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First-order-accurate degenerate variational integration (DVI) was introduced in Ellison
et al. (Phys. Plasmas, vol. 25, 2018, 052502) for systems with a degenerate Lagrangian,
i.e. one in which the velocity-space Hessian is singular. In this paper we introduce
second-order-accurate DVI schemes, both with and without non-uniform time stepping.
We show that it is not in general possible to construct a second-order scheme with
a preserved two-form by composing a first-order scheme with its adjoint, and discuss
the conditions under which such a composition is possible. We build two classes of
second-order-accurate DVI schemes. We test these second-order schemes numerically on
two systems having non-canonical variables, namely the magnetic field line and guiding
centre systems. Variational integration for Hamiltonian systems with non-uniform time
steps, in terms of an extended phase space Hamiltonian, is generalized to non-canonical
variables. It is shown that preservation of proper degeneracy leads to single-step (one-step)
methods without parasitic modes, i.e. to non-uniform time step DVIs. This extension
applies to second-order-accurate as well as first-order schemes, and can be applied to
adapt the time stepping to an error estimate.

Key word: plasma dynamics

1. Introduction

A variety of dissipation-free dynamical models in plasma physics share the property
of arising from variational principles, including the guiding centre equations, magnetic
field line flow and collision-free Vlasov dynamics. Variational integrators discretize the
action associated with this variational principle rather than discretizing the equations
of motion directly. The advantages of variational integrators are similar to those of the
more specialized symplectic integrators, most of which discretize Hamiltonian systems
in canonical variables. Variational integrators, especially those we study in this paper,
can conveniently deal with non-canonical variables. These methods preserve exactly the
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Hamiltonian (or variational) nature of the original ordinary differential equation system,
and the main advantages of these integration methods accrue when very long-time-scale
behaviour is to be studied. For example, when using full-orbit simulations to assess the
validity of the guiding centre approximation for runaway electrons, Liu, Wang & Qin
(2016) concluded that simulations involving approximately 10!! time steps were required.

The task of finding a reliable variational integrator for a given variational
dynamical system is generally quite challenging. The easiest case occurs when the
Lagrangian underlying the variational principle is non-degenerate (see Marsden &
West 2001), meaning that the velocity-space Hessian is invertible. Stable low-order
and high-order variational integrators may be constructed in the non-degenerate setting
using systematic procedures. The problem becomes much more challenging, however,
when the velocity-space Hessian is degenerate, i.e. has a non-trivial null space. This
sort of degeneracy arises, for instance, when dealing with a so-called phase-space
Lagrangian (see Cary & Littlejohn 1983), either in canonical or non-canonical variables;
such a Lagrangian is linear in the velocities, and therefore has Hessian equal
to zero.

Ellison et al. (2018) showed that when the variational integrator formalism discussed in
Marsden & West (2001) is applied to a phase-space Lagrangian, the resulting scheme
typically performs very poorly; unphysical, potentially unstable parasitic modes arise
and spoil the benefits of using a variational discretization. This flaw in the basic theory
of variational integration represents a serious shortcoming as far as its applicability is
concerned, because degenerate Lagrangians are commonly encountered in practice. In
plasma physics phase-space Lagrangians are routinely used to model the fundamental
problems of magnetic field line flow (see Cary & Littlejohn 1983) and guiding centre
motion (see Littlejohn 1983) and have been shown to describe many infinite-dimensional
plasma models as well (e.g. Burby 2015, 2017a,b).

In a more optimistic vein, Ellison et al. (2018) and Ellison (2016) also proposed a
conceptually appealing strategy for avoiding the generic pitfalls of variational integration
applied to phase-space Lagrangians. The idea was to select carefully the discretization
of the Lagrangian so that it preserves the degeneracy of the continuous Lagrangian. Such
properly degenerate discrete Lagrangians were shown to be free of the parasitic modes that
plague generic discrete phase-space Lagrangians. What therefore emerged from this work
was a refined notion of variational integration appropriate to phase-space Lagrangians
(and perhaps more general degenerate Lagrangians as well) termed degenerate variational
integration (DVI). In the same work, DVI was applied to magnetic field line flow under
the gauge restriction that one covariant component of the magnetic field is zero. Also, DVI
was applied to guiding centre motion, with the added physical restriction that the same
covariant component of the magnetic field is zero. Indeed, good long-term behaviour of
the orbits was observed. By exploiting a near-identity transformation of standard guiding
centre theory, Burby & Ellison (2017) showed that DVI can still be applied to guiding
centre dynamics if this stringent constraint on the magnetic field is lifted.

While DVI may be a promising candidate for coping with degenerate Lagrangians
within a variational integration framework, DVI theory as it stands today is still in its
infancy. In particular, the examples of degenerate variational integrators in Ellison et al.
(2018) and Ellison (2016) suffer from three important drawbacks. (a) First, they start from
continuous dynamics formulated in terms of either canonical variables or a restricted class
of non-canonical variables. The magnetic field line and guiding centre examples of Ellison
(2016) and Ellison et al. (2018) belong to this class. (b) Next, they only achieve first-order
accuracy in time. (c) Finally, they rely on uniform time stepping. Moreover, it is presently
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unclear if these drawbacks in examples are reflections of inherent limitations of the DVI
concept, or only apparent limitations that might be overcome with additional insights.

The first purpose of this paper is to construct a large class of second-order-accurate
degenerate variational integrators, involving the so-called processing technique described
in Blanes, Casas & Murua (2004). In particular we aim to address issue (b) by formulating
two related second-order-accurate DVI schemes and applying them to the field line and
guiding centre problems considered in Ellison et al. (2018) and Burby & Ellison (2017).
Our second purpose is to address issue (c¢) by formulating non-uniform time stepping for
DVI. The method chosen is related to the well-known method of extended phase space (see
Hairer, Lubich & Wanner 2006) generalized to the above class of non-canonical variables.
Issue (a) will be the subject of future publications.

