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This paper characterizes the refraction of a triple-shock configuration at planar fast–slow
gas interfaces. The primary objective is to reveal the wave configurations and elucidate the
mechanisms governing circulation deposition and velocity perturbation on the interface
caused by triple-shock refraction. The incident triple-shock configuration is generated by
diffracting a planar shock around a rigid cylinder, and four interfaces with various Zr
(i.e. acoustic impedance ratio across the interface) are considered. An analytical model
describing the triple-shock refraction is developed, which accurately predicts both the
wave configurations as well as circulation deposition and velocity perturbation. Depending
on Zr, three distinct patterns of transmitted waves can be anticipated: a triple-shock
configuration; a four-shock configuration; a four-wave configuration. The underlying
mechanism for the formation of these wave configurations is elucidated through shock
polar analysis. A novel physical insight into the contribution of triple-shock refraction
to the interface perturbation growth is provided. The results indicate that the reflected
shock in an incident triple-shock configuration makes significant negative contribution
to both circulation deposition and velocity perturbation. This investigation elucidates
the underlying mechanism responsible for the relatively insignificant contribution of
baroclinic circulation to the Richtmyer–Meshkov-like instability induced by a non-uniform
shock, and provides an explanation for the decrease in growth rate of interface perturbation
amplitude with increasing Atwood number.
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1. Introduction

Shock refraction and reflection occur simultaneously when a shock wave encounters an
interface separating two fluids with different thermal properties. As a canonical problem
in compressible hydrodynamics, shock refraction has long been a fascinating research
topic due to its fundamental significance in scientific research, as well as its crucial role
in natural phenomena (Arnett, Bahcall & Kirshner 1989) and engineering applications
including inertial confinement fusion (ICF) (Lindl et al. 2004; Betti & Hurricane 2016)
and supersonic combustion (Yang, Kubota & Zukoski 1994; Ren et al. 2019). One of
the first theoretical investigations on shock refraction was carried out by Taub (1947)
and Polachek & Seeger (1951), who independently formulated a theoretical description
of the regular refraction phenomenon that occurs when a planar shock wave encounters an
inclined gaseous interface. Shock tube experiments were then performed by Jahn (1956) to
study the refraction of planar shock waves at the inclined air–CH4 and air–CO2 interfaces,
respectively, and several irregular shock refraction patterns were observed and discussed.
Subsequently, understanding the underlying flow physics governing these shock refraction
phenomena and their impacts on interface evolution has been a longstanding research
focus. By utilizing a combination of theoretical analysis (Henderson 1966, 1989, 2014),
experimental investigations (Abd-El-Fattah, Henderson & Lozzi 1976; Abd-El-Fattah &
Henderson 1978a,b; Zhai et al. 2017) and numerical simulations (Nourgaliev et al. 2005;
Xiang & Wang 2019; de Gouvello et al. 2021), the three dominant factors determining
the pattern of shock refraction have been identified. These factors include the acoustic
impedances of the fluids on either side of the interface, the angle of incidence of the shock
wave onto the interface, and the strength of the incident shock (Nourgaliev et al. 2005).
Also, a theoretical shock refraction regime diagram taking these factors into account
has been established by shock polar analysis (Abd-El-Fattah & Henderson 1978a,b; de
Gouvello et al. 2021). While the aforementioned studies primarily focused on gaseous
interfaces, investigations of shock refraction have been extended to more complex regimes
involving solid materials (Brown & Ravichandran 2014), liquids (Wan et al. 2017; Xiang
& Wang 2019) and plasmas (Li, Samtaney & Wheatley 2018; Pellone et al. 2021).

During shock refraction, due to misalignment of the pressure with density gradients,
baroclinic vorticity is deposited on the interface. After the passage of the shock, the
interface undergoes persistent deformation, which may lead to turbulent mixing (Zhou
2017a,b). This phenomenon is known as Richtmyer–Meshkov instability (RMI), named
after the pioneering contributions of Richtmyer (1960) and Meshkov (1969). The primary
driver of perturbation growth is the localized vorticity deposited on the interface through
shock refraction (Brouillette 2002; Peng, Zabusky & Zhang 2003; Nishihara et al. 2010;
Zhou 2017a; Peng et al. 2021). Hawley & Zabusky (1989) first qualitatively described the
evolution of RMI from the perspective of vorticity dynamics and introduced a vorticity
paradigm which involves four distinct phases: the vorticity deposition phase; the linear
and early nonlinear phase; the intermediate nonlinear phase; the late time phase. The
vorticity deposition phase is crucial for RMI as it dominates the subsequent flow evolution
(Zabusky 1999; Peng et al. 2021; Hong et al. 2022). Consequently, accurate prediction of
vorticity generation in RMI environments has become a fascinating focus of research. The
first quantitative investigation of vorticity generation in shock-planar interface interaction
was presented by Yang et al. (1992). Subsequently, using shock polar analysis, Samtaney
& Zabusky (1994) derived an analytical expression for the circulation deposited on an
inclined fast–slow interface (i.e. when a shock propagates from a medium with low
acoustic impedance to one with high acoustic impedance), which is commonly referred
to as the SZ model. The SZ model has been successfully applied to interfaces of various
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Figure 1. Schematic diagram of non-uniform shocks: (a) a non-uniform shock with a smooth shock front; (b) a
faceted non-uniform shock with inherent triple-shock configurations. The red arrows indicate the orientations
of the shocks.

geometries, including circular (Li, Guan & Wang 2022b), sinusoidal (Li et al. 2022a)
and elliptical ones (Li, Wang & Guan 2019). Recently, Liu et al. (2020) considered the
contribution of viscosity to the circulation deposition in RMI and argued that the viscosity
gradient inside the shocks plays a role in the circulation deposition.

Previous works on shock refraction and RMI have mainly dealt with uniform incident
shocks, perfectly planar or cylindrical. However, in practical applications, the incident
shocks exhibit inherent non-uniformity and propagate with oscillations, giving rise to
the spontaneous emergence of geometric singularities such as triple points and Mach
stems (Gardner, Book & Bernstein 1982; Lodato, Vervisch & Clavin 2016; Mostert et al.
2018a,b), as depicted in figure 1. Upon encountering an interface, these non-uniform
incident shocks inevitably seed perturbations that are subsequently amplified, even if the
interface is initially uniform (Ishizaki & Nishihara 1997; Smalyuk et al. 2020; Velikovich
et al. 2020). For instance, in the context of ICF, non-uniform laser illumination launches a
non-spherical shock wave that undergoes a nonlinear transition, resulting in the formation
of a faceted polyhedral shock consisting of incident shocks, triple points, Mach stems, and
following reflected polar shocks (Gardner et al. 1982; Thomas & Kares 2012). This faceted,
non-uniform shock seeds perturbations for the acceleration phase of the target, inducing
Rayleigh–Taylor instability and facilitating turbulent mixing that ultimately results in
ignition failure (Thomas & Kares 2012; Smalyuk et al. 2020). Such interactions are
complicated and it is imperative to conduct exploratory studies in order to elucidate the
crucial processes involved.

Ishizaki et al. (1996) first numerically investigated the instability of a uniform interface
accelerated by a non-uniform shock driven by a moving rippled piston. They reported that
the evolution of this instability exhibits two distinct regimes, namely linear and nonlinear
regimes, depending on the amplitude of the rippled piston. The linear regime occurs
when the amplitude of the rippled piston is small and the non-uniform shock front is
sinusoidal (see figure 1a). For this regime, Ishizaki et al. (1996) proposed an analytical
theory that considers both the impulsive acceleration induced by the non-uniform shock
front and the continuous pressure perturbation behind the shock front. However, when the
amplitude of the rippled piston increases, the initially sinusoidal shock front undergoes
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a transition to a faceted one characterized by ‘cusp-like structured shock’ (i.e. triple
points and Mach stems) (see figure 1b). This phenomenon indicates the emergence of
a nonlinear regime, which is characterized by the formation of irregular square-shaped
perturbations on the interface. It was inferred that these square-shaped perturbations are
induced by velocity impulses resulting from the passage of the ‘cusp-like structured
shocks’. Such instabilities induced by non-uniform shocks are commonly referred to
as Richtmyer–Meshkov-like (RM-like) instability in the literature (Velikovich 2000;
Nishihara et al. 2010). Our recent shock tube experiments (Zou et al. 2017) have also
examined the RM-like instability, where a non-uniform shock with inherent triple-shock
configurations is produced by diffracting a planar shock around a rigid cylinder. Of great
interest, the incident triple-shock configuration imprints a central cavity on the interface,
which exhibits a morphology similar to the square-shaped perturbations previously
observed by Ishizaki et al. (1996). Subsequently, Zhou (2017a) has specially addressed this
RM-like instability in his review article. More recently, Liao et al. (2019) experimentally
examined the effects of the Atwood number (defined as At = (ρ

0′ − ρ0)/(ρ0′ + ρ0) with
ρ0 and ρ

0′ being the initial densities of the light and heavy gases, respectively) on the
perturbation growth of this RM-like instability. They concluded that the perturbation
growth rate of this RM-like instability decreases as the Atwood number increases, which
is fundamentally different from the results related to the classical RMI. However, the
underlying physical mechanism behind this novel phenomenon remains unclear (He et al.
2023).

The aforementioned investigations have provided valuable insights into the flow physics
of the RM-like instability. However, a comprehensive analytical theory that accounts
for the scenarios of RM-like instability has yet to be developed due to the complexity
introduced by triple-shock configurations. As depicted in figure 1(b), a triple-shock
configuration consists of four discontinuities, namely a Mach stem, incident and reflected
shocks, and a slipstream. The leading shock front comprises the Mach stem and incident
shock, while the reflected shock originates from the triple point and travels transversely
behind it (Lau-Chapdelaine & Radulescu 2016). When a triple-shock configuration
encounters an interface, both the leading shock front and the reflected shock successively
interact with the interface. These interactions inevitably give rise to complex wave
configurations and deposit velocity perturbations as well as baroclinic vorticity on
the interface. Therefore, accurately predicting the velocity perturbation and vorticity
deposition induced by triple-shock refraction is of great significance in uncovering the
underlying physical mechanisms governing the RM-like instability. In addition, it is of
great interest and importance to understand the wave configuration that occurs when
a triple-shock configuration refracts at a planar interface. A definite answer to these
questions requires a detailed and careful examination of the triple-shock refraction process,
which motivates this work. The remainder of the paper is organized as follows. The
numerical approach, experimental set-up and analytical method are presented in § 2.
Detailed results and discussion regarding the flow features are provided in §§ 3 and 4.
Finally, concluding remarks are summarized in § 5.

2. Methodology

According to our previous works (Zou et al. 2017; Liao et al. 2019), the incident
triple-shock configuration is generated by diffracting a planar shock around a rigid
cylinder. As indicated by Bryson & Gross (1961) and Zou et al. (2017), the structure
of the incident triple-shock configuration is determined by the Mach number of the
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incident planar shock, the diameter of the rigid cylinder, together with the distance that
the diffracted shock travels downstream. In the present work, to eliminate the complexity
induced by the variation of the structure of the incident triple-shock configuration, the
Mach number of the incident planar shock is kept at Mi = 1.80, the diameter of the rigid
cylinder is kept at d = 10 mm and the distance between the centre of the rigid cylinder and
the initial interface is kept at l = 40 mm.

