2 −i
I1(2

√
λ0λ1ξ(t − ξ))

]
θ(x, t),

where I0 and I1 denote the modified Bessel functions, i.e. I0(z) = ∑∞
n=0(z/2)

2n/(n!)2 and
I1(z) = I ′

0(z).

2.2. Moment generating functions and conditional distributions

Consider, for arbitrary z ∈ (−∞,∞),

ψi(z, t; n) = Ei{e−zX(t)1{N(t)=n}} =
∫ ∞

−∞
e−zxpi(x, t; n) dx, n ≥ 1. (2.15)
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Note that ψi(z, t; 0) = exp{−t (λi + ciz)}, i = 0, 1. The explicit formulae for ψi(z, t; n),
n ≥ 1, are given by Theorem 2.1 below.

Let � = �(a, b; z) = 1F1(a, b; z) be the confluent hypergeometric Kummer function,

�(a, b; z) =
∞∑
k=0

zk(a)k

k!(b)k , (2.16)

where (a)k = a(a + 1)(a + 2) · · · (a + k − 1) and (a)0 = 1 (see [1, Chapter 13]).

Theorem 2.1. For any t > 0 and integer n ≥ 1, the functions ψi, i = 0, 1, have the form

ψ0(z, t; 2n) = λn0λ
n
1
t2n�(n, 2n+ 1; 2(β + cz)t)

(2n)! exp{−(λ0 + c0z)t}, (2.17)

ψ1(z, t; 2n) = λn0λ
n
1
t2n�(n, 2n+ 1; −2(β + cz)t)

(2n)! exp{−(λ1 + c1z)t}, (2.18)

ψ0(z, t; 2n− 1) = λn0λ
n−1
1

t2n−1�(n, 2n; 2(β + cz)t)

(2n− 1)! exp{−(λ0 + c0z)t}, (2.19)

ψ1(z, t; 2n− 1) = λn−1
0 λn1

t2n−1�(n, 2n; −2(β + cz)t)

(2n− 1)! exp{−(λ1 + c1z)t}. (2.20)

Here 2β = λ0 − λ1 and 2c = c0 − c1 (see the notation given in (2.3)).

Proof. We express the integrals in (2.15) by means of (2.9)–(2.12). Define

Im,k(z, t) =
∫ ∞

−∞
e−zxξ(x, t)m(t − ξ(x, t))kθ(x, t) dx, m, k ≥ 0,

where (see (2.8)) ξ(x, t) = (x − c1t)/(2c), t − ξ(x, t) = (c0t − x)/(2c), and θ = θ(x, t) is
defined by (2.11). After the substitution x = c1t + 2cξ , we have

Im,k(z, t) = e−(c1z+λ1)t

∫ t

0
e−2(cz+β)ξ ξm(t − ξ)k dξ.

Hence, by the integral representation of the confluent hypergeometric function (see 13.2.1
of [1])

�(b − a)�(a)

�(b)
�(a, b, z) =

∫ 1

0
ezξ ξa−1(1 − ξ)b−a−1 dξ,

the function Im,k(z, t) is given by

Im,k(z, t) = tm+k+1e−(c1z+λ1)t
m!k!

(m+ k + 1)!�(m+ 1,m+ k + 2; −2(cz+ β)t).

From the equality �(a, b, z) = ez�(b − a, b,−z) (see 13.1.27 of [1]) we obtain

Im,k(z, t) = tm+k+1e−(c0z+λ0)t
m!k!

(m+ k + 1)!�(k + 1,m+ k + 2; 2(cz+ β)t).

With this to hand, by applying the explicit formulae (2.9)–(2.12) to (2.15) we derive (2.17)–
(2.20). This completes the proof.
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The moment generating functions ψi(z, t) = Ei{e−zX(t)} for i = 0, 1, can be obtained by
summing up (2.17)–(2.20). We have the following result.

Corollary 2.1. Let ψi(z, t) = Ei{e−zX(t)}, i = 0, 1. Then

ψ0(z, t) = e−(λ0+c0z)t [1 +�0(2(β + cz)t, t)+ λ0�1(2(β + cz)t, t)],
ψ1(z, t) = e−(λ1+c1z)t [1 +�0(−2(β + cz)t, t)+ λ1�1(−2(β + cz)t, t)]. (2.21)

Here

�0(u, t) =
∞∑
n=1

λn0λ
n
1 t

2n

(2n)! �(n, 2n+ 1; u), �1(u, t) =
∞∑
n=1

λn−1
0 λn−1

1 t2n−1

(2n− 1)! �(n, 2n; u).

The noninfinitesimal approach allows us to simplify some known formulae (compare the
expression for the characteristic function from [2] (see (5.3) of [2]) with the detailed formulae
of (2.21) and with Remark 2.1 of the present paper).

Remark 2.1. Comparing (2.21) with (3.3) of [15], we can simplify the latter formulae, i.e.

ψ0(z, t) = e−t (λ+az)
(

cosh(tD)+ (λ− cz)
sinh(tD)

D

)
,

ψ1(z, t) = e−t (λ+az)
(

cosh(tD)+ (λ+ cz)
sinh(tD)

D

)
,

where D = √
(β + cz)2 + λ0λ1 (here we use the notation given in ((2.3)). See also For-

mula (5.3) of [2] for the characteristic function.

