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Abstract
A variable annuity is a modern life insurance product that offers its policyholders participation in investment with
various guarantees. To address the computational challenge of valuing large portfolios of variable annuity con-
tracts, several data mining frameworks based on statistical learning have been proposed in the past decade. Existing
methods utilize regression modeling to predict the market value of most contracts. Despite the efficiency of those
methods, a regression model fitted to a small amount of data produces substantial prediction errors, and thus, it is
challenging to rely on existing frameworks when highly accurate valuation results are desired or required. In this
paper, we propose a novel hybrid framework that effectively chooses and assesses easy-to-predict contracts using
the random forest model while leaving hard-to-predict contracts for the Monte Carlo simulation. The effectiveness
of the hybrid approach is illustrated with an experimental study.

1. Introduction
Variable annuity (VA) is a modern long-term life insurance product designed as an investment vehicle
for the purposes of retirement planning (Hardy, 2003). As a protection against the fluctuation (generally
the downside risk) of the investment, VA provides certain guaranteed minimum death and living ben-
efits regardless of fund performance. For instance, the Guaranteed Minimum Death Benefit (GMDB)
offers a policyholder the greater of a guaranteed minimum amount and the balance of the investment
account upon the death of the policyholder, while a Guaranteed Minimum Maturity Benefit (GMMB)
offers the same upon the maturity of the contract. The Guaranteed Minimum Accumulation Benefit
(GMAB) will reset the minimum guarantee amount at renewal times. The Guaranteed Minimum Income
Benefit (GMIB) promises the minimum income streams when annuitized at the payout phase (e.g.,
after retirement), whereas the Guaranteed Minimum Withdrawal Benefit (GMWB) allows for system-
atic withdrawals without penalty. In addition, the popularity of VA is also partially due to its eligibility
for tax deferral advantages, since the majority of sales on the US market relate to the retirement savings
plans. According to the Secure Retirement Institute U.S. Individual Annuities Sales Survey, the sales
of variable annuities amounted to $125.6 billions in the year of 2021, which was 27% higher than the
previous year, despite the circumstances of the pandemic. For the fair market valuation of the guaran-
tees embedded in a single variable annuity, interested readers are referred to Feng et al. (2022) and the
reference therein about the stochastic modeling of embedded guarantees and its valuation via different
actuarial approaches.

Insurance companies are exposed to the investment risk through the minimum guaranteed benefits
embedded in variable annuity contracts, and thus, one important risk management strategy in practice
is dynamic hedging, which requires the efficient valuation of the large portfolio of variable annuity
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contracts. In addition to the financial risk, VAs also carry the interest rate risk and policyholder lapse
or surrender risk due to its long-term nature, as well as the mortality and longevity risk as a life insur-
ance product. Therefore, the closed-form solution for the fair market valuation of VA is not available
for most cases. To integrate all variations into the valuation, insurance companies rely on the Monte
Carlo simulation in practice. However, the Monte Carlo simulation method is time consuming and
computationally intensive; see, for example, Gan and Valdez (2018). Considering the complexity of
the product design and the requirement of valuation and dynamic hedging, the workload of compu-
tation (dealing with hundreds of thousands of VA contracts) through Monte Carlo simulation grows
extensively.

Recent progress in valuation of large VA portfolios uses modern data mining techniques focused on
predictive analytics. Existing data mining frameworks include metamodeling (Gan, 2013, 2022) and
active learning (Gweon and Li, 2021). In such a framework, the final assessment of a VA portfolio is
obtained by a machine learning model that has been trained on a set of example data. Many predictive
modeling algorithms have been examined for effective valuations of a large VA portfolio (see Section 2
for literature review).

In this paper, our primary target is to address situations where a highly accurate valuation of a
large VA portfolio is required (e.g., R2 of 0.99 is desired), which, to our best knowledge, has not been
discussed in the previous literature. More specifically, in existing frameworks including metamodel-
ing and active learning with some chosen machine learning methods, the improvement of the overall
quality of a large VA portfolio assessment requires more example data that are fed to the predictive
model. Increasing the data size arises two challenges: (1) the computation time required for construct-
ing the predictive model increases, and (2) it is unclear how to determine the size of the training data to
achieve the desired predictive performance. Neither the metamodeling nor active learning approach can
address the two challenges simultaneously. As such, we propose a hybrid data mining framework that
can achieve highly accurate prediction results by selectively using the predictive model for the assess-
ment of “easy-to-predict” contracts and the Monte Carlo engine for the assessment of “hard-to-predict”
contracts. Prediction uncertainty metrics are designed to effectively divide easy/hard-to-predict groups.
Also, our proposed approach is informative in terms of estimating the target accuracy of the portfolio
assessment. Therefore, under the hybrid framework, the two aforementioned practical challenges can
be addressed while keeping the size of data for model training small. The empirical results demon-
strate that the proposed hybrid approach contributes to a substantial computational cost saving with the
minimized prediction errors. Comparing to the existing metamodeling approach, the advantages of our
hybrid approach are seen in terms of both predictive performance and runtime.