After providing an updated discussion of the basic elements of DVI theory in §2, a
class of second-order-accurate DVI schemes is presented in § 3. We begin by discussing
these DVI schemes for systems with canonical variables, showing transparently why it is
not possible in general to obtain second-order accuracy by composing a first-order scheme
with its adjoint. We also show how to formulate these second-order systems in a restricted
class of non-canonical systems. In § 4 we formulate these schemes for the magnetic field
line integration problem and the guiding centre problem, both in this restricted class. In
§ 5 we report on the numerical application of these second-order DVI schemes to the field
line and guiding centre examples, showing good long-time behaviour and second-order
accuracy.

In § 6 we first discuss non-uniform time stepping in the context of canonical systems,
showing the extended phase-space action and discretizations of it. We discuss the
condition for a single-step scheme, i.e. a degenerate variational integrator, as described
in § 2. This condition, as for uniform time steps, is that the discrete Hessian has the
proper rank, the rank of the continuous Hessian. We proceed to show how to apply
the extended phase-space method to the class of non-canonical variables described in
§3. We apply this methodology to the field line and guiding centre examples. These
systems are in the special form of non-canonical variables described in §2, and a
method is described to obtain a single-step (DVI) scheme system with this special form
of non-canonical variables. As before, the rank of the discrete Hessian predicts the
single-step nature of the schemes. We also argue that it is straightforward to apply this
extended phase-space method to second- and higher-order schemes and to adaptive time
stepping.

We summarize and discuss the results of this paper in § 7.

2. Degenerate variational integration: review and recent developments

The purpose of this section is to provide details of the basic properties of DVI. While
a similar discussion appears in Ellison ef al. (2018), the ensuing discussion will reflect an
improved understanding of DVI that has developed since the publication of Ellison et al.
(2018).

Degenerate variational integration is a refinement of variational integration that applies
to phase-space Lagrangians, and perhaps to more general degenerate Lagrangians. It is
therefore helpful to recall briefly the basic ingredients of variational integration along the
lines of Marsden & West (2001). To that end, consider a dynamical system governed by
the variational principle based on the action S:

88 =8 / " L(q(0), 4(t)) dt = 0, Q2.1)

f
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where the dimension of g-space is m. Assume for now that the Lagrangian L is
non-degenerate, which means the velocity space Hessian

32L

Mij(q. q) = ———
i(4, 9) 0590

(2.2)

is invertible for each (g, ¢). The most important consequence of non-degeneracy is that it
implies the Euler—Lagrange equations

d oL oL
—_—— = — (2.3)
drag'®  9q’
are a system of m second-order ordinary differential equations on g-space. Indeed, because
we have
d oL " oL .
vy =Mij-q’+ " 4q’ (2.4)
dr ¢’ 0q'dq’
(we use the standard summation convention for repeated indices), (2.3) may be rewritten
as
.. i f OL L
=M =-—=4q). (2.5)
dg/  90¢/9q’

which for a non-degenerate Hessian is a system of m second-order ordinary differential
equations for ¢g. Per the usual prescription, such equations are also equivalent to systems
of 2m first-order ordinary differential equations advancing (¢, ¢). Therefore (g, ¢)-space
is a suitable phase space for such a non-degenerate Lagrangian system. Another important
property of non-degenerate Lagrangian systems is that it is possible, at least locally, to
perform a Legendre transformation to obtain a Hamiltonian system in canonical variables,
q',pi = 9L/dq'.

According to Marsden & West (2001), a variational integrator for a system with
Lagrangian L is a time-marching algorithm that may be derived from the discrete-time
approximation of (2.1), leading to a discrete variational principle based on the action S;:

Ny
884=28)  hLi(qe, q1) =0, (2.6)

k=N,

where the discrete Lagrangian L, is chosen as a specific approximation to the windowed
time average of the Lagrangian according to

L quen) ~ 7 / " L), ) dr. 2.7)

Here i denotes the spacing of a uniform temporal grid #; = kh. The quantities gy, g, are
evaluated at the endpoints of the interval [#, #;,,]. The discrete Euler—Lagrange (DEL)

https://doi.org/10.1017/50022377821001136 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377821001136

Improved accuracy in degenerate variational integrators 5
equations associated with the variational principle (2.6) are given by

oL aL
—7(%—1, qi) + _?(Qk’ qr+1) = 0. (2.8)
g, 9,

Provided the discrete Hessian
oL,

90991

Mii(qo. q1) = (g0, q1) (2.9)

is invertible for each (qo, q1), the DEL equations define a mapping

(ks i) = (Gigrs q:ﬂ(fh, Gi+1)), (2.10)

where g;,,(qx, gx+1) is the solution of (2.8) for g as a function of (gx—;, gx) guaranteed
by the implicit function theorem.

When the continuous-time Lagrangian L is non-degenerate, i.e. the discrete Hessian is
invertible, repeated application of the mapping (2.10) defined by the DEL equations (2.8)
generates a sequence k > ¢, that approximates a solution of (2.3) sampled at the
times f; = hk. In particular, note that such a discrete-time trajectory requires 2m initial
conditions to supply to (2.10), which is the same number of initial conditions required to
specify a solution of the continuous-time Euler-Lagrange equations (2.3).