Finally, we consider the conditional densities

fi(x, t; n) := Pi{X(t) ∈ dx | N(t) = n}/dx, n ≥ 0, i = 0, 1.

In the symmetric case, where λ0 = λ1 = λ, it is well known (see, e.g. [6]) that, if N(t) = n,
the times {τk}nk=1 can be viewed as the order statistics from the uniform distribution in [0, t]. In
this symmetric case P{N(t) = n} = e−λt (λt)n/n! and the conditional densities take the form

f
sym
i (x, t; n) = n!

(c0 − c1)(λt)n
qi(x, t; n)1{c1t<x<c0t}, i = 0, 1,

where the qi are defined by (2.9)–(2.10) with λ0 = λ1 = λ. It is easy to see that the functions
f

sym
i (x, t; n), i = 0, 1, do not depend on λ.

In the asymmetric case, where λ0 
= λ1, it is not so simple. Nevertheless, by definition, we
have

fi(x, t; n) = pi(x, t; n)
Pi{N(t) = n}

= pi(x, t; n)∫ ∞
−∞ pi(y, t; n) dy

= pi(x, t; n)
ψi(0, t; n) , i = 0, 1,
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where the functions pi and ψi are defined by (2.9)–(2.12) and (2.17)–(2.20) respectively.
Therefore, for n ≥ 1,

f0(x, t; 2n) = (2n)!
2ct2n

ξn(t − ξ)n−1

n!(n− 1)!
e−2β(t−ξ)

�(n, 2n+ 1; 2βt)
,

f1(x, t; 2n) = (2n)!
2ct2n

ξn−1(t − ξ)n

(n− 1)!n!
e−2βξ

�(n, 2n+ 1; −2βt)
,

f0(x, t; 2n− 1) = (2n− 1)!
2ct2n−1

ξn(t − ξ)n

(n!)2
e−2β(t−ξ)

�(n, 2n; 2βt)
,

f1(x, t; 2n− 1) = (2n− 1)!
2ct2n−1

ξn(t − ξ)n

(n!)2
e−2βξ

�(n, 2n; −2βt)
.

Here ξ = ξ(x, t) is defined by (2.8).

3. First passage time

In this section we study the distribution of the first passage time

T (x) = inf{t ≥ 0 : X(t) = x}, x > 0,

assuming that c0 > 0 > c1.
We compute the conditional distributions (if the initial state is fixed) in the form

P0{T (x) ∈ dt} = e−λ0t δx/c0(dt)+Q0(x, t) dt, P1{T (x) ∈ dt} = Q1(x, t) dt, (3.1)

where δx/c0 is the Dirac measure (of unit mass) at the point x/c0 corresponding to the motion
which does not change its positive initial velocity c0. Here theQi = Qi(x, t), t ≥ 0, i = 0, 1,
are the absolutely continuous parts of the distributions. If t < x/c0 then the particle does not
reach level x, and so Qi(x, t) = 0 for i = 0, 1.

We exploit again our usual notation (see (2.8) and (2.11)):

ξ = ξ(x, t) = x − c1t

c0 − c1
, t − ξ = t − ξ(x, t) = c0t − x

c0 − c1
,

and

θ(x, t) = 1

c0 − c1
exp{−λ0ξ − λ1(t − ξ)}1{0<ξ<t}.

Theorem 3.1. The conditional distribution densities Q0(x, t) and Q1(x, t) can be written as
follows:

Q0(x, t) = λ0λ1x√
λ0λ1ξ(t − ξ)

I1(2
√
λ0λ1ξ(t − ξ))θ(x, t), (3.2a)

Q1(x, t) = λ1

ξ

[
xI0(2

√
λ0λ1ξ(t − ξ))− c1√

λ0λ1

√
t − ξ

ξ
I1(2

√
λ0λ1ξ(t − ξ))

]
θ(x, t).

(3.2b)

Proof. Consider the following Laplace transform of the distribution of T (x):

φi(x, s) = Ei{e−sT (x)}, s > 0, i = 0, 1.
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In view of (3.1), the functions φi can be treated as the Laplace transform of the densities Qi,

i = 0, 1:

φ0(x, s) = e−(λ0+s)x/c0 +
∫ ∞

x/c0

e−stQ0(x, t) dt, φ1(x, s) =
∫ ∞

x/c0

e−stQ1(x, t) dt. (3.3)

Let t > x/c0. Conditioning on the first velocity switching as in (2.5), we obtain the integral
equations for Q0 and Q1.