The main contributions of this paper are in three-folds. First, we develop a novel hybrid data mining
framework based on random forest, which complements the existing ones (such as metamodeling and
active learning frameworks) with the applications in the insurance field. Second, we design a metric that
provides the expected performance of the hybrid approach at any fraction of regression-based prediction.
Our proposed approach helps to address the two aforementioned practical challenges without expanding
the size of data for predictive model training while achieving the desired accuracy. Third, our empirical
results show that the proposed hybrid approach is effective for valuing a large VA contract portfolio such
that the targeted prediction error is reached with a vast reduction in Monte Carlo simulation.

The rest of the paper is organized as follows. In Section 2, we provide the literature review on the data
mining frameworks for effective VA valuation, as well as the concept of semi-automated classification
which links to the proposed hybrid approach. Section 3 presents the details of the proposed hybrid
data mining framework, In particular, we discuss the measurement for prediction uncertainty and the
expected model performance. In Section 4, we demonstrate the effectiveness of the hybrid approach
using a synthetic VA dataset and further make comparisons with the metamodeling framework. The
final section concludes the paper.
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2. Literature review
This section provides a brief review of (1) existing data mining frameworks for dealing with the com-
putational challenges associated with the valuation of large VA portfolios, and (2) semi-automated
classification related to the proposed hybrid approach.

(1) Data mining methods using statistical models aim to dramatically reduce the number of VA con-
tracts valued by Monte Carlo simulation. A common approach is the metamodeling framework that has
four sequential modeling stages (Barton, 2015): (a) (sampling stage) choosing a subset of the portfolio;
(b) (labeling stage) running the Monte Carlo simulation to compute fair market values (FMVs) of the
chosen VA contracts; (c) (regression stage) fitting a predictive regression model to the VA contracts
in the subset; and (d) (prediction stage) predicting FMVs for the rest of the contracts in the portfolio
using the fitted regression model. The purpose of the sampling stage (a) is to efficiently divide a large
dataset into many clusters or groups from which representative contracts are chosen. Several unsuper-
vised learning algorithms have been proposed including the truncated fuzzy c-means algorithm (Gan and
Huang, 2017), conditional Latin hypercube sampling (Gan and Valdez, 2018), and hierarchical k-means
clustering (Gan and Valdez, 2019). Popular supervised learning algorithms, such as (Gan, 2013), GB2
(Gan and Valdez, 2018), group LASSO (Gan, 2018), and tree-based approaches (Xu et al., 2018; Gweon
et al., 2020; Quan et al., 2021), have been examined for use in the regression stage (c). In metamodeling,
the FMVs of most contracts in the portfolio are estimated using the regression model. A simple varia-
tion of the metamodeling approach is model points (Goffard and Guerrault, 2015) that divide policies
into non-overlapping groups based on an unsupervised learning algorithm and assign a representative
prediction value (e.g., the sample mean) to each group.

Recently, Gweon and Li (2021) proposed another data mining framework based on active learning
(Cohn et al., 1994; Settles, 2010). The goal of active learning is to achieve the highest prediction accuracy
within a limited budget for the labeled data. To achieve this goal, a regression model is initially fitted
to a small number of labeled representative contracts. The fitted model is then used to iteratively and
adaptively select a batch of informative contacts from the remaining unlabeled contracts. The selected
contracts are assessed using Monte Carlo simulation and added to the labeled data so that the regression
model is updated with the augmented labeled data. Unlike metamodeling, the active learning framework
allows the regression model to actively choose and learn from contracts for which the current model does
not perform well.

(2) The fundamental idea of the hybrid approach proposed in Section 4 is inspired by semi-automatic
classification (Schonlau and Couper, 2016) that has been studied in survey data classification. Text
answers in surveys are difficult to analyze and therefore are often manually classified into different
classes or categories. With a large amount of data, manual classification becomes time consuming
and expensive as it requires professional experienced human labelers. While the use of statistical
learning methods reduces the total cost of coding, fully automated classification of text answers to
open-ended questions remains challenging. This is a problem for researchers and survey practitioners
who value accuracy over low cost. To address this problem, semi-automated classification uses sta-
tistical approaches to perform partially automated classification. In this way, easy-to-classify answers
are automatically categorized and hard-to-classify answers are manually categorized. The idea of semi-
automated procedure has been applied to single-labeled survey data (Schonlau and Couper, 2016; Gweon
et al., 2017) and multi-labeled survey data (Gweon and Wenemark, 2020).