2.1. Numerical approach
The numerical simulations are conducted using a compressible multicomponent Euler
solver based on the finite volume method (Sun & Takayama 1999). In a quasiconservative
form, the governing equations can be written as

∂U
∂t

+ ∂F (U)

∂x
+ ∂G(U)

∂y
= 0, (2.1)

where U represents the conserved variable, F (U) and G(U) are the convective fluxes in
the x and y directions, respectively,

U =

⎛
⎜⎜⎜⎝

ρ

ρu
ρv

ρE
ρYs

⎞
⎟⎟⎟⎠, F =

⎛
⎜⎜⎜⎝

ρu
ρu2 + p

ρuv

(ρE + p)u
ρYsu

⎞
⎟⎟⎟⎠, G =

⎛
⎜⎜⎜⎝

ρv

ρuv

ρv2 + p
(ρE + p)v

ρYsv

⎞
⎟⎟⎟⎠, (2.2a–c)

where u and v represent the velocity components in the x and y directions, respectively, and
ρ and p represent the density and pressure. Here Ys stands for the mass fraction of the gas
at one side of the interface, and the mass fraction of gas b at the other side of the interface
is Yb = 1 − Ys. The equation of state of the mixture is expressed as p = ρT(YsRs + YbRb),
where Rs and Rb are the gas constants of gases s and b, and T is the temperature of
the mixture. Here E is the total energy of the mixture, defined as E = Yses + Ybeb +
(u2 + v2)/2 where es and eb are the internal energies of gases s and b.

The MUSCL (monotonic upstream-centred scheme for conservation laws)–Hancock
scheme (Toro 2009) is adopted to achieve the second-order accuracy in both temporal and
spatial scales. The HLL (Harten–Lax–van Leer) Riemann solver (Sun & Takayama 2003)
is employed for the approximation of the physical fluxes. An adaptive mesh refinement
technique (Sun & Takayama 1999) is employed such that it deploys dense grids in flow
regions with large density and velocity gradients, thereby resolving waves and interface
evolutions elaborately. This solver has been proven reliable in previous works in capturing
the complex shock structures and interface evolution, such as shock–obstacle interactions
(Sun & Takayama 2003), shock reflections (Wang & Zhai 2020; Wang, Zhai & Luo 2022)
and shock–interface interactions (Zhai et al. 2011, 2018).

The computational domain is shown in figure 2(a). Due to the symmetric nature
of the flow field, only the upper-half-plane (0 � x � 250 mm and 0 � y � 50 mm) is
considered. The rigid cylinder is centred at x = 20 mm on the symmetry axis, and
the initial interface is situated at x = 60 mm. The left and right boundaries are set
as inflow and outflow conditions, respectively, while the upper and lower boundaries
(y =0 and y = 50 mm) are treated as reflection and symmetry conditions, respectively. To
highlight the influence of acoustic impedances of the gases on the triple-shock refraction,
four different types of fast–slow interfaces are considered in computations with light
gas of nitrogen (N2) and heavy gases of air, carbon dioxide (CO2), krypton (Kr) and
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Figure 2. (a) Schematic of the computational domain. (b) The grid convergence validation.

Case Gas combination γ ρ (kg m−3) a (m s−1) Z = ρa (kg m−2 s−1) Zr

1 N2–air 1.399 1.204 343.1 413.1 1.02
2 N2–CO2 1.293 1.829 267.6 489.4 1.21
3 N2–Kr 1.661 3.491 220.1 768.4 1.89
4 N2–SF6 1.094 6.143 133.9 822.1 2.02

Table 1. Thermal properties of the test gases considered in the numerical simulations, including the gas
combination, specific heat ratio (γ ), density (ρ), sound speed (a), acoustic impedance (Z) of the heavy gases
at T0 = 293.15 K and p0 = 101325 Pa, and the acoustic impedance ratio (Zr) across the interface. The value of
γ , ρ, a and Z of the light gas (N2) are 1.399, 1.164, 348.9 and 406.1, respectively.

sulphur hexafluoride (SF6), respectively. The thermal properties of the test gases are
given in table 1. Here the interfaces are characterized by the acoustic impedance ratios
of gases across the interfaces defined as Zr = Z0′/Z0, with Z0 and Z0′ being the acoustic
impedances of the light and heavy gases, respectively.

To validate the numerical solver as well as check the grid convergence, a planar shock
diffracting around a rigid cylinder is considered, in which three sets of uniform grids with
initial mesh sizes of 0.4, 0.2 and 0.1 mm, respectively, are tested. The initial temperature
T0 of 293.15 K and initial pressure p0 of 101 325 Pa are employed. The pressure profiles
along the horizontal symmetry axis of the flow field with different initial mesh sizes are
given in figure 2(b). The results obtained by the grids with initial mesh sizes of 0.2 mm
and 0.1 mm collapse together, indicating a reasonable convergence of grid resolutions.
To ensure the accuracy and meanwhile to minimize the computation capacity, the initial
mesh size of 0.2 mm is adopted and the finest mesh size of 25 μm is used where a greater
density gradient exists. As depicted in figure 3(a), the instantaneous numerical schlieren
of the diffracted non-uniform shock just before it encounters the interface is validated
against the experimental shadowgraphy of Liao et al. (2019). The numerical simulation
reproduces nearly all features of wave pattern as observed in the experiment and good
agreement is achieved between them. Furthermore, the computed trajectories of the two
triple points (TP1, TP2) are measured and compared with the experimental data of Liao
et al. (2019), as depicted in figure 3(b). The comparisons appear substantially satisfactory
for both the outer and inner triple-shock configurations, validating the accuracy of the
numerical solver.
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Figure 3. Validation of the numerical solver. (a) Comparison of the wave configuration of the diffracted
non-uniform shock just before it encounters the initial interface. (b) Comparison of triple points trajectories
of the diffracted non-uniform shock.
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Figure 4. (a) Schematic of the test section of the shock tube with shadowgraph system. (b) Schematic of wave
configurations after the shock diffracts around the cylinder. Here, TP1 and TP2, respectively, denote the outer
and inner triple points; IS, MS1, MS2, RS1 and RS2 refer to the incident shock, the outer Mach stem shock,
the central Mach stem, the reflected/transverse shock emanating from TP1 and TP2, respectively; SL1 and SL2
denote the slipstream emanating from TP1 and TP2, respectively.

2.2. Experimental set-up
The experiments are conducted in a vertical shock tube with a cross-section of
100 mm × 100 mm, comprising of a driver section (1.60 m long), a driven section (4.22 m
long), and a test section (0.305 m long). As illustrated in figure 4(a), a flat interface is
created in the test section utilizing the membraneless method originally proposed by Jones
& Jacobs (1997), which has already been verified for its feasibility and reliability in our
previous works (Zou et al. 2017; Liao et al. 2019). The detailed description of the shock
tube facility and the interface generation method can be found in Zou et al. (2017) and
Liao et al. (2019). In this work, three different types of fast–slow interfaces are successfully
generated with light gas of N2 and heavy gases of CO2, Kr and SF6, respectively. However,
the N2–air interface is excluded in the experiments due to the negligible difference in
densities between the two gases, which poses a great challenge for generating the interface.
Figure 4(b) illustrates the schematic of wave configurations after a planar shock diffracts
around a rigid cylinder. To capture the evolution of the wave patterns and the interface
elaborately, a shadowgraph photographic system similar to that adopted by Zou et al.
(2017) and Liao et al. (2019) is employed, as shown schematically in figure 4(a). A 500 W
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xenon lamp (XQW500, Chengdu Photoelectricity Limited) is used to illuminate the flow
field, and the shadowgraph images are recorded by a high-speed video camera (Phantom
V1610) with a frame rate of 52 000 frames per second. The exposure time of the camera
is 1 μs and the spatial resolution of the image is approximately 0.27 mm pixel−1. Two
pressure transducers (Ch1, Ch2) located above the test section and spaced 100 mm apart
are used to measure the shock speed and to trigger the data acquisition system.

2.3. Pressure-deflection shock polar
The utilization of pressure-deflection shock polar is highly advantageous for analysing
flow phenomena involving complex shock interactions and shock refractions, thereby
facilitating a more comprehensive understanding of the flow physics (Olejniczak, Wright
& Candler 1997; Ben-Dor 2007; Vasilev, Elperin & Ben-dor 2008; Gounko 2017; Zhang
et al. 2021; Bai & Wu 2022). For a detailed description of shock polars and their
applications, readers can refer to Ben-Dor (2007). In this study, the triple-shock refraction
process is examined by employing shock polars. Moreover, the utilization of shock polars
enables a quantitative assessment of the velocity perturbation and the deposition of
vorticity during triple-shock refraction (Samtaney & Zabusky 1994). Note that the shock
polars and the equations they represent are based on the assumption of a planar shock,
which implies a uniform flow immediately downstream. Hence, the shock polars provide
only an approximate representation of the actual flow in scenarios involving curved shocks,
and are accurate only within a limited region surrounding the point of shock intersection.
Nonetheless, based on the numerous numerical and experimental studies performed so far,
it seems reasonable to assume a planar shock when using shock polars (Olejniczak et al.
1997; Vasilev et al. 2008; Gounko 2017; Zhang et al. 2021; Ji et al. 2022). Therefore, in
this study, it is assumed that the shocks of the triple-shock configuration are planar in the
vicinity of the triple point, although slight curvature exists.

3. Flow structures and characteristics

3.1. Features of the diffracted non-uniform shock
Before illustrating the flow physics of triple-shock refraction, it is necessary to elaborate
on the general features of the diffracted non-uniform shock. Diffraction of a planar shock
around a rigid cylinder is a classical problem in shock dynamics, and for a detailed analysis
readers can refer to Bryson & Gross (1961) and Chaudhuri, Hadjadj & Chinnayya (2011).
As shown in figure 4(a), the leading shock front of the diffracted non-uniform shock
consists of two pairs of triple points (TP1, TP2) and several shock segments, namely
the planar incident shock (IS) and the curved Mach stem shocks (MS1, MS2). There are
two characteristic triple-shock configurations on both sides of the flow symmetry axis,
originating from TP1 and TP2. The structures of the two triple-shock configurations are
determined by the Mach number (M) and incidence angle (α, defined as the angle with
respect to the horizontal direction) of their leading shock fronts in the vicinity of the triple
points. The variation of M and α for each shock segment are extracted from the numerical
simulations and presented in figures 5(a) and 5(b), respectively. The Mach number of MS1
decreases gradually from TP1 to TP2 due to the shock attenuation when diffracting around
the cylinder. The Mach number of MS2 exceeds that of MS1 because of the collision
of the two MS1 from opposite sides. The incidence angle for IS is maintained at zero.
Subsequently, the incidence angle experiences a sudden jump upon crossing TP1 from
IS to MS1 due to the shock interaction, then increases monotonically and reaches a local
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Figure 5. Distribution of (a) the Mach number and (b) the incidence angle of the leading shock front of the
non-uniform shock just before it encounters the initial interface.

maximum value at TP2. From figure 5, both the shock Mach number and incidence angle
exhibit a more pronounced variation when crossing TP2 compared with TP1, indicating a
stronger and more stable triple-shock configuration originating from TP2. Therefore, in the
subsequent sections, we focus on examining the refraction of the triple-shock configuration
originating from TP2. The shock front parameters depicted in figure 5 will be used as input
data for the theoretical analysis, which will be elaborated in detail in § 4.