Firstly, assuming that the first change of velocity occurs at time τ, τ < x/c0, we obtain

Q0(x, t) =
∫ x/c0

0
λ0e−λ0τQ1(x − c0τ, t − τ) dτ. (3.4)

Secondly, Q1(x, t) is separately computed under the conditions of one and more than one
velocity switchings. Let τ be the first switching time. If x − c1τ < c0(t − τ), i.e. if
τ < (c0t − x)/2c = t − ξ(x, t), then the particle renews its movement (at time τ from the
point c1τ ) with 0-state, ε(τ ) = 0. If x− c1τ > c0(t− τ), the particle never reaches the level x.
In the case of the strict equality x − c1τ = c0(t − τ) the particle makes the only one switching
at time τ and continues the movement with the velocity c0. Therefore,

Q1(x, t) =
∫ +∞

0
λ1e−λ1τ e−λ0(t−τ)δ

(
t − τ − x − c1τ

c0

)
dτ

+
∫ t−ξ(x,t)

0
λ1e−λ1τQ0(x − c1τ, t − τ) dτ.

Note that t − τ − (x − c1τ)/c0 ≡ (c0t − x − 2cτ)/c0 and

t − τ − x − c1τ

c0
= 0 if and only if τ = t − ξ(x, t).

Hence,

Q1(x, t) = λ1c0

2c
e−λ0ξ(x,t)−λ1(t−ξ(x,t)) +

∫ t−ξ(x,t)

0
λ1e−λ1τQ0(x − c1τ, t − τ) dτ. (3.5)

We obtain the following integral equations by using the Laplace transforms from (3.3), and
equations (3.4)–(3.5). By applying (3.4) to the first equation of (3.3), we obtain the equation
for φ0:

φ0(x, s) = e−(λ0+s)x/c0 +
∫ ∞

x/c0

e−st dt
∫ x/c0

0
λ0e−λ0τQ1(x − c0τ, t − τ) dτ

= e−(λ0+s)x/c0 + λ0

∫ x/c0

0
e−λ0τ dτ

∫ ∞

x/c0

e−stQ1(x − c0τ, t − τ) dt

= e−(λ0+s)x/c0 + λ0

∫ x/c0

0
e−(λ0+s)τ dτ

∫ ∞

x/c0

e−stQ1(x − c0τ, t) dt.

Hence, by the second equation of (3.3),

φ0(x, s) = e−(λ0+s)x/c0 + λ0

∫ x/c0

0
e−(λ0+s)τ φ1(x − c0τ, s) dτ. (3.6)
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In view of (3.5), and following a calculation similar to that for (3.6), we obtain

φ1(x, s) =
∫ ∞

x/c0

e−stQ1(x, t) dt

= λ1c0

2c

∫ ∞

x/c0

e−ste−λ0ξ(x,t)−λ1(t−ξ(x,t)) dt + J (x, s), (3.7)

where

J (x, s) =
∫ ∞

x/c0

e−st dt
∫ t−ξ(x,t)

0
λ1e−λ1τQ0(x − c1τ, t − τ) dτ.

By Fubini’s theorem we have

J (x, s) =
∫ ∞

0
λ1e−λ1τ−sτ dτ

∫ ∞

(x−c1τ)/c0

e−s(t−τ)Q0(x − c1τ, t − τ) dt.

Applying again the first equation of (3.3) we obtain

J (x, s) = λ1

∫ ∞

0
e−(λ1+s)τ φ0(x − c1τ, s) dτ − λ1

∫ ∞

0
e−(λ1+s)τ−(λ0+s)(x−c1τ)/c0 dτ. (3.8)

We compute the latter integral substituting τ = (c0t−x)/2c ≡ t− ξ(x, t). Note that, under
this notation, (x − c1τ)/c0 ≡ ξ(x, t). Hence,

λ1

∫ ∞

0
e−(λ1+s)τ−(λ0+s)(x−c1τ)/c0 dτ = λ1c0

2c

∫ ∞

x/c0

e−(λ1+s)(t−ξ(x,t))−(λ0+s)ξ(x,t) dt

= λ1c0

2c

∫ ∞

x/c0

e−ste−λ0ξ(x,t)−λ1(t−ξ(x,t)) dt.

With this to hand, the equation

φ1(x, s) = λ1

∫ +∞

0
e−(λ1+s)τ φ0(x − c1τ, s) dτ (3.9)

follows from (3.7) and (3.8).
By differentiating (3.6) and (3.9) we obtain the system of ordinary differential equations

c0
∂φ0

∂x
(x, s) = −(λ0 + s)φ0(x, s)+ λ0φ1(x, s),

c1
∂φ1

∂x
(x, s) = λ1φ0(x, s)− (λ1 + s)φ1(x, s).

(3.10)

The boundary condition for φ0 follows from (3.6):

φ0(+0, s) = 1, s > 0. (3.11)

Note that, by the definition of the first passage time, the functions φi, i = 0, 1, vanish at ∞:

φ0(+∞, s) = φ1(+∞, s) = 0, s > 0. (3.12)

In vector form, system (3.10) reads

∂φ

∂x
(x, s) = Aφ(x, s), x > 0, (3.13)
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where the matrix A is defined by

A =
⎛
⎜⎝−λ0 + s

c0

λ0

c0
λ1

c1
−λ1 + s

c1

⎞
⎟⎠

and φ = (φ0, φ1)
�.

Equation (3.13), with boundary conditions (3.11)–(3.12), is solved in the form

φ0(x, s) = eαx, φ1(x, s) =
(

1 + s + αc0

λ0

)
eαx, (3.14)

where α = α(s) is the negative eigenvalue of the matrix A, i.e. the negative root of the equation,

det(A − αI) ≡ c0c1α
2 + 2(ã + as)α + s(2λ+ s) = 0.