3. The hybrid framework for valuing large VA portfolios
3.1. The hybrid framework
Our goal is to achieve highly accurate prediction of the fair market values (FMVs) of the large portfolio
of VAs via a combination of the predictive regression model and Monte Carlo simulation engine. The
proposed hybrid valuation framework is summarized in the following four steps:
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Figure 1. An illustration of the hybrid data mining framework.

1. Select a set of representative VA contracts from the portfolio. An unsupervised learning
algorithm can be employed for the selection task.

2. Calculate the FMVs of the guarantees for the representative contracts using the Monte Carlo
simulation. The resulting labeled data become the training data.

3. Build a regression model (e.g., random forest) using the training data.
4. Use the regression model to predict the FMVs of 100α% of the contracts (for α ∈ [0, 1]) and

employ the Monte Carlo simulation for valuing the remaining contracts.

Note that the key difference between the hybrid framework and metamodeling framework is in Step 4,
where we introduce the parameter α ∈ [0, 1]. Having α = 0 means that all VA contracts in the portfo-
lio are assessed using the Monte Carlo simulation, which reduces to the simulation approach (only),
while α = 1 corresponds to using the regression-based prediction for all contracts (except the small set
of representative contracts in steps 1 and 2). Therefore, the existing metamodeling framework can be
viewed as a special case of the hybrid framework at α = 1. For 0 < α < 1, the hybrid approach employs a
combination of both approaches. As α changes, there exists a trade-off between computational cost and
valuation accuracy. Increasing α results in more contracts being assessed by the regression model whose
predictions are fast but come with inevitable errors. Despite the low computational cost, the metamod-
eling approach (α = 1) provides no practical strategy for an effective trade-off between computational
cost and valuation accuracy. As α decreases, the overall valuation accuracy can increase at the cost of
the increased amount of computing time required for running the Monte Carlo simulation. Hence, two
crucial components of the proposed hybrid approach are: the selection of an appropriate value of α and
how to determinate the two sub-groups (for regression-based predictions and Monte Carlo valuation).
As such, we further specify Step 4 in the following two parts:

4(a) Decide the fraction 0 ≤ α ≤ 1 for the regression-based prediction. The choice of parameter α

should take into consideration the expected accuracy. Here, by “accuracy” we mean the R2 of
the portfolio.

4(b) Use the regression model to predict the FMVs of 100α% of the contracts with the smallest
prediction uncertainty (referred to as “easy-to-predict” contracts). We refer to the remain-
ing contracts as “hard-to-predict” contracts, and employ the Monte Carlo simulation for the
evaluation.

See Figure 1 for illustration of the proposed hybrid data mining framework.

https://doi.org/10.1017/asb.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.26


584 Hyukjun Gweon and Shu Li

It is worth discussing the similarity and difference between the proposed framework with a given
α and the metamodeling framework that uses (1 − α)100% of the contracts as training data. In both
frameworks, (1 − α)100% of the portfolio is evaluated by the MC simulation and the other 100α% by
a trained predictive model. That is, both frameworks require the same computational cost for running
the MC simulation engine. In metamodeling, splitting the portfolio into the labeled data ((1 − α)100%)
and remaining data (100α%) is conducted at the first step of the framework. For a split, metamodeling
relies on a data clustering or unsupervised learning algorithm that creates a set of representative data
using the feature information only. On the other hand, the proposed hybrid method makes the final split
(based on α) after a predictive model is trained and this allows the trained model to actively identify and
assign hard-to-predict contracts to the MC engine (equivalently, assign easy-to-predict contracts to the
predictive model). Due to this difference, at a moderate value of α, metamodeling requires a much more
computing time for training a predictive model compared to the hybrid approach. This is investigated
further in Section 4.4.2.

In what follows, we address the two crucial components using random forest as a predictive regression
model. More specifically, we will explain the measurement for prediction uncertainty in order to label
the “easy-to-predict” and “hard-to-predict” contracts and construct a functional relationship between
the parameter α and the expected accuracy of the portfolio valuation which, in turn, becomes useful for
the choice of α.

3.2. Random forests and measuring prediction uncertainty
Consider a portfolio of N VA contracts, X = {x1, ..., xN} where xi ∈R

p contains the feature attributes
associated with its VA contact. Also, let Yi be the FMV of the contract xi. The random forest model
assumes the general model form:

Yi = f (xi) + εi,

where f (·) is the underlying regression model and ε is the random error. To estimate the regression
function, we use random forest (Breiman, 2001) with regression trees (Breiman, 1984) as the base model.
Details about the use of regression trees for variable annuity application are found in Gweon et al. (2020)
and Quan et al. (2021).