3.2. Qualitative description of the triple-shock refraction process

3.2.1. Triple-shock refraction at a planar N2–air interface
Figure 6 illustrates the refraction of the triple-shock configuration originating from TP2
at a planar N2–air interface, where the numerical schlieren images and the schematics
of the wave configurations are presented on the left- and right-hand sides, respectively.
Due to the symmetric nature of the flow field, only the right-hand half of the entire
wave configurations is displayed for clarity. The initial time, i.e. t = 0 μs, is defined
as the moment when IS collides with the initial interface, and the corresponding wave
configuration is shown in figure 6(a). As time proceeds, the outer Mach stem shock (MS1)
first intersects the interface at point IP1 and undergoes primary regular refraction due to
its relatively small incidence angle, generating a transmitted shock (TS1) and a reflected
shock (RS3). A detailed enlargement of the flow field in the vicinity of IP1, as depicted in
figure 6(b), reveals that the refraction of MS1 deposits positive baroclinic vorticity on the
interface. At t = 4 μs, as shown in figure 6(c), the central Mach stem shock (MS2), the
triple point (TP2) and the outer Mach stem shock (MS1) all intersect with the interface
simultaneously. At this moment, the four shocks RS2, TS1, MS2 and RS3 coincide at
a single point on the interface, mutually modifying each other and indicating a critical
condition for the refracting shock system. As presented in figure 4, MS2 is almost parallel
to the initial interface. Consequently, regular refraction of MS2 occurs upon encountering
the initial interface. In conjunction with the refraction of MS2, RS2 interferes with RS3
from the opposite family at point IP3. This shock interaction generates RS4 and RS5 to
match the flow field. At the same time, RS5 intersects with the evolving interface segment
previously shocked by MS1 at point IP4, resulting in secondary shock refraction and
forming a reflected shock (RS6) and a transmitted shock (TS2). A zoomed-in view of
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Figure 6. Sequences of numerical schlieren frames and schematic diagrams illustrating the evolution of
triple-shock refraction at a N2–air interface. The red arrows indicate the orientations of the shocks. Here
(a) t = 0 μs, (b) t = 2 μs, (c) t = 4 μs and (d) t = 10 μs.

the flow field near IP4, as depicted in figure 6(d), reveals that the secondary refraction of
RS5 deposits negative vorticity on the interface. That is to say, the secondary refraction
of RS5 suppresses vorticity originally deposited by the primary refraction of MS1 on the
interface.

In addition to the deposition of baroclinic vorticity, the triple-shock refraction also
imparts a longitudinal velocity perturbation on the interface. As previously mentioned, the
shock Mach number and incidence angle exhibit pronounced variations along the leading
shock front of the incident triple-shock configuration, resulting in a non-uniform impulsive
acceleration of the interface. Recalling that MS2 is stronger and has a relatively smaller
incidence angle than MS1 (see figure 5); this implies that the central interface segment
shocked by MS2 immediately gains a larger velocity after the passage of the leading
shock front, thereby imparting a velocity perturbation on the interface. However, following
the passage of the leading shock front, the secondary refraction of RS5 at the evolving
interface segment shocked by MS1 further accelerates the interface segment and partially
balances the longitudinal velocity perturbation. Consequently, the secondary refraction
of RS5 may effectively suppress the growth of interface perturbation by concurrently
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Refraction of a triple-shock configuration

inhibiting vorticity deposition and balancing velocity perturbations on the interface. Note
that in the theoretical analysis of Ishizaki et al. (1996), only the velocity perturbation
imparted by the leading shock front of a non-uniform shock was considered. However,
based on the above results, both the leading shock front and the reflected shock travelling
transversely behind it play crucial roles in the interface evolution. The quantitative
assessment of the contribution of the reflected shock to the interface evolution will be
presented in § 4.3.1.

In concurrence with the perturbation of the interface, a complex pattern of reflected
waves is generated, which comprises multiple curved shocks (RS3, RS4, RS7 and RS8),
a triple point (TP4), a shock intersection point (IP4) as well as transverse shocks (RS2,
RS5, RS6) and slipstreams, as shown in figure 6(d). Of great interest, a transmitted
triple-shock configuration is identified in the transmitted gas, comprising of shocks TS1,
MS3, TS2, as well as a slipstream SL3 emanating from the transmitted triple point TP3.
For convenience, this type of triple-shock refraction with the formation of a transmitted
tripe-shock configuration is referred to as a type A triple-shock refraction.

3.2.2. Effects of acoustic impedances on the triple-shock refraction
When Zr is increased, various patterns of refracted wave configurations are obtained.
Figure 7(a,b) demonstrates the refractions of the triple-shock configuration at N2–CO2
and N2–Kr interfaces. In general, the evolution of the wave configurations exhibits similar
characteristics to those observed in the case of a N2–air interface, with discrepancies
observed only in the transmitted wave configurations as shown in figures 6(d) and
7(a,b). Notably, the numerical schlieren images shown in figure 7(avi) and 7(bvi) clearly
display a transmitted four-shock configuration consisting of four shocks (MS3, TS1,
TS2 and TS3) and a slipstream (SL3). These five discontinuities meet at a single point
TP3, contradicting von Neumann’s three-shock theory (Von Neumann 1943, 1945). Note
that the discrepancy between von Neumann’s three-shock theory and Mach reflection
configurations was first experimentally detected by White (1952) in weak shock reflection
and subsequently confirmed by numerous experiments (Zaslavsky & Safarov 1975;
Henderson & Siegenthaler 1980; Colella & Henderson 1990; Skews & Ashworth 2005).
These discrepancies are commonly named the von Neumann paradox. To resolve the von
Neumann paradox, Guderley (1947) and Vasilev (1999) developed a four-wave theory by
introducing a Prandtl–Meyer expansion fan into the triple-shock configuration. In addition,
Vasilev et al. (2008) reconsidered the von Neumann paradox using shock polar analysis
and predicted two distinct four-wave configurations: Guderley reflection and Vasilev
reflection. However, the four-shock configuration identified in this study is distinctly
different from the four-wave configurations predicted by Vasilev et al. (2008). The
shadowgraph images shown in figure 7(av) and 7(bv) provide experimental evidence for
this four-shock configuration. To the authors’ knowledge, such a four-shock configuration
has not been reported before. Specifically, this type of triple-shock refraction is referred to
as type B triple-shock refraction, and the detailed wave configurations are schematically
depicted in figure 8(a). Considering the similarity in reflected wave configurations between
type A and type B triple-shock refraction, as well as the symmetric nature of the flow
field, only the right-hand half of the flow regions within the transmitted gas is illustrated
in figure 8(a) for clarity.

Regarding the case of N2–SF6 interface, the numerical schlieren image presented in
figure 7(cvi) clearly demonstrates a transmitted four-wave configuration that includes a
Prandtl–Meyer expansion fan (EW), in addition to the classical triple-shock configuration.
This transmitted four-wave configuration is similar to the wave configuration of both
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Figure 7. Sequences of numerical schlieren images and experimental shadowgraphs showing the evolution of
triple-shock refractions at interfaces with various combinations of acoustic impedances. Here (a) N2/CO2,
(b) N2/Kr and (c) N2/SF6.
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Figure 8. Detailed schematics illustrating the flow field of type B and type C triple-shock refractions.

the Guderley reflection and the Valisev reflection (Vasilev et al. 2008). Note that EW
originating from TP3 slightly complicates the flow by impacting the interface in the
backward direction and generating a reflected shock RS9. This type of triple-shock
refraction is classified as type C triple-shock refraction. Unfortunately, the experimental
identification of the transmitted four-wave configuration is hindered by both the strong
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diffusion of the N2–SF6 interface and the narrow space between the interface and the
transmitted shocks. Figure 8(b) illustrates the detailed wave configuration and flow field
resulting from type C triple-shock refraction for comparison, highlighting the differences
in the flow field near TP3.

4. Theoretical results and discussion

In this section, analytical models will be developed to solve the wave angles and flow
properties behind the waves associated with the process of triple-shock refraction. The
input data used in the analytical model includes the parameters of the leading shock front
of the incident triple-shock configuration, along with the thermal properties of gases on
both sides of the initial interface. Specifically, the analysis decomposed the triple-shock
refraction process into five fundamental processes, namely: analytical characterization of
the incident triple-shock configuration; solution of the primary shock refraction; solution
of the shock–shock interaction; solution of the secondary shock refraction; solution of the
transmitted wave configuration. Once the flow properties in different regions illustrated
in figures 6(d) and 8 have been determined, it becomes feasible to quantitatively evaluate
the effects of velocity perturbation and baroclinic vorticity induced by the triple-shock
refraction. Moreover, the flow properties of the regions surrounding the transmitted
triple point can be utilized to draw shock polars for the transmitted wave configuration,
thereby providing valuable insights into the mechanisms that determine the pattern of the
transmitted wave.

In the subsequent analysis, we use V and M to represent the velocity and Mach number
of the gas, respectively. The angle of the shock wave with respect to its upstream flow
direction (shock angle) is denoted by β. The flow deflection angle across a shock or an
expansion fan is denoted by δ, with positive values for anticlockwise deflections. The
gases are considered as calorically and thermally perfect. The conservation relationships
across various types of discontinuities, including oblique shock wave, expansion waves
and slipstream, are universal and can be found in Anderson (2001).

4.1. Analytical solution of the triple-shock refraction

4.1.1. Analytical characterization of the incident triple-shock configuration
The analysis of the triple-shock refraction begins with the characterization of the
incident triple-shock configuration. The flow field around TP2 depicted in figure 4(a)
is appropriately magnified and presented in figure 9. By attaching a frame of reference
to TP2, the unsteady triple-shock configuration is transformed into a pseudosteady one,
and all flow properties that are frame of reference dependent are appropriately marked.
Figure 9 shows that four discontinuities, namely MS1, RS2, MS2 and SL2, coincide at TP2
and divide the flow field into four regions (i.e. regions (0)–(3)). Similar to von Neumann’s
three-shock theory (Von Neumann 1945), the flow solutions in regions (0)-(3) are assumed
to be uniform, disregarding the influence of shock curvatures. Consequently, the flow field
in the vicinity of TP2 can be solved by applying the conservation relationships across the
oblique shocks and appropriate matching conditions across SL2.

To characterize the incident triple-shock configuration depicted in figure 9(a), only three
parameters of the leading shock front are required, namely, the Mach numbers (Mi, Mm)
of MS1 and MS2, along with the incidence angle (αi) of MS1. In the frame of reference
attached to TP2, the oncoming flow Mach number (M0(TP2)) in zone (0) and the shock
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Figure 9. (a) Schematic diagram and (b) shock-polar solution of the incident triple-shock configuration. The
solid points represent the solution points, and the hollow circles denote the sonic points.

angle (βi(TP2)) of MS1 are derived as

M0(TP2) = Mi/ cos(χ + αi)

βi(TP2) = π

2
− αi − χ

⎫⎬
⎭, (4.1a,b)

where χ represents the trajectory angle of TP2, which is defined as the angle with respect
to the x-axis direction.

Following the three-shock theory, we apply oblique shock relations near TP2. These
relations are used across MS1 for weak solution, across RS2 for weak solution normally
but only when M2(TP2) < 1 for strong solution. Additionally, these relations are applied
across MS2 for strong solution.

The matching conditions across SL2 separating regions (2) and (3) are

p3/p0 = p2/p0 = ( p2/p1)( p1/p0)

δ3(TP2) = δ1(TP2) ± δ2(TP2)

}
, (4.2a,b)

where δ3(TP2) = δ1(TP2) − δ2(TP2) for a ‘standard’ triple-shock configuration and
δ3(TP2) = δ1(TP2) + δ2(TP2) for a ‘non-standard’ triple-shock configuration.