Here we are using the notation given in (2.3) and ã = (λ1c0 + λ0c1)/2. Hence,

α = α(s) = −ã − as + d(s)

c0c1
< 0, (3.15)

where d(s) = √
(ã + as)2 − c0c1s(2λ+ s).

The Laplace transforms φ0 and φ1 can be inverted, with the help of [1], to yield the densities
Q0 and Q1 in terms of modified Bessel functions.

First, we consider Q0, defined in (3.2a):

Q0(x, t) = λ0λ1x√
λ0λ1ξ(t − ξ)

I1(2
√
λ0λ1ξ(t − ξ))θ(x, t). (3.16)

Applying the notation of (2.8) and (2.11) we obtain

Q0(x, t) =
√
λ0λ1x exp{−(c̃t + βx)/c}√

(c0t − x)(x − c1t)
I1(

√
λ0λ1(c0t − x)(x − c1t)/c)1{t>x/c0},

where c̃ = (λ1c0 − λ0c1)/2. Here the following identities have been applied:

λ0ξ + λ1(t − ξ) = c̃t + βx

c
, ξ(t − ξ) = (c0t − x)(x − c1t)

4c2 .

Now, the Laplace transform of Q0 can be computed by using the table; see 29.3.96 of [1]:∫ ∞

k

e−st ak√
t2 − k2

I1(a
√
t2 − k2) dt = e−k√s2−a2 − e−ks .

By using the change of variables∫ ∞

0

1

c
e(b/c)tF

(
t

c

)
e−st dt =

∫ ∞

0
e−(cs−b)tF (t) dt

we have ∫ ∞

x/c0

e−stQ0(x, t) dt = eαx − e−(λ0+s)x/c0

with α defined by (3.15), which is necessary to demonstrate, see (3.3) and (3.14).
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To obtain the inverse Laplace transform ofQ1, note that, with x− c1τ instead of x and with
t − τ instead of t , (3.16) becomes

Q0(x − c1τ, t − τ) = λ0λ1(x − c1τ)I1(2
√
λ0λ1ξ(t − τ − ξ))e−λ0ξ−λ1(t−τ−ξ)

2c
√
λ0λ1ξ(t − τ − ξ)

.

Here ξ = ξ(x, t) = (x − c1t)/2c, and note that ξ(x − c1τ, t − τ) ≡ ξ(x, t). Therefore, owing
to (3.5), we can write

Q1(x, t) = λ1c0

2c
e−λ0ξ−λ1(t−ξ) + Q̃1(x, t), (3.17)

where

Q̃1(x, t) = λ0λ
2
1e−λ0ξ−λ1(t−ξ)

2c

∫ t−ξ

0

(x − c1τ)I1(2
√
λ0λ1ξ(t − τ − ξ))√

λ0λ1ξ(t − τ − ξ)
dτ.

By the change the variables z = 2
√
λ0λ1ξ(t − τ − ξ) (or, equivalently, τ = τ(z) = t− ξ −

z2/(4λ0λ1ξ)), and setting z0 = 2
√
λ0λ1ξ(t − ξ), we obtain

Q̃1(x, t) = λ1e−λ0ξ−λ1(t−ξ)

x − c1t

∫ z0

0
(x − c1τ(z))I1(z) dz

= λ1e−λ0ξ−λ1(t−ξ)

x − c1t

∫ z0

0

(
c0ξ(x, t)+ c1z

2

4λ0λ1ξ(x, t)

)
I1(z) dz.

Here we use the identity

x − c1τ(z) = c0ξ + c1z
2

4λ0λ1ξ
.

Then

Q̃1(x, t) = λ1c0e−λ0ξ−λ1(t−ξ)

2c

∫ z0

0
I1(z) dz+ cc1e−λ0ξ−λ1(t−ξ)

2λ0(x − c1t)2

∫ z0

0
z2I1(z) dz.

The latter two integrals can be easily computed:∫ z0

0
I1(z) dz = I0(z0)− 1,

∫ z0

0
z2I1(z) dz = z2

0I2(z0);

see, e.g. 9.6.27 and 11.3.25 of [1] for I ′
0(z) = I1(z) and

∫ z
0 t

νIν−1(t) dt = zνIν(z), respectively.
Thus,

Q̃1(x, t) = λ1

2c

[
c0I0(z0)− c0 + c1

c0t − x

x − c1t
I2(z0)

]
e−λ0ξ−λ1(t−ξ).