Suppose now that the continuous-time Lagrangian L has the general form

L(z, %) = 9:(2)7 — H®). 2.11)

Lagrangians of this form in arbitrary variables are known as phase-space Lagrangians
(see Cary & Littlejohn 1983), and are notable because every Hamiltonian system on an
exact symplectic manifold is governed by such a Lagrangian. The class of Lagrangians
in (2.11) is a generalization of phase-space Lagrangians of the form p,4' — H(q, p), in
canonical variables. Here we have conformed with standard conventions when discussing
phase-space Lagrangians in non-canonical variables by making the notational change g —
Z.

Because L is linear in the velocities, the velocity-space Hessian is zero, M; = 0. The
Euler-Lagrange equations ((2.3) with ¢ — z) therefore cannot be equivalent to a system
of 2m first-order ordinary differential equations on (z, z)-space, or equivalently a system
of second-order equations on m-dimensional z-space. Instead they are equivalent to the
first-order system on the m-dimensional z-space given by

. IH
doy = 5. (2.12)

where the m x m antisymmetric matrix w; is defined by

@ 0%,  dv; 2.13)
A az/ 97
If the functions ¢; have the property that wj is invertible for each z, this yields a system
of m first-order equations. It follows that the phase space for a phase-space Lagrangian
has dimension m, which is half the dimension of the phase space for a non-degenerate
Lagrangian. In particular, the number of initial conditions required to specify a solution of
(2.12) is m instead of 2m.
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Application of variational integration to a phase-space Lagrangian is usually
problematic for the following reason. Because invertible matrices are generic, most
choices of discrete Lagrangian L, will have an invertible discrete Hessian M. One
consequence of the invertibility of the discrete Hessian, which is suggestive that something
is wrong, is that the DEL equations for L, involve three time levels, as in (2.8), and
therefore require 2m initial conditions to generate the discrete-time trajectory k +— z.
Indeed, from the perspective of the DEL equations (2.8), a discretized phase-space
Lagrangian is no different from a discrete Lagrangian coming from a non-degenerate
continuous-time Lagrangian. Therefore the mapping (2.10) is still well defined, which
implies that the discrete system derived from a generic discrete Lagrangian requires 2m
initial conditions, in spite of the fact that the underlying continuous-time system (2.12)
requires only m initial conditions.

The preceding argument shows that typical variational integrators for phase-space
Lagrangians are multi-step methods. Multi-step methods generally have parasitic modes,
which may be unstable. Nevertheless, many multi-step methods have favourable numerical
performance, in spite of the existence of these parasitic modes (see Hairer et al. 2006). In
a reasonable scheme for a dissipative system, such parasitic modes damp out harmlessly in
the early stages of the integration. However, the parasitic modes of multi-step variational
integrators typically do not damp out. To understand why, we note that multi-step
integrators arising from discrete phase-space Lagrangians must have either neutrally stable
parasitic modes or one growing parasitic mode for each damped parasitic mode (see
Ellison et al. 2018). This symmetry between damped and growing parasitic modes is a
consequence of the preservation of a symplectic form on the 2m-dimensional space of
pairs (z1, z2). Thus, the parasitic modes associated with a discrete phase-space Lagrangian
may be neutrally stable at best, but still susceptible to driving by nonlinear terms.
Unfavourable behaviour of parasitic modes arising from examples of discrete phase-space
Lagrangians is described in Ellison et al. (2018) and Ellison (2016).

Ellison et al. (2018) observed that the following special class of discrete phase
Lagrangians avoid these multi-step issues in discretizing phase-space Lagrangians.

DEFINITION 2.1 (properly degenerate discrete Lagrangian). Suppose the dimension m
of phase space (coordinates z) is even. A discrete Lagrangian L,(zy,zy) is properly
degenerate if the rank of the discrete Hessian is everywhere half-maximum. In other words
the rank of M (zo, z1) is m rather than 2m for all (2o, z;).

REMARK 2.2. As discussed in Ellison (2016) and Ellison et al. (2018), for a system
with continuous Hessian of rank zero, the condition that the discrete Hessian has rank
half-maximum is exactly the condition that the DEL equations define a mapping on a
space of the same dimension as the continuous system’s phase space.

REMARK 2.3. We write the dimension as 2m; this dimension is necessarily even when
working with phase-space Lagrangians because an antisymmetric matrix like w; always

has a non-trivial null space in odd dimensions. So (2.12) cannot' be solved for 7'.

A simple example of a non-properly degenerate discrete Lagrangian in a one-degree-of-
freedom (m = 1) system in canonical variables follows from a centred discretization of

'An antisymmetric real matrix has pure imaginary eigenvalues occurring in complex conjugate pairs, so one
eigenvalue must be zero in odd dimensions.
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S = [(pg— H)dz:

Po+P191 — 4o qo+ g1 po—+pi
L ,Pos q1s = —H , . 2.14
(4o, Po> 415 P1) 5 ; ( > 5 ) (2.14)
The DEL equations are
aL b 9y b aL b b b
4 (90, Po, q1, P1) n a(q1,P1, 92, P2) _0 (2.15)
9q1 9q1
and
aL 9 9 9 8L 9 9 9
4 (90, Po» 41, P1) 4 4 (q1, P15 92, P2) -0, (2.16)
op1 op1
leading to
r=ro_ o tua, (2.17)
2h 2 2
4@ —q 1 1
Z T —_H, (0, 1)+ -H(1,2), 2.18
T i O, 1)+ S (1,2) (2.18)

where H; and H, are derivatives of H with respect to its first and second arguments,
respectively, and the symbols (0, 1), (1, 2) represent (go + ¢1)/2, (po + p1)/2 and (g, +
q2)/2, (p1 + p2)/2, respectively. This is clearly a multi-step method, linking steps k =
0, k=1, k=2, i.e. giving second-order difference equations for g, and p;. (The finite
difference forms for ¢ and p suffer from ‘stencil spreading’.) The discrete Hessian for this
system is

( 3%Ly/9q0dq1  0°La/dq00p: )

9°La/dpodq1  9°La/dpodp
_ Hu ((go +41)/2, (po +p1)/2) 1 Hip(go+491)/2, (po+p1)/2)

— 4 2h 4
| I Ha(qo+4g1)/2, (po+p1)/2) ~ Hx(qo+491)/2, (po+p1)/2) ’

2h 4 4

(2.19)

generically of full rank, showing agreement between the multi-step property of the DEL
equations and the rank of the discrete Hessian for this system. And, indeed, this system
requires an extra set of initial conditions and exhibits parasitic modes.