To quantify the triple-shock configuration surrounding TP2, we measure the shock front
parameters defined in figure 9(a) from figures 5(a) and 5(b). The resulting values for
MS1 are Mi = 1.62 and αi = 14.4◦, while the value for MS2 is Mm = 1.83. Figure 9(b)
illustrates a shock-polar solution of the incident triple-shock configuration, where positive
angles correspond to anticlockwise flow deflections. The numbered regions in figure 9(a)
correspond to the numbered points of the shock polar intersections. The oncoming
flow shock polar is determined by the oncoming flow Mach number M0(TP2) = 1.94,
originating from the origin. Point (1) lies on the oncoming flow shock polar at δ1(TP2) =
20.3◦. The flow parameters immediately behind MS1 (i.e. region (1)) are utilized to
determine the reflection shock polar for region (1), which originates from point (1).
The intersection point between the shock polar for region (1) and the oncoming flow
shock polar, labelled (2) and (3), represents the theoretical solution for the flow states
in regions (2) and (3), respectively. The theoretical pressure ratio of 3.74 in regions (2) and
(3) agrees well with the computed value of 3.73. Additionally, the theoretical value of the
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Figure 10. Comparison between the analytical wave configuration (denoted by dashed lines) and the
numerical contour of the normalized temperature.
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Figure 11. (a) Schematic illustration of the primary refraction of MS1 at the initial interface and
(b) shock-polar solution of the primary refraction of MS1 at a N2–Kr interface. The solid points represent
the solution points.

triple point trajectory angle (χ ) is approximately 18.9◦, which also agrees satisfactorily
with the numerical value (18.6◦) obtained from linearly fitting the trajectory (as displayed
in figure 4b) of TP2. Thus, the shock polars can be used to distinguish between different
types of shock reflection and quantify the strength and orientation of RS2. The reflected
shock (RS2) and the shear layer (SL2), obtained from the shock polar analysis, are
superimposed on the numerical contour of the normalized temperature T/T0 in figure 10
for comparison, showing a good agreement. Note that this type of shock reflection should
be categorized as von Neumann reflection (Ben-Dor 2007; Vasilev et al. 2008; Yang, Li &
Wu 2013), since the solution of the three-shock theory is ‘non-standard’ where δ3(TP2) =
δ1(TP2) + δ2(TP2). In other words, the oncoming flow in region (0) is deflected in the
same direction successively by MS1 and RS2.

4.1.2. Solution of the primary shock refraction
As previously shown in figures 6(b) and 6(c), shocks MS1 and MS2 intersect with the
initial interface successively, resulting in regular shock refractions. Only the relations
related to the refraction of MS1 are derived below, as those associated with the refraction
of MS2 are similar. The appropriate parts of the resulting wave configurations, generated
by the refraction of MS1 (see figures 6b), are enlarged and schematically illustrated
in figure 11(a). The frame of reference is attached to IP1 where MS1, RS3 and TS1
intersect at the interface, and all the flow properties that are frame of reference dependent
are appropriately marked. Here, γ0 and γ ′

0 represent the ratios of specific heats in the
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(5)Interface

Figure 12. Comparison of wave configurations and interface between analytical prediction (denoted by
dashed lines) and numerical result for the primary refraction of MS1 at a N2–Kr interface.

incident and transmitted gases, respectively. Here p0 and ρ0′ , respectively, denote the initial
pressure and density of the flow in region (0′).

According to the shock refraction law (Henderson 2014), the incident and transmitted
shocks must propagate at the same velocity along the interface. As a result, the parameters
of TS1 can be related to those of MS1 using the following expression:

M(TS1)a′
0/ sin α(TS1) = Mia0/ sin αi, (4.3)

where M(TS1) and α(TS1) are the Mach number and angle of incidence of TS1,

respectively; a0 = √
γ0p0/ρ0 and a′

0 =
√

γ ′
0p0/ρ

′
0 are, respectively, the initial sound

speeds of the incident gas in region (0) and the transmitted gas in region (0′). In the frame
of reference attached to IP1, the Mach numbers of the oncoming flows in regions (0) and
(0′) are M0(IP1) and M0′(IP1), respectively, and are derived as

M0(IP1) = Mi/ sin αi
M0′(IP1) = M(TS1)/ sin α(TS1) = Mi(a0/a′

0)/ sin αi

}
. (4.4a,b)

The shock angle of MS1 with respect to the oncoming flow in region (0) is

β1(IP1) = π

2
− αi. (4.5)

The oblique shock relations are applied, in the vicinity of IP1, across MS1, RS3 and TS1.
In addition, the matching conditions across the shocked interface m′ separating regions (4)
and (5) are

( p4/p1)( p1/p0) = p5/p0
δ1(IP1) − δ4(IP1) = δ5(IP1)

}
. (4.6a,b)

Figure 11(b) presents the shock-polar solution of the primary refraction of MS1 for the
case of N2–Kr interface. The shock polars for region (0) and (0′) are determined by
the oncoming flow conditions M0(IP1) = 6.51, γ0 = 1.399 and M0′(IP1) = 10.34, γ0′ =
1.661, respectively. Point (1) is located on the oncoming shock polar for region (0) at the
position of δ1(IP1) = 7.32◦. With the pressure ratio fixed, the Mach number in region (1),
M1(IP1) = 5.37 is uniquely determined, and the shock polar for region (1) can be drawn
originating from point (1). Points (4) and (5) on the shock polar diagram have a pressure
ratio of 3.81, which is exactly the same as the numerical value. Therefore, the shock polars
can be used to quantify the strength of both the reflected and transmitted shocks (RS3 and
TS1) as well as their incidence angles. As shown in figure 12, the analytical reflected shock
(RS3), transmitted shock (TS1) and the shocked interface (m′) coincide with the numerical
contour of the normalized temperature T/T0.

984 A49-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.245


Refraction of a triple-shock configuration

(2)

(1)

(2)
(1)

(4)

(8),(9)

(4)

(9)

(8)

Oncoming flow

IP3-T
rajectory

RS3

RS3

RS5

RS2

RS4
IP3

RS5

RS2

SL5

RS4

α(RS3)

α(RS5)

α(RS2)

ε
α(RS4)

β2(IP3)

β4(IP3)

β9(IP3)

β8(IP3)

δ2(IP3)

δ4(IP3)
δ8(IP3)

δ9(IP3)

δ (deg.)
0 10–10

(a) (b)

y

x

p/p1

4

Figure 13. (a) Schematic illustration of the interaction between RS2 and RS3 and (b) shock-polar solution of
the interaction between RS2 and RS3 involved in the triple-shock refraction at a N2–Kr interface. The solid
points represent the solution points.

Generally, the velocity of the doubly shocked flow in region (4) is lower than that
of the flow in region (5), which has only been shocked by TS1, resulting in a shear
across the interface (Samtaney & Zabusky 1994). Consequently, the refraction process
of MS1 deposits baroclinic vorticity on the interface. By integrating the velocity along a
contour with length ds′ parallel to the primary shocked interface and infinitesimally thin
perpendicular to it, the circulation per unit length (CPUL) of the shocked interface (m′)
can be obtained as

Γ ′
m′ = dΓm′

ds′ = V5t − V4t, (4.7)

where V4t and V5t denote the velocities tangential to m′ in the incident gas and the
transmitted gas, respectively. Furthermore, (4.7) can be multiplied by the geometric factor
ds′/ds = [cos αi/ cos(αi − δ5(IP1)] to yield the CPUL with respect to the initial interface
m:

Γ ′
m = dΓm

ds
= (V5t − V4t)

cos αi

cos(αi − δ5(IP1))
. (4.8)

Samtaney & Zabusky (1994) utilized an asymptotic method to provide a first-order
estimation of (4.8), and proposed the SZ model, which is formulated as follows:

Γ ′
m,SZ = dΓm

ds
= 2γc

1/2

γc + 1
(1 − η−1/2) sin αi(1 + M(MS1)

−1

+ 2M(MS1)
−2)(M(MS1) − 1)

√
p0

ρ0
, (4.9)

where γc = (γ0 + γ0′)/2 and η = ρ0′/ρ0 denote the characteristic specific heat ratio and
the density ratio of the preshocked gases across the interface, respectively.

4.1.3. Solution of the shock–shock interaction
The flow field surrounding IP3, where RS2 and RS3 interfere, is illustrated in figure 13(a).
By attaching a frame of reference to IP3, all the flow properties are appropriately marked.
Prior to solving the flow field, the velocity of IP3 with respect to region (1) should be
determined. Considering that the wave configuration around IP3 retains its structure as it
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evolves, i.e. RS2 and RS3 proceed at the same velocity with respect to region (1) along the
trajectory of IP3, the following geometric relations hold:

|V IP3 − V 1| = M(RS2)a1

sin(α(RS2) − ε)
= M(RS3)a1

sin ε
, (4.10)

where ε is the unknown parameter that represents the trajectory angle of IP3 with respect
to RS3 (see figure 13a), and the flow parameters M(RS2), M(RS3), α(RS2), V 1 and a1 are
known.

In the frame of reference attached to IP3, the oncoming flow parameters in region (1)
can be expressed as

M1(IP3) = M(RS2)

sin(α(RS2) − ε)
β2(IP3) = α(RS2) − ε

β4(IP3) = ε

⎫⎪⎬
⎪⎭. (4.11a–c)

The oblique shock relations are applied, in the vicinity of IP3, across RS2, RS3, RS4 and
RS5, respectively. In addition, the matching conditions across SL5 separating regions (8)
and (9) are as follows:

( p9/p2)( p2/p1) = ( p8/p4)( p4/p1)
δ2(IP3) − δ9(IP3) = δ8(IP3) − δ4(IP3)

}
. (4.12a,b)

The shock polars depicted in figure 13(b) illustrate the interaction between RS2 and RS3
for the N2–Kr interface case. State (1) at which p/p1 = 1, δ1(IP3) = 0, is located at the
origin. The oncoming flow shock polar for region (1) is determined by the oncoming flow
Mach number M1(IP3) = 4.20. The points (2) and (4) are located on the oncoming flow
shock polar at the locations of δ2(IP3) = −2.69◦ and δ4(IP3) = 2.43◦, respectively. With
the pressure ratios p2/p1 = 1.32 and p4/p1 = 1.29 fixed, the Mach numbers in regions (2)
and (4), M2(IP3) = 3.98 and M4(IP3) = 4.00 can be uniquely determined. Consequently,
the shock polars for regions (2) and (4) can be drawn originating from point (2) and (4)
correspondingly. Points (8) and (9) should coincide at the intersection of shock polars for
regions (2) and (4). Note that points (8) and (9) on the shock polar diagram have a pressure
ratio of 1.67, which agrees well with the calculated value of 1.63.

4.1.4. Solution of the secondary shock refraction
As previously mentioned, RS5 intersects and interacts with m′ at IP4. This intersection
leads to a secondary shock refraction and deposits additional baroclinic vorticity on
the interface. The resulting wave configuration from the secondary shock refraction is
illustrated in figure 14(a), with the frame of reference being attached to IP4, and all the flow
properties, which are frame of reference dependent are appropriately marked. It should
be noted that m′ is evolving and not vorticity-free. This differs from the aforementioned
primary refractions of MS1 and MS2, where the interface m is initially stationary and
vorticity-free.

In the frame of reference attached to IP4, the flow parameters in zones (4) and (5) can
be expressed as

M4(IP4) = M(RS5)/ sin(α(RS5) + δ4(IP1))
M5(IP4) = M4(IP4)(a4/a5)
β8(IP4) = α(RS5) + δ4(IP1)

⎫⎬
⎭, (4.13a–c)

where M(RS5), α(RS5), δ4(IP1), a4 and a5 are known.
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Figure 14. (a) Schematic illustration of the secondary refraction of RS5 and (b) shock-polar solution of the
secondary refraction of RS5 involved in the triple-shock refraction at a N2–Kr interface. The solid points
represent the solution points.