The first equation in 9.6.26 of [1] is Iν−1(z) − Iν+1(z) = (2ν/z)Iν(z), giving the identity
I2(z0) = I0(z0)− 2I1(z0)/z0. Hence,

Q̃1(x, t) = λ1

{
1

x − c1t

[
xI0(z0)− c1√

λ0λ1

√
c0t − x

x − c1t
I1(z0)

]
− c0

2c

}
e−λ0ξ−λ1(t−ξ). (3.18)

By (3.17) and (3.18) we have

Q1(x, t) = λ1

x − c1t

[
xI0(z0)− c1√

λ0λ1

√
c0t − x

x − c1t
I1(z0)

]
e−λ0ξ−λ1(t−ξ). (3.19)

Therefore, (3.2b) follows from (3.19), thus completing the proof.
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For the symmetric motion, where c0 = −c1 = c and λ0 = λ1 = λ, (3.2a) and (3.2b) become

Q0(x, t) = λxe−λt
√
c2t2 − x2

I1

(
λ

c

√
c2t2 − x2

)
,

Q1(x, t) = λe−λt

x + ct

[
xI0

(
λ

c

√
c2t2 − x2

)
+ c

λ

√
ct − x

x + ct
I1

(
λ

c

√
c2t2 − x2

)]
,

which coincides with Equations (14) and (25) of [9].

Remark 3.1. For arbitrary velocity values c0, c1, with c0 > 0 > c1, the conditional density
of T (x), given ε(0) = 0, is known (see [8], [9], and [19] for symmetric motion, and [22] in the
general case). In [22] an equation similar to (3.5) is derived (see (5.6) of [22]), but, to the best
of our knowledge, if the initial velocity is negative (and x > 0) then the explicit form of first
passage time distributions Q1 is heretofore unknown (see [22, Remark 5.1]).

For c0 > c1 > 0, the distribution of T (x) can be easily obtained. As observed in [22], the
process X = X(t), t ≥ 0, has strictly increasing sample paths and

Pi{T (x) > t} = Pi{X(t) < x}.

4. Moments

In this section we study the moments ofX(t), t ≥ 0. The explicit formulae for the moments
can be obtained by differentiating the moment generating function ψi(z, t), but it is rather
cumbersome. Instead, we use an alternative approach based on the partial differential equations
(2.7).

For any t > 0, consider the moments of X(t):

μ(i)n (t) = Ei{X(t)n} =
∫ ∞

−∞
xnpi(x, t) dx, i = 0, 1, n ≥ 0. (4.1)

Obviously, μ(i)0 (t) ≡ 1 for t ≥ 0 and i = 0, 1.
Firstly, we obtain a recursive relation for μn(t) = (μ

(0)
n (t), μ

(1)
n (t))

�, n ≥ 1. We can do this
using the following notation. Consider the matrices

A =
(
λ1c0 λ0c1
λ1c0 λ0c1

)
, B =

(
λ0c0 − λ0c1

−λ1c0 λ1c1

)
. (4.2)

Let I and C be the integral operators defined as follows. For f ∈ C[0,∞),

If = If (t) :=
∫ t

0
f (s) ds, Cf = Cf (t) :=

∫ t

0
e−2λ(t−s)f (s) ds. (4.3)

We use the same notation for the integral operators on C[0,∞)× C[0,∞) that are applied to
vectors (by entries).

The following representation holds.

Theorem 4.1. For arbitrary n ≥ 1, the moments μn(t) = (μ
(0)
n (t), μ

(1)
n (t))

� satisfy the
recursive relation

μn(t) = n

2λ
(IA + CB)μn−1(t), (4.4)

where 2λ = λ0 + λ1 (see the notation given in (2.3)).
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Proof. Applying the equations of (2.7), with subsequent integration by parts, to∫ ∞

−∞
xn
∂pi

∂t
(x, t) dx, i = 0, 1,

we obtain

dμ(i)n (t)

dt
= nci

∫ ∞

−∞
xn−1pi(x, t) dx − λi

∫ ∞

−∞
xnpi(x, t) dx + λi

∫ ∞

−∞
xnp1−i (x, t) dx.

This is equivalent to the system of ordinary differential equations

dμn(t)

dt
= �μn(t)+ nμ̃n−1(t), n ≥ 1, (4.5)

with the initial conditions μn(0) = 0, n ≥ 1, and μ0(t) ≡ (1, 1)�. Here μ̃n−1(t) =
(c0μ

(0)
n−1(t), c1μ

(1)
n−1(t))

� and the matrix � is defined by (2.1).
The Cauchy problem for (4.5), with initial condition 0, is equivalent to the recursive set of

the integral equations

μn(t) = n

∫ t

0
e(t−s)�μ̃n−1(s) ds, n ≥ 1. (4.6)

The exponential of t� can be easily calculated:

et� = I − 1 − e−2λt

2λ
� = 1

2λ

(
λ1 + λ0e−2λt λ0(1 − e−2λt )

λ1(1 − e−2λt ) λ0 + λ1e−2λt

)
, t ≥ 0.

Substituting this into (4.6) we verify the integral equations (4.4), thus completing the proof.

We now derive the explicit solution of system (4.4).
Let operators I and C be as defined by (4.3). Note that the product of I and C is commutative.