This example is to be contrasted with the first-order-accurate case arising from the
discrete phase-space Lagrangian, again in one degree of freedom and in canonical
variables:

dk+1 — 4
=

Li=p— & — H(qes1, po), (2.20)

leading to

Gi+1 = Gx + hH (s 1, P, Prrr = P — hH (Grg1, Pr)s (2.21a,b)

a form of the symplectic Euler scheme (compare with Hairer ef al. 2006), with g updated
implicitly and used in a leapfrog manner in the explicit update of p. The discrete Hessian
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is
0 0

1
T Hy (q1,p0) O

of rank m = 1, traced to the fact that L, in (2.20) depends on p at only one step. This result
is consistent with the single-step nature of the scheme. The adjoint scheme S,Tl also has a
discrete Hessian with rank m = 1.

Ellison (2016) proves that properly degenerate discrete phase-space Lagrangians are
necessarily free of parasitic modes. This result suggests, but does not directly imply, that
variational integrators derived from properly degenerate discrete phase-space Lagrangians
are single-step methods instead of multi-step methods. In fact, under mild technical
hypotheses, properly degenerate discrete phase-space Lagrangians are indeed single-step
methods.

The simplest way to understand the single-step nature of variational integrators obtained
from properly degenerate discrete phase-space Lagrangians is to restrict our attention to
the linearized DEL equations.

(2.22)

THEOREM 2.4 (linearized single-step property). Let L,(z1, 22) be a properly degenerate
discrete Lagrangian satisfying the mild technical hypotheses (G1)-(G2) described in
Appendix A. Then the DEL equations linearized about a trajectory k +— z{ are equivalent
to a single-step method.

REMARK 2.5. For a complete statement and proof of theorem 2.4, see theorem A.l in
Appendix A.

Proof sketch. Let k — z; (the limit ¢ — O represents a reference trajectory) be a smooth
e-dependent family of solutions of the DEL equations associated with a properly
degenerate discrete Lagrangian:

oLy oL,
— (i )+ —(,5.,)=0, 2.23
where d/0dz; and d/0z, refer to derivatives with respect to the first and second arguments
of L,. Differentiating the DEL equations with respect to € at € = 0 shows that the

linearization k = §zx = 0.(z}).=o of a trajectory near k — zg satisfies the linearized DEL

equations
Ay(K)8z]_, + C;(k)8z] + B;(k)dz],, =0, (2.24)
where we have introduced the convenient shorthand notation
Ay(k) = M2, 7). (2.25)
By(k) = Mz, 2,1, (2.26)
dLy 21,
Citkh) = ——(@)_1, 2) + ——— (20, 20 1) (2.27)
0278z, T aziaz] !

Note that C;;(k) = Cj;(k) is a symmetric matrix, while A;;(k + 1) = B;;(k) are transposes
of one another after a time-step shift.

Let [Z] denote the m x m matrix whose components are Z;. Set X; = im[A(k)] and ¥} =
im [B(k)], where im denotes the range/column space of the matrix. By proper degeneracy
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and hypothesis (G1), dimX;, = dimY, = m/2 and X; N Y; = {0}. Therefore R" = X; & Y,
decomposes as a direct sum for each k. Associated with this direct sum is the pair of
projection matrices [7x(k)] : R” — X; and [wy(k)] : R™ — Y. Applying the projection
[7x (k)] to the linearized DEL equations gives

Ay (k)37 + (x(K))7Cy (k)87 = O, (2.28)
while applying the projection [y (k)] gives
(ny(k))i;C;i(k)Sz,{ + B,j(k)Sz,{Jrl =0. (2.29)

In particular, by shifting (2.28) ahead by one time step we obtain the implicit linear relation
between 8z, and 8z, given by

0 = Ak + 18z + (ux(k + 1)7Cy(k + 1)dz,,, (2.30)
0 = (rty(k))7Cy (k)82 + By (k)8z].,,. (2.31)

To complete the proof it is enough to demonstrate that for each §z;, there exists a unique
8zi+ that satisfies (2.30)—(2.31). This is done in the proof of theorem A.1 in Appendix A.
O

REMARK 2.6. Theorem A.4 in Appendix A uses the above result and the implicit function
theorem to prove that DVIs are also one-step methods at the nonlinear level.

We therefore have the following simple explanation for the absence of parasitic
modes in variational integrators derived from properly degenerate discrete phase-space
Lagrangians. Because parasitic modes only arise in multi-step schemes, and DVIs are
equivalent to single-step schemes by theorem A.4, parasitic modes are not generated
by DVIs. Note that Ellison (2016) proves the absence of parasitic modes using less
direct arguments, but does not prove that DVIs are generally single-step methods. (The
single-step property was observed in examples, however.) Theorems 2.4 and A.4 therefore
give a more detailed understanding of the benefits of DVL.