Let L be the labeled training data of size n, Lb be the bth bootstrap sample of L and f̂Lb (x) be a
regression tree fitted to Lb, for b = 1, ..., B. For any unlabeled contract x, the prediction is obtained by
averaging all of the B regression trees:

f̂ (x) = 1

B

B∑
b=1

f̂Lb (x).

Despite its simplicity, random forest demonstrates promising predictive performance in valuing con-
tracts (Quan et al., 2021; Gweon et al., 2020).

In the hybrid approach, we propose to label the “easy-to-predict” and “hard-to-predict” via prediction
uncertainty. A common measurement for uncertainty is the mean square error (MSE) for the underlying
function that is defined as

MSE(f̂ (x)) = E
(

(f̂ (x) − f (x))2
)

. (3.1)

By the bias-variance decomposition, we have

MSE(f̂ (x)) = E
(

(f̂ (x) − E(f̂ (x)) + E(f̂ (x)) − f (x))2
)

=
(

E(f̂ (x)) − f (x)
)2 + E

(
(f̂ (x) − E(f̂ (x)))2

)
, (3.2)

where the first and second terms are the squared bias and variance, respectively. This decomposition
result provides a plug-in estimate of MSE by estimating the bias and variance separately.

https://doi.org/10.1017/asb.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.26


ASTIN Bulletin 585

Gweon et al. (2020) show that the prediction bias of random forest is not negligible when applied to
the VA valuation. The prediction bias can be estimated by bias-correction techniques (Breiman, 1999;
Zhang and Lu, 2012; Gweon et al., 2020), where another random forest model is fitted to the out-of-
bag (OOB) errors. Following Gweon et al. (2020), for the prediction vector xi in the training data, the
out-of-bag prediction is defined as

f̂ OOB(xi) = 1

Bi

B∑
b=1

f̂Lb (xi)I((xi, yi) /∈ Lb),

where I(·) is the indicator function, and Bi is the number of bootstrap regression trees for which data
point (xi, yi) is not used (i.e., Bi = ∑B

b=1 I((xi, yi) /∈ Lb)). Then, another random forest model ĝ(·) is fitted
to the set of representative VA contracts where the response variable is Bias(x) = f̂ OOB(x) − Y , instead
of Y . The prediction obtained by the resulting model is the estimated bias. That is,

B̂ias(f̂ (x)) = ĝ(x). (3.3)

For estimating the variance of random forest, one common method is jackknife-after-bagging (Efron,
1992; Sexton and Laake, 2009) that aggregates all regression trees where the ith contract is not included
in the construction of the trees. The estimated variance is obtained by

V̂ar(f̂ (x)) = n − 1

n

n∑
i=1

(f̂ OOB−i (x) − f̂ OOB∗(x))2, (3.4)

where

f̂ OOB−i (x) = 1

Bi

B∑
b=1

f̂Lb (x)I((xi, yi) /∈ Lb),

and

f̂ OOB∗(x) = 1

n

n∑
i=1

f̂ OOB−i (x).

The sampling variability of random forests has also been analyzed in, for example, Lin and Jeon (2006),
Wager and Efron (2014), and Mentch and Hooker (2016).

3.3. Determining α and expected R2

For a VA portfolio with N contracts, denote SRF and SMC as the sets containing contacts with valuations
obtained by the regression model and the Monte Carlo simulation, respectively. We use the notation
f (xi) for the FMV of a contract computed using the Monte Carlo simulation1, and the notation f̂ (xi) for
the FMV of a contract predicted by the regression model. The R2 of the portfolio, denoted by R2

SRF
to be

more precise, is obtained by

R2
SRF

= 1 −
∑

i (f̂ (xi) − f (xi))2∑
i (f (xi) − f̄ (x))2

= 1 −
∑

xi∈SRF
(f̂ (xi) − f (xi))2 + ∑

xi∈SMC
(f (xi) − f (xi))2∑

i (f (xi) − f̄ (x))2

= 1 −
∑

xi∈SRF
(f̂ (xi) − f (xi))2

c
.