The oblique shock relations are applied, in the vicinity of IP4, across RS5, RS6 and TS2,
respectively. In addition, the matching conditions across the secondary shocked interface
(m′′) separating regions (10) and (12) are

( p8/p4)( p10/p8) = p12/p5
δ8(IP4) − δ10(IP4) = δ12(IP4)

}
. (4.14a,b)

Figure 14(b) illustrates the shock-polar solution of the secondary shock refraction of RS5
for the case of the N2–Kr interface. The oncoming flow shock polars for regions (4)
and (5) are determined by M4(IP4) = 1.76, γ0 = 1.399 and M5(IP4) = 2.33, γ0′ = 1.661,
respectively. Point (8) is located on the shock polar for region (4) at δ8(IP4) = 4.67◦. With
the location of point (8) now fixed, the Mach number in region (8), M8(IP4) = 1.60, can be
uniquely determined, allowing for drawing a shock polar originating from point (8). Note
that point (12) must lie on the M5(IP4) = 2.33, γ0′ = 1.661 shock polar, and point (10)
must coincide with point (12) because regions (10) and (12) are separated by the interface
m′′. Consequently, points (10) and (12) lie on the intersection of the shock polars for
regions (5) and (8). In this case, the analytical postshock pressure ratio p10/p4 = 1.32
agrees with the numerical value of 1.33. Therefore, the shock polars provide a quantitative
assessment of both the strength and orientation of the transmitted shock TS2 and the
reflected shock RS6.

The secondary refraction of RS5 alters the tangential velocities across the
secondary shocked interface m′′ and generates secondary baroclinic vorticity along
the interface. By considering the jump in tangential velocity across m′′ and
incorporating the geometric factor ds′′/ds = [cos αi/ cos(αi − δ5(IP1)][cos(α(RS5) +
δ5(IP1))/ cos(α(RS5) + δ5(IP1) − δ12(IP4))], the CPUL with respect to the initial
interface m is derived as

Γ ′
m = dΓm

ds
= (V12t − V10t)

cos(α(RS5) + δ5(IP1))

cos(α(RS5) + δ5(IP1) − δ12(IP4))

cos αi

cos(αi − δ5(IP1))
.

(4.15)

4.2. Analytical solution of the transmitted wave configuration
As mentioned earlier, depending on Zr, an incident triple-shock configuration can be
transmitted as either a triple-shock configuration, a four-wave configuration or a four-shock
configuration. In this section, the relevant parts of the transmitted wave configurations
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around TP3, depicted in figures 6(d) and 8, are enlarged and schematically illustrated in
figure 15(ai,bi,ci). The transmitted wave configuration can be interpreted as the reflection
of TS1 at the symmetry axis. In addition, TS1, TS2 and MS3 serve as the incident shock,
reflected shock and Mach stem, respectively, for a general triple-shock configuration.
Hence, a similar methodology employed in the analysis of the incident triple-shock
configuration (see § 4.1.1) can be applied to investigate the transmitted wave configuration.

In the frame of reference attached to TP3, the oncoming flow parameters in region (0′)
can be derived as

M0′(TP3) = M(TS1)/ cos(χ1 + α(TS1))

β5(TP3) = π

2
− α(TS1) − χ1

}
, (4.16a,b)

where χ1 represents the trajectory angle of TP3 with respect to the x-axis direction.

4.2.1. Solution of the transmitted triple-shock configuration
For the transmitted triple-shock configuration depicted in figure 15(a), the oblique shock
relations are applied across TS3, MS3 and TS2. In addition, the match conditions across
SL3 are written as

( p12/p5)( p5/p0′) = p7/p0′
δ5(TP3) ± δ12(TP3) = δ7(TP3)

}
. (4.17a,b)

The shock-polar solution of the triple-shock configuration transmitted into air is shown
in figure 15(aii,bii,cii). The region (0′) is represented by the origin, where p = p0′ and
δ0′(TP3) = 0. Point (5) lies on the M0′(TP3) = 1.94, γ0′ = 1.399 oncoming flow shock
polar at the location δ5 = 20.45◦. With the pressure ratio p5 = 2.92 fixed, the Mach
number in region (5) is determined to be M5(TP3) = 1.12, and the shock polar for
region (5) can be drawn originating from point (5). Here SL3 separates the flow in
region (12) which has been compressed successively by both TS1 and TS2 from the flow
in region (7) that has only compressed by MS3. Therefore, points (7) and (12) lie on the
intersection of the shock polar originating from point (5) and the oncoming flow shock
polar. Points (7) and (12) on the shock polar diagram share a pressure ratio of 3.75, which
agrees with the numerical value of 3.76. It is noteworthy that the transmitted triple-shock
configuration can also be identified as a von Neumann reflection of TS1 at the symmetry
axis, since (4.16a,b) and (4.17a,b) provide a ‘non-standard’ solution for the three-shock
theory, i.e. δ7(TP3) = δ5(TP3) + δ12(TP3).

4.2.2. Solution of the transmitted four-shock configuration
For the transmitted four-shock configuration depicted in figure 15(b), the match conditions
across the SL3 are written as

( p13/p12)( p12/p5)( p5/p0′) = p7/p0′
δ5(TP3) ± δ12(TP3) ± δ13(TP3) = δ7(TP3)

}
. (4.18a,b)

In addition to the equations governing the transmitted triple-shock configuration, it is
necessary to supplement the shock relations across TS3. Besides, considering that the
leading shock front of the incident triple-shock configuration has just passed through the
interface and the length of TS2 is limited, it is reasonable to assume that TS2 is straight.
The shock angle β12(TP3) can subsequently be derived as

β12(TP3) = α(TS2) +
(π

2
− χ1 − δ5(TP3)

)
, (4.19)

where α(TS2) denotes the angle of TS2 with respect to the x-axis direction.
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Figure 15. Schematics of the transmitted wave configurations and their corresponding shock polar
representations: (a) triple-shock configuration; (b) four-shock configuration; (c) four-wave configuration. The
solid points represent the solution points, and the hollow circles denote the sonic points.

984 A49-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.245


E. Zhang, S. Liao, L. Zou, Z. Zhai, J. Liu and X. Li

Figure 15(b) illustrates the shock-polar solution of the transmitted four-shock
configuration, which is drawn precisely by solving the flow properties resulting from
the triple-shock refraction at a N2–Kr interface. region (0′) is represented by the origin,
where p = p0′ and δ0′(TP3) = 0. The oncoming flow shock polar is determined by
M0′(TP3) = 2.59, γ0′ = 1.661. Points (5) lies on the oncoming flow shock polar at the
locations δ5(TP3) = 21.56◦. With the pressure ratio p5/p0′ = 3.82 fixed, the flow Mach
number in region (5) is determined to be 1.52, and the shock polar for region (5) can
be drawn originating from point (5). The shock polar for region (5) intersects with the
subsonic branch of the oncoming flow shock polar, thereby yielding a standard solution
of the three-shock theory. However, the non-physical nature of this triple-shock solution
arises from the fact that the pressure ratio p7/p0, determined by the primary refraction
of MS2, suggests that point (7) should lie on the supersonic branch of the oncoming
flow shock polar. As a result, a reflection involving a triple-shock solution is unfeasible.
Instead, a four-shock theory should be employed here, taking into account the fourth shock
wave that emanates between the shock TS2 and the slipstream SL3. Considering that the
pressures are equal and the flow streams are parallel in regions (7) and (13), it follows that
points (7) and (13) must coincide at the intersection of the oncoming flow shock polar and
the shock polar for region (12). Therefore, point (12) and its corresponding shock polar
can be determined by originating from a specific point on the shock polar for region (5).
Points (7) and (13) on the shock polar diagram share a pressure ratio of 5.18, which agrees
the numerical value of 5.15.

4.2.3. Solution of the transmitted four-wave configuration
For the transmitted four-wave configuration shown in figure 15(c), the match conditions
across SL3 are written as

( p13/p12)( p12/p5)( p5/p0′) = p7/p0′
δ5(TP3) + δ12(TP3) + δ13(TP3) = δ7(TP3)

}
. (4.20a,b)

In addition to the relations governing the transmitted triple-shock configuration, it is
necessary to supplement the Prandtl–Meyer conservation relations across EW.

The shock-polar solution of the four-wave configuration transmitted into SF6 is depicted
in figure 15(c). Point (5) is on the M0′(TP3) = 3.76, γ0′ = 1.094 oncoming flow shock
polar at the location δ5(TP3) = 21.56◦. The region (5) shock polar intersects the subsonic
branch of the oncoming flow shock polar at two points, providing two triple-shock
solutions. However, these two solution points are both non-physical, since the pressure
ratio p7/p0, determined by the primary refraction of MS2, suggests that point (7) should
lie on the supersonic branch of the oncoming flow shock polar. regions (13) and (12) are
connected by a weak Prandtl–Meyer expansion fan since the flow in region (12) is slightly
underexpanded with respect to the flow in region (7). The solution points (7) and (13)
lie on the intersection of the isentropic expansion path originating from point (12) and
the oncoming flow shock polar. Points (7) and (13) on the shock polar diagram share a
pressure ratio of 5.41, which agrees reasonably well with the value of 5.35 from numerical
simulation. Note that points (7) and (13) are located on the supersonic branch of the
oncoming flow shock polar, while point (12) lies on the supersonic branch of the shock
polar for region (5). The shock-polar solution reveals that the flow regions (7), (12) and
(13) are supersonic in the frame of reference attached to TP3, indicating that this four-wave
configuration is distinct from both the Vasilev reflection characterized by two subsonic
regions near the triple point and the Guderley reflection featuring one subsonic region
near the triple point (Vasilev et al. 2008).
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4.3. Application and validation of the analytical model
In §§ 4.1 and 4.2, the triple-shock refraction process is divided into five subprocesses,
and the flow fields associated with these subprocesses are solved separately, and their
corresponding analytical models are developed. In this subsection, the entire set of
analytical model equations will be solved in combination to determine the wave angles
and the flow properties. These analytical results are validated against the numerical
simulations. By utilizing the flow properties derived from the analytical model, we
aim to quantitatively assess the contributions of triple-shock refraction to the evolution
of interface. Furthermore, a shock-polar analysis is carried out for each of the three
transmitted wave configurations to gain physical insights into the mechanisms that
determine the pattern of the transmitted wave.

4.3.1. Analytical quantification of the circulation deposition and velocity perturbation
The morphology of the interface immediately after the triple-shock refraction, as
illustrated in figure 16(a), can be divided into three distinct segments labelled as I, II
and III. The central segment I, which represents the interface accelerated by MS2, exhibits
relative isolation due to its enclosure within SL3. The outer segment II is characterized by
the acceleration of MS1, and it is matched with the central segment I by an inner segment
III that undergoes successive accelerations of both MS1 and RS5. Note that the outward
propagation of RS5 will lead to a rapid increase in the length of the segment III, while
the segment II will undergo significant shrinkage. As noted in our pervious works (Zou
et al. 2017; Liao et al. 2019), the velocity difference between segments I and III serves as
the velocity perturbation, which is responsible for the formation of the central interface
cavity. Therefore, it is imperative to conduct a comprehensive theoretical assessment of
this velocity perturbation. In addition to the velocity perturbation, baroclinic vorticity
typically acts as another governing factor influencing interface evolution. However, Zou
et al. (2017, 2019) stated that vorticity deposited on the interface is limited due to
the small incidence angle of the leading shock front. Liao et al. (2019) also reported
that the influence of baroclinic circulation becomes prominent only in cases with high
incident shock Mach numbers. Qualitative analysis in § 3.2.1 suggests that the relatively
insignificant contribution of baroclinic circulation may be attributed to the secondary
refraction of RS5, which partially suppresses the baroclinic vorticity on the interface. The
present subsection aims to quantitatively assess the relative contribution of the secondary
refraction to the vorticity deposition.

Note that the incident triple-shock configuration is unsteady, and its strength and
incidence angle vary continuously during the triple-shock refraction, significantly
complicating the calculation of the velocity perturbation and circulation deposition.
However, since the triple-shock refraction occurs over an extremely short period, the shock
Mach number and the incidence angle involved are assumed to be invariant. Besides,
considering the limited length of segment III immediately following the triple-shock
refraction, it is reasonable to assume a uniform flow field along this particular segment.
Under these two assumptions, the flow fields across the segments I, II and III can be solved
theoretically. The input data for the theoretical analysis consists of shock front parameters,
including the shock Mach number and incidence angle (as depicted in figure 5), along with
the state parameters of gases on both sides of the interface. The initial solution involves
solving the primary refractions of MS1 and MS2 at the initial interface for segments I and
II, respectively, followed by addressing the secondary refraction of RS5 for segment III.