3. Second-order DVI

We now turn to the task of constructing degenerate variational integrators with
second-order accuracy. As in Ellison (2016) and Ellison et al. (2018), we focus on
non-canonical phase-space Lagrangians of the form

L(x,y, %, 3) = fix, )& — H(x, y), (3.1

where the dimension m is even and i = 1, ..., m/2. Such a phase-space Lagrangian is a
special case of the general phase-space Lagrangian in non-canonical variables in (2.11),
without terms proportional to y;. The phase-space Lagrangian of the magnetic field line
case of § 4.1, with the gauge discussed there, is of this form. The guiding centre Lagrangian
of §4.2 uses a similar gauge and is of this form for the restricted class of magnetic fields
discussed in Ellison (2016) and Ellison et al. (2018). Burby & Ellison (2017) used toroidal
regularization to transform the guiding centre phase-space Lagrangian into this form for
general magnetic fields with a single nowhere-vanishing covariant component. We have
not investigated integrators for phase-space Lagrangians of the form in (2.11). It is of
course possible to transform to canonical variables, a special case of the Lagrangians of
the form in (3.1), but the cost of the computations required for this transformation, as well
as for a more general transformation producing the form in (3.1), may be prohibitive. We
defer further work in this area to a future publication.
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3.1. Composing a first-order scheme with its adjoint?

A common method for constructing a second-order-accurate integrator starting from a
first-order-accurate integrator is to compose it with its adjoint (see Hairer et al. 2006),
discussed above for the special case of the symplectic Euler scheme. To show what can go
wrong with composing a first-order scheme with its adjoint in the context of variational
integration, let us introduce the discrete phase-space Lagrangian for a canonical system in
one degree of freedom:

q —q
L= pk% — H(qs, po)- 3.2)

Except for the change H(qiy1, pr) — H(qy, piv), this discretization is identical to that of
the symplectic Euler scheme of (2.20) and (2.21a,b). (The reason for this modification of
the symplectic Euler Lagrangian is that it has an O(h) term in its preserved two-form,
similar to the term in the magnetic field line and guiding centre examples. Ramifications
of this O(h) term are discussed below.) Variations with respect to p; and g, yield the map

Giy1 = G + hHa(qr, pi)s Pt = P — hH (Giy 1, Pis1) - (3.3a,b)

The first of these is explicit with respect to ¢; the second update is implicit in p and
leapfrogged in ¢, so that this scheme is slightly different from the updating in symplectic
Euler.? The adjoint of this scheme follows from k <> k + 1, h — —h. We find

(Gr+1 — Q1)

h — H(qi+1, Prs1), (3.4

Ly = pis

leading to
Dit1 = P — hH(qr, i)y Gir1 = Gk + hH2 (Gry1, Prsr) - (3.5a,b)

This scheme is explicit in p, implicit and leapfrogged in g.
By direct substitution, we find that

(1 + hHy»(q, p)) dg A dp (3.6)

is preserved by this scheme. As discussed in Ellison et al. (2018), the preservation of
this two-form can also be shown by inspecting the first and last terms in dS =d ), hL,.
This is the discrete analogue to the variation of § = fOT( pg — H)dt, and §S = 0 gives
fOT[(q — H,)dp + (—p — H,) dgq] dt + p dg|{. Here, the vanishing of the integral provides
Hamiltonian equations, and the endpoints, with d>S = 0, imply the conservation of the
canonical two-form @ = dg A dp, showing the canonical symplectic property of the
equations. Similarly, for a general non-canonical system, the endpoint terms in S =
[(®:1(2)7 — H(z)) dt show the preservation of w;dz’ A dz/, where w; = 9;; — 9;;. The
preservation of this form shows the non-canonical symplectic nature of the discrete map.
This property is consistent with the fact that this scheme and the adjoint symplectic Euler
scheme are equivalent under a non-canonical change of variables. Unlike the symplectic
Euler scheme, which preserves the canonical two-form w = dg A dp, this form has w =
w(h) = (1 + O(h))dg A dp. That is, in this scheme the phase-space coordinates (g, p)

2If we define Q. as updating ) = qo + hHa(qo, po), p1 = po and Py, by p1 = po — hHi(qo. p1). 41 = qo, we find
that the present scheme equals Pj, o Q,;, and the adjoint of the symplectic Euler scheme is = Q,;, o Pjj,, so the present
scheme and the adjoint symplectic Euler scheme are equivalent under a non-canonical change of variables, and the former
is therefore symplectic under non-canonical variables.
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are not canonical. By analogous arguments, or by direct inspection, the adjoint scheme
preserves

@' (h) = w(=h) = (1 — hHyy(q, p)) dg A dp, (3.7)

and because the correction is O(h), the two-forms differ by O(/4). From these observations,
when w(h) # w(—h) it is not clear how to determine which two-form, if any, is preserved
by the composition of the scheme and its adjoint. In § 5.1 we show numerical evidence that
such a composed form does not in general preserve any two-form. Also, in Appendix C
we show the direct analogy to the symplectic Euler scheme in (2.21a,b) (not (3.3a,b)), and
show that its preserved two-form also has O(h) corrections. While we cannot rule out the
existence of a first-order-accurate scheme in our class of non-canonical variables (which
would allow composition with its adjoint to obtain second-order accuracy), we proceed in
the next section to show two separate second-order-accurate schemes for such systems.