Let U0,0 = U0,0(t) ≡ 1. We define the functions Un,m = Un,m(t), where n,m ≥ 0 and t ≥ 0,
by

Un,m(t) := CnImU0,0(t). (4.7)

Note that U0,m = ImU0,0 = tm/m! and

Un,0(t) = CnU0,0(t) = (2λ)−ne−2λt
∞∑
k=n

(2λt)k

k! = (2λ)−n

(n− 1)!γ (n, 2λt),

where γ (n, ·) is the incomplete gamma function, γ (n, x) := ∫ x
0 e−t tn−1 dt (see Formula 6.5.13

of [1]).
Applying the series expansion of the incomplete gamma function (see 6.5.29 of [1]) we

obtain, for n ≥ 1,

Un,0(t) = (2λ)−n

(n− 1)!
∞∑
k=0

(−1)k(2λt)n+k

k!(n+ k)
= tn

(n− 1)!
∞∑
k=0

(−2λt)k

k!(n+ k)
. (4.8)

Furthermore, Un,m can be expressed by means of the confluent hypergeometric Kummer
functions� = �(a, b; z); see (2.16). In particular, by Formula 6.5.12 of [1], we haveUn,0(t) =
(tn/n!)�(n, n + 1; −2λt). Moreover, repeatedly integrating equality (4.8), we obtain, for
n,m ≥ 0,

Un,m(t) = ImUn,0(t) = tn+m

(n+m)!�(n, n+m+ 1; −2λt). (4.9)

https://doi.org/10.1239/jap/1402578644 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578644


Asymmetric telegraph processes 583

It is easy to see that the functions Un,m = Un,m(t), n,m ≥ 0, are linearly independent.
The moments μ(i)n (t) can be viewed as a linear combination of Un,m and, consequently, of the
Kummer functions; see (2.16).

Theorem 4.2. The moments μn(t) can be expressed by means of a linear combination of the
Kummer functions �(·, n+ 1; −2λt), see (2.16), where 2λ = λ0 + λ1:

μn(t) = tn

(2λ)n

n∑
k=0

ak,n−k�(k, n+ 1; −2λt). (4.10)

Here the coefficients an,m = (a
(0)
n,m, a

(1)
n,m)

� are defined by the relations

a0,0 = (1, 1)�, (4.11a)

a0,m = Aa0,m−1, an,0 = Ban−1,0, (4.11b)

an,m = Aan,m−1 + Ban−1,m, (4.11c)

for m ≥ 1 and n ≥ 1, where the matrices A and B are introduced by (4.2).

Proof. Note that (4.10) is equivalent to

μn(t) = n!
(2λ)n

n∑
k=0

ak,n−kUk,n−k(t); (4.12)

see (4.9). Since μ(0)0 = μ
(1)
0 = 1 and U0,0 ≡ 1, for n = 0, equality (4.12) holds with a0,0 =

(1, 1)�.
Inserting (4.12) into the recursive integral relation (4.4) we have, for n ≥ 1,

n∑
k=0

ak,n−kUk,n−k(t) = (IA + CB)

n−1∑
k=0

ak,n−1−kUk,n−1−k(t).

By (4.7),

IUk,n−1−k(t) = Uk,n−k(t) and CUk,n−1−k(t) = Uk+1,n−1−k(t).

Hence,

n∑
k=0

ak,n−kUk,n−k(t) =
n−1∑
k=0

Aak,n−1−kUk,n−k(t)+
n−1∑
k=0

Bak,n−1−kUk+1,n−1−k(t)

=
n−1∑
k=0

Aak,n−1−kUk,n−k(t)+
n∑
k=1

Bak−1,n−kUk,n−k(t).

Now, the equalities of (4.11) follow from the linear independence of Un,m.

Remark 4.1. The recursive formulae (4.11) can be made closed. Note that

a0,m = Ama0,0, an,0 = Bna0,0, m, n ≥ 1.
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Set α = Tr(A) = λ1c0 + λ0c1 and β = Tr(B) = λ0c0 + λ1c1. Since det(A) = 0 and
det(B) = 0, the Cayley–Hamilton theorem yields A2 = αA and B2 = βB. Therefore,
Am = αm−1A and Bn = βn−1B for m, n ≥ 1. Thus,

a
(0)
0,m = a

(1)
0,m = (λ1c0 + λ0c1)

m, m ≥ 0, (4.13)

and
a
(0)
n,0 = λ0(c0 − c1)(λ0c0 + λ1c1)

n−1,

a
(1)
n,0 = −λ1(c0 − c1)(λ0c0 + λ1c1)

n−1, n ≥ 1.
(4.14)

After some cumbersome algebra we obtain the closed expressions for an,m, with arbitrary
n ≥ 1 and m ≥ 0:

a(0)n,m = dn,m − 2λc1dn−1,m, a(1)n,m = dn,m − 2λc0dn−1,m. (4.15)

Here

dn,m =
∑

k : max{n,m}≤k≤n+m

αk−nβk−m(−γ )n+m−kk!
(k − n)!(k −m)!(n+m− k)! , (4.16)

with γ = 4c0c1λ
2. This gives us the closed formulae for the moments; see (4.10).

Remark 4.2. For the symmetric telegraph process, (4.10) becomes more simple. If we have
λ0 = λ1 =: λ and c0 = −c1 =: c then α = Tr(A) = 0, β = Tr(B) = 0, and γ = −4c2λ2.
Owing to (4.16) we obtain dn,m = 0, if n 
= m, and dn,n = (4c2λ2)n. Hence, (4.10) can be
easily simplified to

μ
(i)
2n(t) = (ct)2n�(n, 2n+ 1; −2λt),

μ
(i)
2n+1(t) = (−1)i(ct)2n+1�(n+ 1, 2n+ 2; −2λt).