The triple-shock refraction at a N2–Kr interface is selected to demonstrate the
shock-polar solution of the successive refractions of MS1 and RS5, as depicted in
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Figure 16. Schematic diagram of the morphology of the interface immediately after triple-shock refraction
(a) and the imparted longitudinal velocity (b) and deposited circulation along the interface (c). Here, Vn,N ,
Vn,A and Vn,PR represent the longitudinal velocity of the interface calculated through numerical simulations,
predicted by the analytical model, and obtained from theoretical evaluation results that only consider the
primary refraction of the leading shock front, respectively. Here Γ ′

N , Γ ′
A and Γ ′

SZ denote the CUPL obtained
from numerical simulations, analytical model predictions and SZ model predictions, respectively.

figure 17. This figure presents an appropriate combination of the shock polars depicted
in figures 9(b), 11(b), 13(b) and 14(b). Correspondingly, the shock polars can be classified
into four groups, denoted as 1©, 2©, 3© and 4©, respectively. The shock polars of group 1©
represent the solution of the regular refraction of MS1 at the initial interface. This solution
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Figure 17. Shock polars illustrating the successive refractions of MS1 and RS5 at a N2–Kr interface. The
solid points represent the solution points, and the hollow circles denote the sonic points.

is derived from a frame of reference attached to IP1, with the origin labelled as (0) and
(0′) at δ = −90◦, p = p0. The shock polars of group 2© correspond to the characterization
of the incident triple-shock configuration. Since the incident triple-shock configuration
is solved from a frame of reference attached to TP1, the origin of the shock polars of
group 2© (labelled as (0)) is located at δ = χ , p = p0. The shock polars of group 3©
represent the solution of the shock–shock interaction between RS2 and RS3. This solution
is derived from a frame of reference attached to IP3, with its origin labelled as (1) located at
δ = 90◦ + χ2, p = p1. It should be noted that the pressures in regions (2) and (4) remain
unchanged regardless of the chosen frame of reference. It is also noticed that points (2)
and (4) on the shock polars of group 3© are determined by solutions obtained from shock
polars of groups 1© and 2©. Therefore, points (2) and (4) of group 3© are bridged with the
corresponding points on shock polars of groups 1© and 2© through the constant p2 line and
constant p4 line, respectively, as indicated by horizontal red dashed lines in figure 17. The
shock-polar solution of the secondary refraction of RS5 is illustrated by the shock polars
of group 4©. Points (4) and (5) serve as the origin of shock polars of group 4©, which
represents the flow states on both sides of m′, and are bridged with points (4) and (5) on
the shock polars of group 1© by the constant p4 line. Point (8) on shock polars of group
4© represents the flow state behind the shock RS5 in the incident gas and is bridged with

point (8) on shock polars of group 3© by the constant p8 line. Finally, the determination of
flow states (10) and (12) on both sides of m′′, relies on identifying the intersection point
between shock polars for regions (8) and (5) within group 4©.

Once the flow properties of regions across the postshock interface (i.e. regions (4),
(5), (6), (7), (10) and (12) in figure 6d) are determined, the CPUL deposited on the
interface can be evaluated using (4.8) and (4.15). Regarding the evaluation of the velocity
perturbation, the longitudinal velocities of the gases differ across an inclined interface.
Therefore, Vn is employed to denote the longitudinal velocity of the interface, which is
calculated by Vn = (ulight + uheavy)/2 with ulight (uheavy) representing the velocity of the
light (heavy) gas in the x-axis direction in close proximity to the interface. Additionally,
Vp = (Vn,I − Vn,III) defines the velocity perturbation of the interface, where Vn,I and
Vn,III correspond to characteristic longitudinal velocities of the segments I and III. In this
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Gas Vp,N Vp,A Vp,PR RV,SR Γ ′
III,N Γ ′

III,A Γ ′
III,SZ RΓ ′,SR

combination (m s−1) (m s−1) (m s−1) (%) (m s−1) (m s−1) (m s−1) (%)

N2–air 28.6 28.9 94.4 −69.4 0.2 0.1 1.9 −94.7
N2–CO2 23.9 23.5 88.3 −73.4 1.1 0.7 22.6 −96.0
N2–Kr 18.1 17.8 71.1 −70.8 11.9 11 46.6 −76.4
N2–SF6 15.1 15.5 65.3 −76.3 12.1 10.2 63.2 −83.8

Table 2. The velocity perturbation and CPUL of the interface resulting from the triple-shock refraction at four
distinct interfaces. Here, Vp,N , Vp,A, and Vp,PR represent the velocity perturbations of the interface calculated
through numerical simulations, predicted by the analytical model, and obtained from theoretical evaluations
that only consider the primary refraction of the leading shock front, respectively. Here Γ ′

III,N , Γ ′
III,A and Γ ′

III,SZ
denote the CPUL of the interface obtained from numerical simulations, analytical model predictions and SZ
model predictions, respectively. Here RV,SR and RΓ ′,SR (%), respectively, represent the relative contributions
of the secondary shock refraction of RS5 to the velocity perturbation and circulation deposition.

context, the characteristic velocity for the segment I is determined as the longitudinal
velocity of the centre of segment I, while for the segment III, it is determined by the
longitudinal velocity of the segment III near its intersection with the segment I.

The longitudinal velocity distribution resulting from the triple-shock refraction at four
distinct interfaces is analytically evaluated and validated against the numerical results,
as illustrated in figure 16(b). Additionally, to highlight the contribution of the secondary
refraction of RS5, theoretical evaluations considering only the primary refraction of the
leading shock front (i.e. MS1 and MS2) are also presented for comparison. Overall, the
analytical results agree well with numerical counterparts across a wide range of initial
conditions. The results show that the longitudinal velocity of the interface increases
monotonically from IP3 along the segment II due to the enhancement of MS1. Notably, the
segment I exhibits a greater longitudinal velocity compared with both the segments II and
III due to the relatively stronger MS2, validating the qualitative analysis in § 3.2.1. Another
remarkable feature is that the segment III acquires a substantial longitudinal velocity
through the secondary shock refraction, effectively inhibiting the velocity perturbation
of the interface. The velocity perturbations are computed and presented in table 2, and
a good agreement between the analytically and numerical values is reached. Note that
the velocity perturbations of the interface exhibit a monotonic decrease as Zr increases.
This observation provides an explanation for the decrease in growth rate of interface
perturbation amplitude with increasing Atwood number, as reported by Liao et al. (2019).
To quantitatively assess the relative contribution of the secondary shock refraction to
the velocity perturbation, we define RV(= (Vp,A − Vp,PR)/Vp,PR × 100 %) as the ratio
between the velocity perturbation inhibited by the secondary shock refraction and that
induced by the primary shock refraction. As demonstrated in table 2, the velocity
perturbation of the interface is significantly influenced by the secondary shock refraction
(i.e. the value of |RV,SR| is greater than 69.4 % for all the cases). Therefore, when
estimating the velocity perturbation of the interface induced by a non-uniform shock with
inherent triple-shock configurations, the contribution of reflected shocks travelling behind
the leading shock front cannot be ignored.

The CPUL of the four distinct interfaces resulting from the triple-shock refraction is
analytically evaluated and compared with both the numerical results and the predictions
of the SZ model. As illustrated in figure 16(c), the analytical results exhibit satisfactory
agreement with those obtained from numerical simulations. However, the SZ model
overpredicts the CPUL of the segment III, because it does not consider the secondary
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refraction of RS5. The CPUL of the segment II displays a positive correlation with the
increase in Zr, which can be attributed to the corresponding rise in density gradient
across the interface. It is noteworthy that upon encountering the interface, MS3 refracts
nearly perpendicularly, generating limited vorticity on the segment I. Besides, the CPUL
of the segment II exhibits a monotonic decrease from IP3, primarily attributed to the
reduction in incidence angle of MS1 along this segment. The CPUL of the segment III is
extracted from figure 16(c) and presented in table 2. To quantitatively evaluate the relative
contribution of the secondary shock refraction to the vorticity deposition, we define
RΓ ′,SR(= (Γ ′

III,A − Γ ′
III,SZ)/Γ ′

III,SZ × 100 %) as the ratio between the CPUL suppressed
by the secondary shock refraction and that deposited by the primary shock refraction.
As demonstrated in table 2, the secondary shock refraction significantly contributes to
the circulation of the interface (i.e. the value of |RΓ ′,SR| is greater than 76.4 % for
all the cases). This observation sheds light on the underlying mechanism of a puzzling
phenomenon, namely the relatively insignificant contribution of vorticity to the RM-like
instability (Liang et al. 2017; Zou et al. 2017; Liao et al. 2019; Zou et al. 2019).

4.3.2. Analytical prediction of the transmitted wave configuration
The shock polar solution of the transmission of the incident triple-shock configuration
at a N2–air interface is shown in figure 18(a), with numbered regions corresponding to
figure 6(d). The shock polars can be categorized into three groups, denoted as 1©, 2© and
3©, respectively. The shock polars of group 1© represent the solution of the refraction of

MS2 at the initial interface, while those of group 2© depict the solution of the refraction
of MS1. The solutions for these two primary shock refractions are derived from frames of
reference attached to their corresponding shock–interface intersection points, which move
in the negative y-axis direction. Therefore, the origins of the shock polars of group 1© and
2© labelled as (0) and (0′), respectively, are located at δ = −90◦, p = p0. The shock polars

of group 3© represent the solution of the transmitted triple-shock configuration, which is
derived from a frame of reference attached to TP3. Therefore, the origin of the shock polars
of group 3© is located at δ = χ1, p = p0. Note that the shock polars of groups 1© and 2©
are solved in frames of reference with higher velocities compared with that of group 3©.
Consequently, the shock polars for region (0′) in groups 1© and 2© are larger than that for
region (0′) of group 3©. The pressures in zones (5) and (7) remain unchanged regardless
of the chosen frame of reference. Therefore, the shock polar for region (0′) of group 1© is
bridged with that of group 3© through the constant p7 line. Similarly, the shock polar for
region (0′) of group 2© is bridged with that of group 3© through the constant p5 line. These
two bridge lines are shown as horizontal red dashed lines in figure 18(a). It is evident that
the shock polars for region (5) and (0′) of group 3© intersect at their subsonic branches,
resulting in a non-standard triple-shock solution. Therefore, the flows of regions (7) and
(12) are subsonic in the vicinity of TP3.

In general, the shock polar solution of the transmission of the incident triple-shock
configuration at a N2–Kr interface exhibits similar characteristics to that for the case of
a N2–air interface, with discrepancies observed only in the shock polars of group 3©.
As illustrated in figure 18(b), point (7) is located on the supersonic branch of the shock
polar for region (0′) of group 3©, while the shock polar for region (5) lies below that for
region (0′). There is no intersection between the shock polars for regions (5) and (0′) of
group 3©, indicating the absence of a triple-shock solution. Instead, a four-shock solution is
obtained, where the shock polar originating from point (12) bridges a supersonic state on
the shock polar for regions (0′) at point (7) with another supersonic state on the shock
polar for region (5). Consequently, both flows in regions (7), (12) and (13) are found
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Figure 18. Shock-polar solution of the transmission of the incident triple-shock configuration at (a) a N2–air
interface, (b) a N2–Kr interface and (c) a N2–SF6 interface. The solid points represent the solution points, and
the hollow circles denote the sonic points.
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Figure 19. Comparison of trajectories of TP2, TP3 and IP3 between analytical (lines) and numerical
(symbols) results.

to be supersonic near TP3. The transmitted four-shock configuration, obtained through
numerical simulations and experiments, is illustrated in figure 7. A weak shock TS2
bridges the flows in regions (12) and (13) whose conditions are sufficient to support a
shock.