3.2. Centred schemes for second-order accuracy

Because composing a first-order DVI with its adjoint does not reliably produce a scheme
preserving a symplectic form (although such a scheme is second-order accurate), we are
naturally led to consider the problem of proceeding to higher order by identifying improved
properly degenerate discrete Lagrangians. We first illustrate for a one-degree-of-freedom
case (m = 2) in canonical variables, introducing two different staggered, centred schemes
to discretize the action S = [ Ldt for the phase-space Lagrangian L(q, p, ¢, p) = pg —
H(q, p). The first scheme has

(g1 — qr) gx +q
La(qk, Q1 Prv1/2) =Pk+1/2% —H %,Pkﬂ/z . (3.8)

This scheme includes a staggered nature of p and a midpoint nature with respect to q.
Taking variations with respect to g, and py,, we find

_|_
Gi+1 = qr + hH, (%’pk-ﬁ-lﬂ) ; (3.9
h + h -1+
Pi+172 = Pi—172 — §H1 <%,Pk+l/2) - EHI (%,Pk—l/z) . (3.10)

We call this the midpoint DVI (MDVI) scheme. This scheme is clearly time-centred,
leading to second-order accuracy, as we discuss below. This scheme must be advanced
implicitly in both variables. It can easily be shown to be properly degenerate, by showing
that the rank of the 2 x 2 discrete Hessian is one, essentially because, as for the symplectic
Euler scheme, its adjoint and the schemes of (3.2) and (3.4), the discrete Lagrangian
L, depends on p at only one time level. This degeneracy is in spite of the fact that the
scheme appears to be a two-step scheme, connecting g1, gx and g (but only p;_;,» and
Pi+172)- As in Ellison et al. (2018), g, can be expressed in terms of g, and py_;,, by the
implicit equation gy = qx — hH>((gx—1 + gi)/2, px—1/2) obtained from (3.9), retarded by
one step. With this substitution, we define a time-advance map from (3.9) and (3.10) at
the current step of the form (gk, px—1,2) = (Gk+1, Pit1/2), Obtaining a one-step method.
This property of appearing to be of two steps but showing a single-step nature after some
substitutions, as discussed at length in Ellison et al. (2018), shows the importance of the
discrete Hessian test; indeed, without the assurance of the discrete Hessian test, it would
be easy to miss the possibility of this substitution.
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The second scheme uses

(Grr1 —qr) 1 1
Li(Gxs G+15 Prev1/2) :pk+1/2% - EH (qi: Prs12) — EH (qks1, Prsre) » (311
and variations lead to
h h
Gr+1 = G + EHZ(Qk,pk-H/Z) + §H2(9k+1,Pk+1/2), (3.12)
h h
Pik+1/2 = Pr—1/2 — EHI (g Prs12) — §H1 (g Pe12) - (3.13)

This second scheme is also time-centred, again showing second-order accuracy. This
scheme must be advanced implicitly in both variables. For this scheme, the discrete
Lagrangian is obtained using a trapezoidal quadrature scheme, hence we call this scheme
the trapezoidal DVI (TDVI) scheme. In this scheme, the single-step nature is evident
from the DEL equations; of course, the Hessian test confirms the single-step character.
Finally, backward error analysis for both the MDVI and the TDVI schemes, with ¢, =
q(t = kh) and pyyi, = p((k+1/2)h), shows second-order accuracy. This derivation
follows from a Taylor expansion about t; = kh, e.g. qx+1 = q(t) + hq(ty) + (h*/2)§(t) +
O), pryiyn = pt) + (h/2)p(1) + (h*/8)p(1) + O(h*); upon substituting in either
(3.9) and (3.10) or (3.12) and (3.13) and dividing by &, we find that the O(h) terms all
cancel, proving second-order accuracy.

In both schemes, if initial conditions ¢, and p, are both given at = 0, the momentum
variable needs to be regressed to p_;,» by a processing scheme, which we discuss
shortly. Numerical trials using the non-reversible (cf. Appendix B) Hamiltonian H =
(p* + ¢*)/2 + agp?/3 indicate second-order accuracy and the good long-time behaviour
of a scheme with a preserved two-form.

For the non-canonical (but not completely general) phase-space Lagrangians of the form
of (3.1), the MDVI scheme has

Xk + Xp1 X, —x Xi + Xyt
Ly(Xt, Yer125 Xi1) = fi (T+ayk+l/2> th k —H( 5 ki ,yk+1/2> . (3.14)

Again, the centredness suggests, and backward error analysis indeed shows, second-order

accuracy. Also, the staggered-grid discrete Lagrangian (3.14) preserves a symplectic form

determined, as before, by examining the endpoint terms in the variation of the action.

Again, the discrete Hessian has half-rank because L; depends on y at only one time level.
The DEL equations stemming from (3.14) are given by

S (k4 3) Gy —x0) + i (k= 3) 0 —x_))

h
—(fk+3) =fi(k=3)) =5 (H; (k+3) + H; (k= 3)) =0, (3.15a)
fra (k4 3) (W) —x}) —hH o (k+ 1) =0, (3.15b)

where i,j € {l,...,m/2}, m is even, while « € {m/2+1,...,m} and (k+ 1/2) is
shorthand for the arguments ((xxt1 + xx)/2, yk+1,2) and (k — 1/2) is analogous. Like the
canonical MDVI, the apparent dependence on x;_; may be eliminated in favour of a
function depending on (x, yx—1,2). In practice one has access to x;_; due to the state at
prior iterations (except for on the first step) and the stored value may be used instead of
directly solving for x;_, at each new iteration.
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The TDVI scheme for this class of non-canonical cases arises from

1 Xpwt — X
Lo, Yer1/2: %) = 5 (i Yirr2) + it Yeg1/2)) T

— 3 (H s yisr12) + H X, Yeg12)) - (3.16)

Again, the time-centred property leads to second-order accuracy, and its discrete Hessian
shows that it is properly degenerate, again because L, depends on y at only one time level.
Performing variations with respect to x, yx11,2 yields the TDVI scheme:
% (fi,j(xk, Vit1/2) (XLH - Xf() + fii Xk, Yi—12) (xfc — Xf(_]))
- % (ﬁ(ka, }’k+1/2) +]§'(xk, yk+1/2) —ﬁ(xk, yk71/2) _]s'(xkflaykfl/Z)

- % (H,j(xka YVir1/2) + H,j(xk+1,yk+1/2)) =0, (3.17a)
2 (foa Oy Yis172) F froa Gt Yir1/2)) (Kfpy — X5)
— /51 (H,a(xk, Vir172) + H o (Xep1, }’k+1/2)) =0. (3.17b)

In contrast to the canonical setting, the TDVI scheme introduces dependence on x;_; in
general. Of course, this dependence is superficial, and can be eliminated in favour of a
function of (xi, yx—i/2) as previously discussed. Relative to the MDVI scheme, the TDVI
scheme requires more function evaluations (i.e. additional evaluations of f and H) in the
update rule; this has the potential to increase the computational expense of TDVI relative
to MDVL.