1The FMVs of variable contracts with identical features are assumed to be equal without unexplained errors.
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where c = ∑
i (f (xi) − f̄ (x))2 is a constant and f̄ (x) = N−1

∑
i f (xi). Taking the expectation gives

E
(
R2

SRF

) = 1 −
∑

xi∈SRF
E

[
(f̂ (xi) − f (xi))2

]
c

,

where E
[
(f̂ (xi) − f (xi))2

]
refers to the MSE of the prediction f̂ (xi) with respect to f (xi) by Equation

(3.1). Notice that E
(
R2

SRF

)
monotonically decreases as more contracts are assessed by the regression

model (i.e., the size of SRF increases). In order to maximize E
(
R2

SRF

)
, we seek an optimal set S∗

RF with a
constraint on its size, that is,

S∗
RF = argmax

SRF

E
(
R2

SRF

)
= argmax

SRF

∑
xi∈SRF

E
[
(f̂ (xi) − f (xi))

2
]

,

subject to |SRF| = αN for a given α,

where |SRF| represents the size of the set SRF, that is, the number of VA contracts in the set. By selecting
the contracts with the smallest MSE values, optimization is achieved over all possible subsets that form
the set SRF of a certain size. This provides a crucial rationale for the proposed hybrid approach to select
the least uncertain contracts for the random forest-based (RF-based) prediction.

Recall that from the bias-variance decomposition result, we have

E
[
(f̂ (xi) − f (xi))

2
]
= Var(f̂ (xi)) + (Bias(f̂ (xi)))

2.

Using random forest, the variance and bias can be separately estimated using the methods described in
Section 3; see Equations (3.3) and (3.4). The constant c = ∑

i (f (xi) − f̄ (x))2 can be estimated by

ĉ = N/n
∑

i

(f (xi) − f̄ (x))2I((xi, f (xi)) /∈ L). (3.5)

Combining those individual estimators in Equations (3.3), (3.4), and (3.5), a plug-in estimate of
R2

SRF
is

R̂2
SRF

= 1 −
∑

xi∈SRF

[
V̂ar(f̂ (xi)) + (B̂ias(f̂ (xi)))2

]
ĉ

.

In addition to the variance of random forest, one may also consider the sample variance of the individual
tree predictions, denoted as Var(f̂ b(xi)). Assuming the pairwise correlation (ρx) between two regression
trees is non-negative, it is known that

Var(f̂ (xi)) =
(

(B − 1)ρx + 1

B

)
Var(f̂ b(xi)) ≤ Var(f̂ b(xi)).

Hence, an replacement of Var(f̂ (xi)) with Var(f̂ b(xi)) results in

E
(
R2

SRF

) ≥ 1 −
∑

xi∈SRF

[
Var(f̂ b(xi)) + (Bias(f̂ (xi)))2

]
c

: = E
(
R2

SRF

)
.

As such, E
(
R2

SRF

)
serves as a lower bound for the expected R2 of the hybrid approach for the portfolio.

An estimate of E
(
R2

SRF

)
is

R̂
2

SRF
= 1 −

∑
xi∈SRF

[
V̂ar(f̂ b(xi)) + (B̂ias(f̂ (xi)))2

]
ĉ
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Table 1. Summary statistics of the continuous feature variables in the dataset.

Variable Description Minimum Mean Maximum
gmwbBalance GMWB balance 0 35,611.54 499,708.73
gbAmt Guaranteed benefit amount 0 326,834.59 1,105,731.57
FundValue1 Account value of the 1st investment fund 0 33,433.87 1,099,204.71
FundValue2 Account value of the 2nd investment fund 0 38,542.81 1,136,895.87
FundValue3 Account value of the 3rd investment fund 0 26,740.18 752,945.34
FundValue4 Account value of the 4th investment fund 0 26,141.80 610,579.68
FundValue5 Account value of the 5th investment fund 0 23,026.50 498,479.36
FundValue6 Account value of the 6th investment fund 0 35,575.67 1,091,155.87
FundValue7 Account value of the 7th investment fund 0 29,973.25 834,253.63
FundValue8 Account value of the 8th investment fund 0 30,212.11 725,744.64
FundValue9 Account value of the 9th investment fund 0 29,958.29 927,513.49
FundValue10 Account value of the 10th investment fund 0 29,862.24 785,978.60
age Age of the policyholder 34.52 49.49 64.46
ttm Time to maturity in years 0.59 14.54 28.52

where

V̂ar(f̂ b(xi)) = 1

B − 1

B∑
b=1

(
f̂Lb (xi) − f̂ (xi)

)2

.