The shock polar diagram for the case of a N2–SF6 interface is presented in figure 18(c).
Point (7) remains on the supersonic branch of the shock polar for region (0′) of group 3©,
but the shock polar for region (5) is now positioned above the shock polar for region (0′),
indicating the absence of a triple-shock solution. The shock-polar combinations shown
in group 3© of figure 18(c) are obtained from an alternative four-wave solution. In this
solution, an isentropic expansion path originates from point (12) on the shock polar for
region (5) and intersects with the shock polar for regions (0′) below its sonic point.
Therefore, in the frame of reference attached to TP3, the flows of regions (7), (12) and
(13) are both supersonic near TP3. The numerically obtained four-wave configuration is
depicted in figure 7(c). Notably, the presence of a Prandtl–Meyer expansion fan connecting
the supersonic flow states in regions (12) and (13), distinguishes this wave configuration
from the four-wave configurations predicted by Vasilev et al. (2008).

The accurate prediction of the trajectories of TP3 and IP3 is essential for studying
the triple-shock refraction. Figure 19 compares the trajectories of TP3 and IP3 between
analytical and numerical results. The trajectory of TP2 is also provided to emphasize
its trajectory alteration upon encountering the interface. Notably, upon crossing the
interface, the trajectory of the triple point undergoes a deflection towards the interface.
This deflection becomes more apparent as Zr increases. Consequently, with an increase
in Zr, a significant decrease is observed in the shock angle (β7(TP3)) of the transmitted
Mach stem (MS3) in the frame of reference attached to TP3. Simultaneously, there is
a corresponding increase in the oncoming flow Mach number (M0′(TP3)) upstream of
the transmitted triple-shock configuration. The above analysis elucidates the underlying
mechanism governing the disappearance of subsonic flow regions in the vicinity of TP3
as Zr increases, which is responsible for the formation of both the transmitted four-shock
configuration and four-wave configuration.

Comparison of wave configurations immediately after the triple-shock refraction
between the analytical predictions and numerical simulations is provided in figure 20.
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Figure 20. Comparison of wave configurations between analytical predictions (denoted by dashed lines) and
numerical simulations.

The analytical wave configurations are denoted by dashed lines overlaid on the numerical
schlieren images. The analytical model demonstrates exceptional capability in accurately
predicting the configurations of transmitted waves. Consequently, the developed analytical
model can also be utilized to assess the propagation of reverberation waves between
interfaces in the case of RMI involving multiple interfaces.

As a final remark, the incident triple-shock configuration and initial interface examined
in this paper are limited, which may not uncover all potential wave configurations,
particularly those associated with irregular shock refraction and interaction. For each
of the three patterns of triple-shock refraction identified in this paper, the shock-polar
analysis provides information about the detailed wave configurations, and make it possible
to identify the configuration of the transmitted waves. Furthermore, the different patterns
of triple-shock refraction predicted by the shock polars are all verified experimentally and
numerically. However, the criteria for determining which of those configurations will occur
have not yet been established, but are the subject of ongoing research.

5. Conclusions

The refraction of an incident triple-shock configuration at planar fast–slow gas interfaces
is investigated in this work. The incident triple-shock configuration is generated by
diffracting a planar shock around a rigid cylinder, and four planar interfaces (N2–air,
N2–Kr, N2–CO2 and N2–SF6) with varying acoustic impedance ratio (Zr) being
considered. The primary objective is to reveal the wave patterns and clarify the
mechanisms that govern the deposition of circulation and velocity perturbation induced
by triple-shock refraction.

The wave configurations associated with triple-shock refraction are investigated through
shock tube experiments and numerical simulations. Depending on Zr, an incident
triple-shock configuration can be transmitted as either a triple-shock configuration,
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a four-wave configuration or a four-shock configuration. To the authors’ knowledge,
such a four-shock configuration has not been previously reported. Subsequently, an
analytical model describing triple-shock refraction is developed for the first time based
on a gas dynamics approach. The analytical model demonstrates its capability in
accurately predicting the resulting wave configurations from triple-shock refraction. Shock
polar analysis reveals fundamental differences between the aforementioned four-wave
configuration and those distinguished in Guderley reflection and Valisev reflection. Of
great interest, the trajectory of the triple point exhibits a notable deflection towards the
interface upon crossing it. Furthermore, a more pronounced deflection is observed for
a larger Zr, leading to a decrease in the shock angle of the transmitted Mach stem and
simultaneously increasing upstream flow Mach number. This elucidates the underlying
mechanism governing the disappearance of subsonic flow regions in the vicinity of the
transmitted triple point as Zr increases, which is responsible for the formation of both the
transmitted four-shock and four-wave configurations.

One of the most significant contributions of this study is providing novel physical
insights into the contributions of triple-shock refraction to the interface perturbation
growth. The present investigation reveals that the reflected shock in an incident
triple-shock configuration makes a significant negative contribution to both circulation
deposition and velocity perturbation. Consequently, in cases of RM-like instability induced
by a non-uniform shock with inherent triple-shock configurations, both the leading shock
front and the reflected shocks travelling transversely behind it play crucial roles in
the perturbation growth of the interface. This investigation sheds light on a puzzling
phenomenon: the relatively insignificant contribution of baroclinic circulation to RM-like
instability. Besides, this investigation also elucidates the underlying mechanism governing
the reduction in growth rate of interface perturbation amplitude with increasing Atwood
number. These findings are believed to be valuable for enhancing understanding and
modelling of the RM-like instability.

Funding. This work was supported by the National Natural Science Foundation of China (nos. 12102407,
92052108, 91952205 and 12022201) and China Academy of Engineering Physics (CAEP) under grant
no. YZJJLX2019001.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Enlai Zhang https://orcid.org/0000-0003-0066-7203;
Liyong Zou https://orcid.org/0000-0003-2702-1816;
Zhigang Zhai https://orcid.org/0000-0002-0094-5210.

REFERENCES

ABD-EL-FATTAH, A.M. & HENDERSON, L.F. 1978a Shock waves at a fast-slow gas interface. J. Fluid Mech.
86 (1), 15–32.

ABD-EL-FATTAH, A.M. & HENDERSON, L.F. 1978b Shock waves at a slow-fast gas interface. J. Fluid Mech.
89 (1), 79–95.

ABD-EL-FATTAH, A.M., HENDERSON, L.F. & LOZZI, A. 1976 Precursor shock waves at a slow-fast gas
interface. J. Fluid Mech. 76 (1), 157–176.

ANDERSON, J.D. JR. 2001 Fundamentals of Aerodynamics, 3rd edn. McGraw-Hill.
ARNETT, W.D., BAHCALL, J.N. & KIRSHNER, R.P. 1989 Supernova 1987A. Annu. Rev. Astron. Astrophys.

27, 629–700.
BAI, C. & WU, Z. 2022 Type IV shock interaction with a two-branch structured transonic jet. J. Fluid Mech.

941, A45.
BEN-DOR, G. 2007 Shock Wave Reflection Phenomena, 2nd edn. Springer.
BETTI, R. & HURRICANE, O.A. 2016 Inertial-confinement fusion with lasers. Nat. Phys. 12, 435–448.

984 A49-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-0066-7203
https://orcid.org/0000-0003-0066-7203
https://orcid.org/0000-0003-2702-1816
https://orcid.org/0000-0003-2702-1816
https://orcid.org/0000-0002-0094-5210
https://orcid.org/0000-0002-0094-5210
https://doi.org/10.1017/jfm.2024.245


E. Zhang, S. Liao, L. Zou, Z. Zhai, J. Liu and X. Li

BROUILLETTE, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445–468.
BROWN, J.L. & RAVICHANDRAN, G. 2014 Analysis of oblique shock waves in solids using shock polars.

Shock Waves 24, 403–413.
BRYSON, A.E. & GROSS, R.W.F. 1961 Diffraction of strong shocks by cones, cylinders, and spheres. J. Fluid

Mech. 10, 1–16.
CHAUDHURI, A., HADJADJ, A. & CHINNAYYA, A. 2011 On the use of immersed boundary methods for

shock/obstacle interactions. J. Comput. Phys. 230, 1731–1748.
COLELLA, P. & HENDERSON, L.F. 1990 The von Neumann paradox for the diffraction of weak shock waves.

J. Fluid Mech. 213, 71–94.
GARDNER, J.H., BOOK, D.L. & BERNSTEIN, I.B. 1982 Stability of imploding shocks in the CCW

approximation. J. Fluid Mech. 114, 41–58.
GOUNKO, Y.P. 2017 Patterns of steady axisymmetric supersonic compression flows with a Mach disk. Shock

Waves 27, 495–506.
DE GOUVELLO, Y., DUTREUILH, M., GALLIER, S., MELGUIZO-GAVILANES, J. & MEVEL, R. 2021 Shock

wave refraction patterns at a slow-fast gas-gas interface at superknock relevant conditions. Phys. Fluids 33,
116101.

GUDERLEY, K.G. 1947 Considerations on the structure of mixed subsonic-supersonic flow patterns. Tech. Rep.
Air Materiel Command Technical Report No. F-TR-2168-ND, ATI No. 22780. GS-AAF-Wright Field No.
39. U.S. Wright–Patterson Air Force Base.

HAWLEY, J.F. & ZABUSKY, N.J. 1989 Vortex paradigm for shock-accelerated density-stratified interfaces.
Phys. Rev. Lett. 63 (12), 1241–1244.

HE, Y., PENG, N., LI, H., TIAN, B. & YANG, Y. 2023 Formation of the cavity on a planar interface subjected
to a perturbed shock wave. Phys. Rev. Fluids 8, 063402.

HENDERSON, L.F. 1966 The refraction of a plane shock wave at a gas interface. J. Fluid Mech. 26, 607–637.
HENDERSON, L.F. 1989 On the refraction of shock waves. J. Fluid Mech. 198, 365–386.
HENDERSON, L.F. 2014 The refraction of shock pairs. Shock Waves 24, 553–572.
HENDERSON, L.F. & SIEGENTHALER, A. 1980 Experiments on the diffraction of weak blast waves: the von

Neumann paradox. Proc. R. Soc. Lond. A 369, 537–555.
HONG, L., BIN, Y., BIN, Z. & YANG, X. 2022 On mixing enhancement by secondary baroclinic vorticity in

a shock-bubble interaction. J. Fluid Mech. 931, A17.
ISHIZAKI, R. & NISHIHARA, K. 1997 Propagation of a rippled shock wave driven by nonuniform laser

ablation. Phys. Rev. Lett. 78 (10), 1920–1923.
ISHIZAKI, R., NISHIHARA, K., SAKAGAMI, H. & UESHIMA, Y. 1996 Instability of a contact surface driven

by a nonuniform shock wave. Phys. Rev. E 53 (6), R5592–R5595.
JAHN, R.G. 1956 The refraction of shock waves at a gaseous interface. J. Fluid Mech. 1 (5), 457–489.
JI, J., LI, Z., ZHANG, E., SI, D. & YANG, J. 2022 Intensification of non-uniformity in convergent near-conical

hypersonic flow. J. Fluid Mech. 931, A8.
JONES, M.A. & JACOBS, J.W. 1997 A membraneless experiment for the study of Richtmyer–Meshkov

instability of a shock-accelerated gas interface. Phys. Fluids 9, 3078–3085.
LAU-CHAPDELAINE, S.S.M. & RADULESCU, M.I. 2016 Viscous solution of the triple-shock reflection

problem. Shock Waves 26, 551–560.
LI, D., GUAN, B. & WANG, G. 2022b Effects of interface diffusion and shock strength on shock-accelerated