(4.17)

Formulae for the moments of the symmetric telegraph processes are presented in [12] and
[14] in terms of modified Bessel functions, but they are not as concise as (4.17).

For |z| → ∞,Rez < 0, the Kummer function has the following asymptotics (see 13.1.5
of [1]):

�(a, b; z) = �(b)

�(b − a)
(−z)−a[1 +O(|z|−1)]. (4.18)

Applying (4.18) to (4.17) we obtain the limits under Kac’s rescaling: if c and λ → ∞ are
such that c2/λ → σ 2, then

μ
(i)
2n(t) → (σ 2t)n(2n− 1)!!, μ

(i)
2n+1(t) → 0, i = 0, 1. (4.19)

These limits coincide with moments of Brownian motion with diffusion coefficient σ 2.
It corresponds to the classical result by Kac [13].

5. Kac’s scaling

In this section we generalise to the asymmetrical situation the limits obtained in (4.19) for the
symmetric case. Assume that the switching intensities are large, but comparable, i.e. λ0, λ1 →
∞ and

λ0

λ1
→ ν2, ν ∈ (0,∞). (5.1)
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The Kac condition is assumed for both of the states separately, i.e. c0 → +∞, c1 → −∞, and
λ0, λ1 → +∞ such that

c0√
λ0

→ σ0,
c1√
λ1

→ −σ1, (5.2)

where σ0, σ1 > 0. From (5.1)–(5.2), it follows that the velocities are comparable as well:

c0

c1
= c0/

√
λ0

c1/
√
λ1

√
λ0/λ1 → −νσ0

σ1
.

We also assume that
λ1c0 + λ0c1

λ1 + λ0
→ δ. (5.3)

The latter limit relation is equivalent to

c1
c0/c1 + λ0/λ1

1 + λ0/λ1
→ δ.

Hence, c0/c1 + λ0/λ1 → 0 and ν = σ0/σ1. So, condition (5.3) reads as the rate of ‘similarity’
between λ0/λ1 and c0/c1 at ∞. More precisely,

c1

(
c0

c1
+ λ0

λ1

)
→ δ(1 + ν2).

Note that (5.1) and (5.2) have the following consequences:

c2
0

λ0 + λ1
→ ν2σ 2

0

1 + ν2 = σ 4
0

σ 2
0 + σ 2

1

,
c2

1

λ0 + λ1
→ σ 2

1

1 + ν2 = σ 4
1

σ 2
0 + σ 2

1

,

c0c1

λ0 + λ1
→ − νσ0σ1

1 + ν2 = − σ 2
0 σ

2
1

σ 2
0 + σ 2

1

.

(5.4)

Therefore,
(c0 − c1)

2

λ0 + λ1
→ σ 2

0 + σ 2
1 and

(c0 + c1)
2

λ0 + λ1
→ (σ 2

0 − σ 2
1 )

2

σ 2
0 + σ 2

1

. (5.5)

Note that if ν 
= 1 then the scaling conditions (5.1)–(5.3) lead to c0 + c1 → ∞ (see (5.5)).
Certainly, c0 − c1 → ∞.

Theorem 5.1. Under the scaling conditions (5.1)–(5.3), the moments μ(i)n (t) defined by (4.1)
converge as

μ(i)n (t) → n!
[n/2]∑
k=0

δn−2kκ2ktn−k

k!(n− 2k)! , (5.6)

where κ2 = σ 2
0 σ

2
1 /(σ

2
0 + σ 2

1 ), and [n/2] denotes the integer part of the number n/2.

Proof. We begin with the limits

A
(i)
k,n = lim

a
(i)
k,n−k

(2λ)n+k
, 0 ≤ k ≤ n,

where 2λ = λ0 + λ1. Here lim denotes the limit under the scaling conditions (5.1)–(5.3), and
a
(i)
k,n−k are defined by (4.11); see (4.13)–(4.15) as well.
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First, on the boundary, i.e. for k = 0 and k = n, owing to (4.13) and (4.14) the limits A(i)0,n
and A(i)n,n are given by

A
(i)
0,n = lim a

(i)
0,n = lim

(
λ1c0 + λ0c1

2λ

)n
= δn, n ≥ 0, i = 0, 1, (5.7)

and

A(i)n,n = lim
a
(i)
n,0

(2λ)2n

= (−1)i lim λi(c0 − c1)
(λ0c0 + λ1c1)

n−1

(2λ)2n

= (−1)i lim
λi

2λ
lim

c0 − c1

2λ
lim

(λ0c0 + λ1c1)
n−1

(2λ)2n−2

= 0, n ≥ 1, i = 0, 1. (5.8)

We applied here (5.3) for (5.7), and (5.1), (5.3), and (5.5) for (5.8).
In general, we prove that the limits A(i)k,n = Ak,n, 0 ≤ k ≤ n, are independent of i and