Of course, initial conditions for the time-marching scheme defined by (3.14) or (3.16)
will be supplied at an integer time step instead of directly on the staggered grid. In
order to transform integer-time-step initial conditions (xy, yo) to staggered-grid initial
conditions (xy, y_1,2), it is sufficient to advance y backward in time by a half-step //2
using any scheme that is accurate to first (or higher) order. This transformation is encoded
in the mapping ¢_;,» : (X0, yo) = (xo, y—1,2). Similarly, at the end of a simulation, the
staggered-grid data (xy, yv—1,2) must be collocated to the integer-grid data (xy, yy).
The natural way to do this is simply to apply the inverse of ¢_;/, i.e. set (xy, yy) =
(p:,',/z(xN, Yn—1/2), and second-order accuracy is preserved. These two conditions are
special cases of enforcing the relationship

O_n2 (X Vi) = (X, Yi—1/2) (3.18)

for all k. Indeed, for displaying results during a computation, e.g. where k equals a
multiple of a fundamental period M, typically with M > 1, these results will retain
second-order accuracy if the points are collocated according to (3.18). Furthermore, this
process preserves the symplectic nature of the scheme. This is because applying the
processing scheme at the initial step and its inverse at the final step essentially defines
the step in terms of a non-symplectic change of variables. Writing the processing step in
(3.18) as @ and the time step as 7}, this new scheme is written as Th =@ 'oT,0P.Fora
symplectic scheme in canonical variables, this defines an equivalent map in non-canonical
variables; for the case under consideration here, where the symplectic scheme is already
in non-canonical variables, this transformation just specifies an O(h) transformation to
other non-canonical variables. Regarding invariants, the original symplectic scheme may
not preserve invariants exactly, but typically such a scheme will preserve invariants such
as energy approximately for sufficiently small A, preventing, for example, secular or
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exponential growth in the energy. The same properties hold for the modified scheme 7).
In Blanes et al. (2004), the idea of increasing the order of a low-order scheme using a
map and its inverse as pre- and post-processors is explored in greater detail. It would be
interesting to determine if even higher-order DVIs may be derived using more elaborate
processing than the more-or-less obvious processors described here.

4. Magnetic field line and guiding centre examples

In this section we apply the discretizations of (3.14) and (3.16) to the Lagrangians for
the magnetic field line problem and the guiding centre system, both described in Ellison
et al. (2018) and Ellison (2016).

4.1. Magnetic field line
For the problem of tracing magnetic field lines, we take the action to be equal to the flux:

dx dx
D = /L(x, E) dr = /A(x) . d—tdt, 4.1)

where A4 is the magnetic vector potential. The invariance with respect to reparameterization
of time (see Ellison et al. 2018) in (4.1) is consistent with its Euler-Lagrange
equation, namely (dx/df) x B = 0, where B = V Xx A4 is the magnetic field: this equation
determines the direction of the flow but not the speed. This time invariance is dealt with
by parameterizing the field line trajectory in terms of one of the coordinates (without loss
of generality, we choose x*) instead of ‘time’ ¢:

D = /L(xl,xz,xS, dxz/de,x3) dx’ = / (Az(xl,xz,x3) dxz/dx3 +A3(x1,x2,x3)) dx’.
4.2)

This Lagrangian is of the form in (3.1), with f=[0 A,] and H = —Aj;; the
Euler—Lagrange equations for (4.2) are

dx'/dx’ = (A3, — Az3)/As = B' /B, (4.30)
dx?/dx’ = —As /A, = B*/B’. (4.3b)

The MDVI then follows from (3.15), which when expressed in terms of the magnetic
vector potential becomes

Asi(k+ ) (x5, — x3) + hAs 1 (k+ 1) =0, (4.4a)
3 (Aol 3) (yy — %) + Azalh = 5) (5 — %))
— (Aatk+ 1) —As(k — 1)) + 4 (Aspk+ 1) + Asa(k— 1)) =0, (4.4D)

where (k + 3) denotes evaluation at (x; ., ». (Xz,; 4 X;)/2, X, ,). Similar to the process
in Ellison (2016) and Ellison et al. (2018), these equations are made into an explicitly
single-step process by writing the first with k — k — 1, solving for x;_; and substituting
for x;_; in the remaining equations without the k — k — 1 incrementation.
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Similarly, the TDVI algorithm for the magnetic field line problem follows from (3.17):

% (All(xli-&-l/z’ xl%+1’ x/3<+1/2) + Az,l(xli+1/2, X%, x2+1/2)) (X,%_H — xZ)

+ § (A3.,1(x/1+1/2v X x2+1/2) +A3,1(x,1+1/2, xi+1vx13+1/2)) =0, (4.5a)
% (A272(xli+1/2’ x,%, x/3c+1/2)(x1%+1 - Xi) +A2,2(x11—1/2’ Xi, Xi_l/z)(Xi - x/%—l))

+ % (AQ(xll—l/z’ xl%—l ) xz—l/z) + Az(xi_l/z, X/%, Xz_l/z))

1 1 2 3 1 2 3
—2 (AQ(ka/z’ Xe» Xep1/2) A2y s xk+1’xk+1/2))

=

+ 5 ( 3,2(x/i—1/2’ X% xz—l/z) +A3,2(xli+1/2v X% x2+1/2)) =0. (4.5b)

[\S]

Numerical tests of the MDVI and TDVI schemes are presented in § 5.