SF6 cylinder. Phys. Fluids 34, 076109.
LI, D., WANG, G. & GUAN, B. 2019 On the circulation prediction of shock-accelerated elliptical heavy gas

cylinders. Phys. Fluids 31, 056104.
LI, J., DING, J., LUO, X. & ZOU, L. 2022a Instability of a heavy gas layer induced by a cylindrical convergent

shock. Phys. Fluids 34, 042123.
LI, Y., SAMTANEY, R. & WHEATLEY, V. 2018 The Richtmyer–Meshkov instability of a double-layer interface

in convergent geometry with magnetohydrodynamics. Matt. Radiat. Extremes 3, 207–218.
LIANG, Y., DING, J., ZHAI, Z., SI, T. & LUO, X. 2017 Interaction of cylindrically converging diffracted

shock with uniform interface. Phys. Fluids 29, 086101.
LIAO, S., ZHANG, W., CHEN, H., ZOU, L., LIU, J. & ZHENG, X. 2019 Atwood number effects on the

instability of a uniform interface driven by a perturbed shock wave. Phys. Rev. E 99, 013103.
LINDL, J.D., AMENDT, P., BERGER, R.L., GLENDINNING, S.G. & GLENZER, S.H. 2004 The physics basis

for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11 (2), 339–491.
LIU, H., YU, B., CHEN, H., ZHANG, B. & LIU, H. 2020 Contribution of viscosity to the circulation

deposition in the Richtmyer–Meshkov instability. J. Fluid Mech. 895, A10.
LODATO, G., VERVISCH, L. & CLAVIN, P. 2016 Direct numerical simulation of shock wavy-wall interaction:

analysis of cellular shock structures and flow patterns. J. Fluid Mech. 789, 221–258.

984 A49-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.245


Refraction of a triple-shock configuration

MESHKOV, E.E. 1969 Instability of a shock wave accelerated interface between two gases. Fluid Dyn. 4,
101–104.

MOSTERT, W., PULLIN, D.I., SAMTANEY, R. & WHEATLEY, V. 2018a Singularity formation on perturbed
planar shock waves. J. Fluid Mech. 846, 536–562.

MOSTERT, W., PULLIN, D.I., SAMTANEY, R. & WHEATLEY, V. 2018b Spontaneous singularity formation
in converging cylindrical shock waves. Phys. Rev. Fluids 3, 071401.

NISHIHARA, K., WOUCHUK, J.G., MATSUOKA, C., ISHIZAKI, R. & ZHAKHOVSKY, V.V. 2010
Richtmyer–Meshkov instability: theory of linear and nonlinear evolution. Phil. Trans. R. Soc. A 368,
1769–1807.

NOURGALIEV, R.R., SUSHCHIKH, S.Y., DINH, T.N. & THEOFANOUS, T.G. 2005 Shock wave refraction
patterns at interfaces. Intl J. Multiphase Flow 31, 969–995.

OLEJNICZAK, J., WRIGHT, M.J. & CANDLER, G.V. 1997 Numerical study of inviscid shock interactions on
double-wedge geometries. J. Fluid Mech. 352, 1–25.

PELLONE, S., STEFANO, C.A.D., RASMUS, A.M., KURANZ, C.C. & JOHNSEN, E. 2021 Vortex-sheet
modeling of hydrodynamic instabilities produced by an oblique shock interacting with a perturbed interface
in the HED regime. Phys. Plasmas 28, 022303.

PENG, G., ZABUSKY, N.J. & ZHANG, S. 2003 Vortex-accelerated secondary baroclinic vorticity deposition
and late-intermediate time dynamics of a two-dimensional Richtmyer–Meshkov interface. Phys. Fluids
15 (12), 3730–3744.

PENG, N., YANG, Y., WU, J. & XIAO, Z. 2021 Mechanism and modelling of the secondary baroclinic
vorticity in the Richtmyer–Meshkov instability. J. Fluid Mech. 911, A56.

POLACHEK, H. & SEEGER, R.J. 1951 On shock-wave phenomena-refraction of shock waves at a gaseous
interface. Phys. Rev. 84, 922–929.

REN, Z., WANG, B., XIANG, G., ZHAO, D. & ZHENG, L. 2019 Supersonic spray combustion subject to
scramjets: progress and challenges. Prog. Aeronaut. Sci. 105, 40–59.

RICHTMYER, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl.
Maths 13, 297–319.

SAMTANEY, R. & ZABUSKY, N.J. 1994 Circulation deposition on shock-accelerated planar and curved
density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 45–78.

SKEWS, B.W. & ASHWORTH, J.T. 2005 The physical nature of weak shock wave reflection. J. Fluid Mech.
542, 105–114.

SMALYUK, V.A. et al. 2020 Review of hydrodynamic instability experiments in inertially confined fusion
implosions on National Ignition Facility. Plasma Phys. Control Fusion 62, 014007.

SUN, M. & TAKAYAMA, K. 1999 Conservative smoothing on an adaptive quadrilateral grid. J. Comput. Phys.
150, 143–180.

SUN, M. & TAKAYAMA, K. 2003 Vorticity production in shock diffraction. J. Fluid Mech. 478, 237–256.
TAUB, A.H. 1947 Refraction of plane shock waves. Phys. Rev. 72, 51–60.
THOMAS, V.A. & KARES, R.J. 2012 Drive asymmetry and the origin of turbulence in an ICF implosion.

Phys. Rev. Lett. 109, 075004.
TORO, E.F. 2009 The MUSCL-Hancock method. In Riemann Solvers and Numerical Methods for Fluid

Dynamics, 3rd edn, pp. 429–432. Springer.
VASILEV, E.I. 1999 Four-wave scheme of weak Mach shock wave interaction under von Neumann paradox

conditions. Fluid Dyn. 34, 421–427.
VASILEV, E.I., ELPERIN, T. & BEN-DOR, G. 2008 Analytical reconsideration of the von Neumann paradox

in the reflection of a shock wave over a wedge. Phys. Fluids 20, 046101.
VELIKOVICH, A.L. 2000 Richtmyer–Meshkov-like instabilities and early-time perturbation growth in laser

targets and Z-Pinch loads. Phys. Plasmas 7 (5), 1662–1671.
VELIKOVICH, A.L., SCHMITT, A.J., ZULICK, C., AGLITSKIY, Y., KARASIK, M., OBENSCHAIN, S.P.,

WOUCHUK, J.G. & COBOS CAMPOS, F. 2020 Multi-mode hydrodynamic evolution of perturbations
seeded by isolated surface defects. Phys. Plasmas 27, 102706.

VON NEUMANN, J. 1943 Oblique reflection of shock. Tech. Rep. Explos. Res. Rep. 12. Navy Department,
Bureau of Ordinance, Washington, DC.

VON NEUMANN, J. 1945 Refraction, intersection and reflection of shock waves. Tech. Rep. NAVORD Rep.
203–245. Navy Department, Bureau of Ordinance, Washington, DC.

WAN, Q., JEON, H., DEITERDING, R. & ELIASSON, V. 2017 Numerical and experimental investigation of
oblique shock wave reflection off a water wedge. J. Fluid Mech. 826, 732–758.

WANG, H. & ZHAI, Z. 2020 On regular reflection to Mach reflection transition in inviscid flow for shock
reflection ona convex or straight wedge. J. Fluid Mech. 884, A27.

984 A49-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.245


E. Zhang, S. Liao, L. Zou, Z. Zhai, J. Liu and X. Li

WANG, H., ZHAI, Z. & LUO, X. 2022 Prediction of triple point trajectory on two-dimensional unsteady shock
reflection over single surfaces. J. Fluid Mech. 947, A42.

WHITE, D.R. 1952 An experimental survey of the Mach reflection of shock waves. PhD thesis, Princeton
University.

XIANG, G. & WANG, B. 2019 Theoretical and numerical studies on shock reflection at water/air two-phase
interface: fast-slow case. Intl J. Multiphase Flow 114, 219–228.

YANG, J., KUBOTA, T. & ZUKOSKI, E.E. 1994 A model for characterization of a vortex pair formed by shock
passage over a light-gas inhomogeneity. J. Fluid Mech. 258, 217–244.

YANG, X., CHERN, I., ZABUSKY, N.J., SAMTANEY, R. & HAWLEY, J.F. 1992 Vorticity generation and
evolution in shock-accelerated density-stratified interfaces. Phys. Fluids A 4, 1531–1540.

YANG, Y., LI, S. & WU, Z. 2013 Shock reflection in the presence of an upstream expansion wave and a
downstream shock wave. J. Fluid Mech. 735, 61–90.

ZABUSKY, N.J. 1999 Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the
Rayleigh–Taylor and Richtmyer–Meshkov environments. Annu. Rev. Fluid Mech. 31, 495–536.

ZASLAVSKY, B.I. & SAFAROV, P.A. 1975 Mach reflection of weak shock waves from a rigid wall. J. Appl.
Mech. Tech. Phys. 14 (5), 624–629.

ZHAI, Z., LI, W., SI, T., LUO, X., YANG, J. & LU, X. 2017 Refraction of cylindrical converging shock wave
at an air/helium gaseous interface. Phys. Fluids 29, 016102.

ZHAI, Z., LIANG, Y., LIU, L., DING, J., LUO, X. & ZOU, L. 2018 Interaction of rippled shock wave with
fast-slow interface. Phys. Fluids 30, 046104.

ZHAI, Z., SI, T., LUO, X. & YANG, J. 2011 On the evolution of spherical gas interfaces accelerated by a
planar shock wave. Phys. Fluids 23, 084104.

ZHANG, E., LI, Z., JI, J., SI, D. & YANG, J. 2021 Converging near-elliptic shock waves. J. Fluid Mech. 909,
A2.

ZHOU, Y. 2017a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I.
Phys. Rep. 720–722, 1–136.

ZHOU, Y. 2017b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing.
II. Phys. Rep. 723–725, 1–160.

ZOU, L., AL-MAROUF, M., CHENG, W., SAMTANEY, R. & LUO, X. 2019 Richtmyer–Meshkov instability
of an unperturbed interface subjected to a diffracted convergent shock. J. Fluid Mech. 879, 448–467.

ZOU, L., LIU, J., LIAO, S., ZHENG, X., ZHAI, Z. & LUO, X. 2017 Richtmyer–Meshkov instability of a flat
interface subjected to a rippled shock wave. Phys. Rev. E 95, 013107.

984 A49-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.245

	1 Introduction
	2 Methodology
	2.1 Numerical approach
	2.2 Experimental set-up
	2.3 Pressure-deflection shock polar

	3 Flow structures and characteristics
	3.1 Features of the diffracted non-uniform shock
	3.2 Qualitative description of the triple-shock refraction process
	3.2.1 Triple-shock refraction at a planar N2--air interface
	3.2.2 Effects of acoustic impedances on the triple-shock refraction


	4 Theoretical results and discussion
	4.1 Analytical solution of the triple-shock refraction
	4.1.1 Analytical characterization of the incident triple-shock configuration
	4.1.2 Solution of the primary shock refraction
	4.1.3 Solution of the shock--shock interaction
	4.1.4 Solution of the secondary shock refraction

	4.2 Analytical solution of the transmitted wave configuration
	4.2.1 Solution of the transmitted triple-shock configuration
	4.2.2 Solution of the transmitted four-shock configuration
	4.2.3 Solution of the transmitted four-wave configuration

	4.3 Application and validation of the analytical model
	4.3.1 Analytical quantification of the circulation deposition and velocity perturbation
	4.3.2 Analytical prediction of the transmitted wave configuration


	5 Conclusions
	References