Ak,n =
(
n− k

k

)
δn−2kκ2k if k ≤ [n/2], (5.9)

Ak,n = 0 if k > [n/2], (5.10)

where (5.9) uses the binomial coefficient. We proceed by induction on n.
For n = 0 and n = 1, (5.9)–(5.10) are given by (5.7) and (5.8).
Let us begin the proof with n = 2. The limits A0,2 = δ2 and A2,2 = 0 are given by (5.7)

and (5.8). For A(i)1,2 = lim(a(i)1,1/(2λ)
3), note that (4.15) and (4.16) give

a
(i)
1,1

(2λ)3
= d11

(2λ)3
− c1−id01

(2λ)2

= −c0c1

2λ
+ (λ1c0 + λ0c1)(λ0c0 + λ1c1)

4λ3 − c1−i (λ1c0 + λ0c1)

4λ2 .

Owing to (5.4), the first term converges to κ2 and the rest vanish by (5.3) and (5.2). Thus,
A
(i)
1,2 = κ2, which is in accordance with (5.9).
We continue by induction. Owing to (4.11), for any n ≥ 3 and 0 < k < n, we have the

identities

a
(i)
k,n−k

(2λ)n+k
= λ1c0a

(0)
k,n−1−k + λ0c1a

(1)
k,n−1−k

(2λ)n+k
+ (−1)i

λi(c0a
(0)
k−1,n−k − c1a

(1)
k−1,n−k)

(2λ)n+k

for i = 0, 1. The latter term vanishes, i.e.

λi(c0a
(0)
k−1,n−k − c1a

(1)
k−1,n−k)

(2λ)n+k
= λi

2λ

[
c0

2λ

a
(0)
k−1,n−k

(2λ)n+k−2 − c1

2λ

a
(1)
k−1,n−k

(2λ)n+k−2

]
→ 0,

since the limits

lim
λi

2λ
, lim

a
(i)
k−1,n−k

(2λ)n+k−2 , i = 0, 1,
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are finite (the second limit is finite by the induction hypotheses) and, by (5.2), lim(ci/2λ) = 0.
Therefore, the limit of a(i)k,n−k/(2λ)n+k is independent of i. Furthermore, we have

lim
a
(i)
k,n−k

(2λ)n+k
= lim

a
(1)
k,n−1−k(λ1c0 + λ0c1)

(2λ)n+k
+ lim

λ1c0(a
(0)
k,n−1−k − a

(1)
k,n−1−k)

(2λ)n+k
. (5.11)

By (4.15) (or directly by (4.11)) we obtain

a
(0)
k,n−1−k − a

(1)
k,n−1−k = 2λ(c0a

(0)
k−1,n−1−k − c1a

(1)
k−1,n−1−k).

Hence (see (5.4)),

lim
λ1c0(a

(0)
k,n−1−k − a

(1)
k,n−1−k)

(2λ)n+k

= lim
λ1c0(c0a

(0)
k−1,n−1−k − c1a

(1)
k−1,n−1−k)

(2λ)n+k−1

= lim
λ1

2λ

[
lim

c2
0

2λ
− lim

c0c1

2λ

]
Ak−1,n−2

= σ 2
1

σ 2
0 + σ 2

1

[
σ 4

0

σ 2
0 + σ 2

1

+ σ 2
0 σ

2
1

σ 2
0 + σ 2

1

]
Ak−1,n−2

= σ 2
0 σ

2
1

σ 2
0 + σ 2

1

Ak−1,n−2.

Finally, passing to the limit in (5.11), we obtain the following equation:

Ak,n = δAk,n−1 + κ2Ak−1,n−2. (5.12)

By induction using the ‘boundary conditions’ (5.7)–(5.8) we prove that the recursive
equation (5.12) has the (unique) solution defined by (5.9)–(5.10).

To complete the proof of Theorem 5.1, we apply the asymptotics (4.18) of the Kummer
function and the limits calculated by (5.9)–(5.10) to (4.10):

μ(i)n (t) = tn

(2λ)n

n∑
k=0

a
(i)
k,n−k�(k, n+ 1; −2λt)

∼ tn

(2λ)n

n∑
k=0

a
(i)
k,n−k
(2λt)k

�(n+ 1)

�(n− k + 1)

→ n!
n∑
k=0

Ak,nt
n−k

(n− k)!

= n!
[n/2]∑
k=0

(
n− k

k

)
δn−2kκ2k tn−k

(n− k)!

= n!
[n/2]∑
k=0

δn−2kκ2ktn−k

k!(n− 2k)! .
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Corollary 5.1. Under the scaling conditions (5.1)–(5.3), the marginal distributions of the
telegraph process converge to the distributions of a diffusion:

X(t)
d−→ σwt + δt, t > 0. (5.13)

Here wt ∼ N (0, t) and

σ = κ
√

2 = σ0σ1√
(σ 2

0 + σ 2
1 )/2

.

Proof. As is easy to see, the limits in (5.6) coincide with the moments of the diffusion
σwt + δt, t ≥ 0, with σ = κ

√
2. The convergence in distribution (5.13) follows from [3,

Theorem 30.2].
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