To conclude, since E
(

R2
S∗

RF

)
has a functional relationship with the fraction α, either R̂2

S∗
RF

(
or R̂

2

S∗
RF

)
or α can be set at a target value which determines the second measure, that is:

• if one targets the model performance of R2, say at least 99% for the portfolio, the hybrid
algorithm will determine α and thus the set S∗

RF such that R̂
2

S∗
RF

= 0.99 in a conservative manner;
• on the other hand, if the parameter α is fixed (for instance, when the budget for the computa-

tional cost is limited), the hybrid approach will examine the expected model performance with
the optimal set S∗

RF through either R̂2
S∗

RF
or R̂

2

S∗
RF

to maximize the prediction accuracy.

4. Application in variable annuity valuation
4.1. A synthetic portfolio
We examined the proposed hybrid approach using a synthetic VA dataset in Gan and Valdez (2017). The
dataset consists of 190,000 VA contracts with 16 feature variables, after removing variables that were
identical for all contracts (Gan et al., 2018). The continuous feature variables used for our analysis are
summarized in Table 1.

The dataset has two categorical features: gender and product type. The gender ratio is
female:male = 40%:60%. There are 19 product types (e.g., variants of GMAB and GMIB), and the
dataset contains 10,000 contracts for each product type; see Gan and Valdez (2017) for more details.

Our target response variable is FMV, the difference between the guarantee benefit payoff and the risk
charge. Details of how the FMV value of each guarantee is obtained by the MC simulation are found
in Gan and Valdez (2017). Figure 2 shows a highly skewed distribution of the FMVs of the 190,000
VA contracts in the portfolio. The skewness is due to the guaranteed payoff being much greater than the
charged guarantee fee for many contracts (Gan and Valdez, 2018).
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Figure 2. Histogram of the FMVs of 190,000 VA contracts.

4.2. Experimental setting
As with any other data mining approach, the hybrid approach requires a set of representative con-
tracts for fitting the regression model. We used the conditional Latin hypercube sampling (Minasny and
McBratney, 2006) because it produces reliable results as compared to other unsupervised approaches
(Gan and Valdez, 2016). The conditional Latin hypercube sampling algorithm heuristically chooses a
subset of the portfolio such that the distribution of the portfolio is maximally stratified. We used the R
package clhs (Roudier, 2011) for the implementation in R.

For random forest, we use 300 regression trees that are large enough to reach stable model perfor-
mance (Gweon et al., 2020; Quan et al., 2021). In addition, we consider all features at each binary split
in the tree construction because it achieves the lowest prediction error for the dataset (Quan et al., 2021).
As described in (Gweon et al., 2020), prediction biases are estimated by another random forest model
with 300 regression trees fitted to the out-of-bag prediction. We use the jackknife-after-random forest
estimate (Sexton and Laake, 2009) to estimate the variance of random forest.

The model performance could be affected by some random effects. To mitigate the impact of possible
random effects, we ran the experiment 10 times with different seeds.

4.3. Evaluation measures
To measure predictive performance, we consider R2, mean absolute error (MAE), and percentage error
(PE):

R2 = 1 −
∑

i (f̂ (xi) − f (xi))2∑
i (f (xi) − f̄ (x))2

,

MAE = 1

N

∑
i

|f̂ (xi) − f (xi)|,

https://doi.org/10.1017/asb.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.26


ASTIN Bulletin 589

0.0e+00 5.0e+10 1.0e+11 1.5e+11 2.0e+11

Boxplot (MSE)

0.0e+00 5.0e+10 1.0e+11 1.5e+11 2.0e+11

0e
+

00
4e

−
10

8e
−

10

Desity plot (MSE)

D
en

si
ty

Figure 3. The boxplot (top) and density plot (bottom) of the estimated MSE of the unlabeled contracts.

and

PE =
∑

i f (xi) − ∑
i f̂ (xi)∑

i f (xi)
,

where f̄ (x) = N−1
∑

i f (xi). R2 and MAE measure the accuracy of the valuation result at the individual
contract level. PE measures the aggregate accuracy of the valuation result where positive and negative
prediction errors at the individual contract level offset each other. The result is considered accurate at
the portfolio level if the absolute value of PE is close to zero. All evaluation results are performed on
the whole portfolio.

4.4. Experimental results
4.4.1. An empirical analysis of the hybrid approach
Figure 3 presents the boxplot and density plot of the MSE values of the VA contracts in the portfolio esti-
mated using the random forest model with n = 1000. The distribution is highly skewed with the majority
of the values being small. This pattern favors the proposed hybrid approach, as the contracts with small
MSE are considered to be easy-to-predict examples and, therefore, are expected to be accurately valued
by the random forest model.

Figure 4 shows the performance (in terms of R2) of the hybrid approach as a function of the fraction
of RF-based valuation at different sizes of representative labeled data. The contracts with lower MSE
estimates were valued first using the random forest model. For example, the fraction α = 0.2 means only
20% of the remaining contracts with the lowest MSE are assessed by the random forest model and the
other 80% are left for the Monte Carlo simulation. The two estimated R2 values are obtained using the
plug-in estimation methods.

As expected, there were trade-offs between accuracy and the fraction of RF-based prediction. We
observed that R̂2

S∗
RF

tends to be larger than the observed R2 indicating underestimation of MSE (i.e.,
overestimation of R2). Another observation is that R̂

2

S∗
RF

effectively served as a lower bound of E(R2) as
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Figure 4. The estimated and observed R2 values obtained by the hybrid approach.

Figure 5. Scatter plots of the observed FMVs and the values predicted by random forest. The red dots
represent RF-based predictions in the hybrid approach.

R̂
2

S∗
RF

was consistently lower than (and close to) the observed R2. The difference between the observed R2

and R̂
2

S∗
RF

was particularly small when the fraction of RF-based valuation was lower than 0.8.
The slopes of the performance curves became steeper as more contracts were evaluated by ran-

dom forest. This coincides with our intuition, as the hybrid method prioritized contracts with small
expected errors for RF-based valuation. The small reduction in accuracy at small to medium fractions
demonstrates the particular effectiveness of the hybrid method with small fractions.

Next, we further investigated easy-to-predict contracts. As shown in Figure 5, most of these have
small (predicted) FMVs. This result can be explained by the highly skewed distribution of FMVs in the
portfolio (Figure 2), as in the representative labeled data. The random forest model mostly learned from
representative contracts with small FMVs, and thus, the trained model was more confident in predicting
the contracts similar to the representative contracts as compared to others.

Figure 6 presents the performance of the hybrid approach according to the three evaluation met-
rics. The model performance was generally improved as the number of representative contracts (i.e.,
n) increased. In addition, greater improvement was observed at large fractions of RF-based prediction
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Table 2. Summary statistics for the hybrid approach (n = 2, 000) as a function of various
thresholds

(
R̂

2

S∗
RF

)
. The estimated times are in minutes.

R̂
2

S∗
RF

α R2 MAE PE Estimated Time (MC)
0.998 0.40 0.999 2343.022 −0.003 3755.160
0.995 0.55 0.997 4536.604 −0.006 2816.370
0.990 0.70 0.993 7626.603 −0.009 1885.680
0.980 0.85 0.986 11924.067 −0.011 938.790
0.965 0.95 0.974 16561.058 −0.014 312.930
0.915 0.99 0.952 20980.085 −0.014 62.586
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Figure 6. Performance of the hybrid approach with different sizes of representative data. For R2 (left),
higher is better. For mean absolute error (middle), lower is better. For percentage error (right), lower
absolute value is better.

(i.e., as α increases). This implies that even with a small n size (e.g., n = 500), the random forest model
performed well on easy-to-predict contracts.

In practice, the fraction parameter α can be determined based on the desirable lower bound of overall
accuracy R̂

2

S∗
RF

. The performance of the hybrid approach at n = 2, 000 is summarized in Table 2. For
example, if one requires R2 of at least 0.99, the hybrid approach can use the random forest model for up
to 70% of the contracts and the Monte Carlo simulation for the remaining 30%. Although decreasing α

improved the overall valuation accuracy, the price is increased computation time2 for running the MC
simulation for the (1 − α)100% of the contracts. This trade-off between the prediction accuracy and time
efficiency suggests that practitioners consider both the expected accuracy and computation time when
determining an appropriate value of α.

4.4.2. A comparison with the metamodeling approach
To further investigate the effectiveness of the proposed hybrid approach, we compared our results with
the metamodeling framework, particularly with three regression approaches namely, RF, GB2 and group
LASSO (GLASSO). To make a fair comparison, for metamodeling considered here, (1 − α)100% of the

2The computation times for the MC simulation in Table 2 were estimated based on the results of Gan and Valdez (2017) and
Gan (2018) assuming the use of a single CPU. More powerful computing resources will result in less computing times.
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contracts were selected using the conditional Latin hypercube sampling method. The chosen contracts
were used to train RF, GB2, and GLASSO models. Each of the trained models was then used to predict
the FMVs of the remaining 100α% contracts in the portfolio. This setting allows a reasonable com-
parison between the metamodeling and hybrid frameworks at the fraction of RF-based valuation α so
that both frameworks eventually require the MC simulation for the same amount ((1 − α)100%) of the
variable annuities in the portfolio. More precisely, in the metamodeling framework, the (1 − α)100% of
the data, used for model training, are evaluated by MC simulation, whereas the hybrid approach starts
from a small subset of the data of size n (i.e., n << N) and then decides the hard-to-predict group, which
contains the (1 − α)100% (or more precisely (1 − α)N − n contracts) of the data to be evaluated by MC
simulation.

The comparison results in terms of all performance measures and runtime at α = 0.5 and 0.7 are pre-
sented in Table 3. For the hybrid approach, we used n = 2, 000 and n = 5, 000. The hybrid framework
outperformed the metamodeling approaches in terms of R2 and MAE. All approaches performed well in
PE, with fairly small differences between all methods. For metamodeling, even though a large amount
of data (e.g., when α = 0.5, we had n = (1 − α) × N = 95, 000 representative VA contracts) were used
to fit the predictive models, the trained models still produced prediction errors on the individual con-
tracts of the unlabeled data due to hard-to-predict contracts. On the other hand, the proposed hybrid
approach relied on far fewer (n = 2, 000 or 5,000) representative contracts for the RF model and the
trained model achieved high predictive accuracy for easy-to-predict contracts. The results showed the
effectiveness of the hybrid framework particularly at the individual policy level. Also, the metamodeling
approach required a significantly greater runtime for selecting the representative contracts and training
the predictive model than the proposed approach. The hybrid approach showed a much faster and con-
sistent runtime performance at different α values thanks to the fact that the size of representative data
remains small in all situations. At α = 0.5, the metamodeling approach with RF required more than
10 h to complete the RF-based prediction, whereas the hybrid approach with n = 2, 000 only spent
slightly over 1 min. Increasing n from 2,000 to 5,000 improved the performance of the hybrid approach
at the cost of about six additional minutes in runtime. Considering that the runtime of metamodeling
for representative data selection and regression-based prediction increased with the number of repre-
sentative contracts, the difference in runtime between the metamodeling and hybrid frameworks would
become even larger for smaller α(<0.5).

5. Concluding remarks
In this paper, we proposed a novel hybrid data mining framework to address the practical and com-
putational challenges associated with the valuation of large VA contracts portfolios. In the proposed
hybrid framework, the FMVs of VA contracts are calculated by either the Monte Carlo simulation or
a random forest model depending on the prediction uncertainty of the contracts. We also consider the
expected R2 of individual predictions, which help practitioners to determine the fraction of the portfolio
to be assessed by the random forest model. Our numerical study on a portfolio of synthetic VA contracts
shows that it is possible to use a statistical learning algorithm to achieve high accuracy and efficiency at
the same time while assessing a majority of VA contracts in a portfolio. Although we use random forest
for the hybrid approach, other regression methods can be employed, provided that mean square errors
can be efficiently estimated.

As with other data mining approaches, the performance of the hybrid approach is generally improved
as the random forest model is fed more representative data. While our numerical results show that
the proposed approach can be highly effective with 2,000 ∼ 5,000 representative contracts, further
prediction improvement is expected with a larger set of representative data.

We also examined simple random sampling (rather than conditional Latin hypercube sampling) for
the creation of representative labeled data. We found that the difference between conditional Latin
hypercube sampling and simple random sampling in the hybrid approach is negligible, indicating the
robustness of the proposed approach to the choice of representative data selection method.
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Table 3. Model performance of each approach at different values of α. Runtime represents minutes required for each approach to obtain a set of
representative contracts (cLHS), train the RF model, and complete the RF-based prediction of the portfolio. Since both the metamodeling and hybrid
approaches use the MC simulation for the same amount of data, the runtime required for the MC simulation is the same and thus omitted.

α = 0.5 α = 0.7

metamodeling hybrid metamodeling hybrid
RF GB2 GLASSO n = 2, 000 n = 5, 000 RF GB2 GLASSO n = 2, 000 n = 5, 000

R2 0.992 0.945 0.989 0.998 0.999 0.988 0.921 0.984 0.993 0.995
MAE 5760.937 15630.791 7998.983 3715.437 3036.058 8685.140 18928.962 11187.048 7626.603 6385.638
PE −0.005 −0.007 −0.001 −0.005 −0.003 −0.009 −0.017 −0.002 −0.009 −0.006

Runtime
cLHS 37.042 37.042 37.042 0.382 1.707 14.898 14.898 14.898 0.382 1.707
Training 588.512 57.952 27.392 0.758 4.320 213.864 35.866 16.450 0.761 4.379
Total 625.554 94.994 64.434 1.140 6.027 228.762 87.806 31.348 1.143 6.086
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In summary, the proposed procedure is preferable to other existing data mining frameworks when a
highly accurate valuation (e.g., R2 of over 0.99) is required in a timely manner. This innovative hybrid
framework shows great potential to help practitioners in insurance industry for effective valuation and
risk management.
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