4.2. Guiding centre equations

We treat the example of the guiding centre equations based on discretizing the toroidally
regularized (compare with Burby & Ellison 2017) phase-space Lagrangian

L(z,2) = Ay ()X + (A3(x) + u)x’ — Hy
= AJ(x) I + Al(x, u) X* — Hy, (4.6)

where Hye = (B*/B)* u*> + uB — 1E% /B> — ub - (E x Vx)/B + ¢ is the guiding centre
Hamiltonian, in toroidally regularized non-canonical variables, u is the toroidally
regularized parallel velocity, p is the magnetic moment, B is the magnitude of the
magnetic field and ¢ is the scalar potential for the electric field E = —V ¢. For simplicity,
we neglect time dependence in the electromagnetic fields. Toroidal regularization requires
|B3| > 0 everywhere. In toroidal geometries relevant to magnetic fusion energy, possible
choices for coordinates include (x!, x?, x*) = (R, Z, ¢) or (x', x>, x*) = (r, 6, ¢), where
(R, Z, ¢) denote cylindrical coordinates and (r, 6, ¢) denote toroidal coordinates. As in
the magnetic field example, the gauge condition A; = 0 was imposed to lead to proper
degeneracy. (The original form introduced in Ellison et al. (2018) and Ellison (2016)
required that the covariant component B; of the magnetic field also vanish, but Burby
& Ellison (2017) subsequently relaxed that condition.)

The second-order-accurate DVIs follow by establishing the correspondence with (3.1);
in this case, f = [0 A; Ag 0] and H = H,.. We discretize this phase-space Lagrangian
by the MDVI and TDVI schemes for second-order accuracy. For the MDVI discretization
of the guiding centre system, we use the discrete Lagrangian

Ly(ric12: s Ocets Bs Dt tes172) = Ag(k + ) (Ors1 — 61
+ (A (k + ) + ws12) (Desr — ) — hH(k + 2). 4.7
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The MDVI scheme, following from (3.15), is

Apr(k+ 2Ot — 6 + A (k + 2) (P — d) — hH . (k+ 3) = 0, (4.8a)
FApo(k — ) (O — 6i1) + 3A0.0(k + 3) (i1 — 6
+ %A¢,9(k - %)(¢k — Pr—1) + %A¢,9 (k+ %)(¢k+1 — &)

+ Ao (k — %) + w1 — Aok + %) — Upg12 — % (H,e(k - %) + H gk + %)) =0,
(4.8b)

%Aw(k - %)(Qk —O1) + %A0,¢(k + %)(QkJrl — 0k)
+ %A¢.¢(k - %)(ﬁbk — 1) + %A¢,¢(k + %)(¢k+1 — &)

+Ask— ) Fuwip —Agk+ ) —wrp — 2 (Hpk— 1) + Hy(k+ 1)) =0,
(4.8¢)

P — e — §H  (k + 3) =0, (4.8d)

where (k+ 1/2) refers to (7it1/2, (Ok + 0is1) /2, (Pr + Pri1)/2) and similarly for (k —
1/2). The incrementation—substitution process for obtaining a scheme that is explicitly
single step, introduced in Ellison (2016) and Ellison et al. (2018) and used in the magnetic
field lines case above, is also used here.

For the TDVI scheme, we use the discrete Lagrangian in (3.16), namely

La(rie172, Ok Okts G Priers Upr12)
= 3 (Ao (rks1/2, O D) + Ao (2, Oy 15 Peit)) Grsr — 0
+ 3 (A (Tisr/2, O D) + Ag (P12, Okt Pii) + 2uki172) Bt — Br)
— 2 (H(rkg1/2: 6 D1 i1 2) + H (i1 2, Ok, Prrs 12 ] - (4.9)

The guiding centre TDVI update equations follow from straightforward variations of this
discrete Lagrangian (or from (3.17)) and are omitted here for brevity.

5. Numerical tests

In this section we present numerical tests showing that the MDVI and TDVI schemes
provide all the advantages of variational schemes and are second-order-accurate.

5.1. Failure of composing with the adjoint

In §3.1 we noted an example of a scheme with a preserved two-form with w(h) #
w(—h), suggesting complications if the scheme and its adjoint are composed in an
attempt to obtain second-order accuracy. In this section we give a concrete example for
which the composed scheme appears not to have a preserved two-form. We consider the

non-reversible Hamiltonian

rtq o
2 3
Numerical tests show that both of the schemes of (3.3a,b) and (3.5a,b) have good
long-time behaviour for this Hamiltonian. The orbits of the two first-order schemes
have bounded behaviour but, with first-order accuracy, have noticeable oscillations in the
value of H between bounds. The composed scheme, which has smaller oscillations in H,
otherwise performs poorly: the points that should stay near the constant H surfaces spiral

H =

(5.1
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FIGURE 1. Phase portrait (@) and energy versus time (b) for two different methods of integrating
the non-reversible Hamiltonian H = (p? + ¢%)/2 4+ agp’/3. The ‘direct’ scheme of (3.3a,b),
and shown in green, is first-order-accurate and preserves a discrete symplectic structure that
depends on the numerical time-step size /&, with similar results for the adjoint scheme in (3.5a,b).
Composing the direct method with its adjoint achieves second-order accuracy by virtue of
centring in time, giving smaller oscillations in H. However, the numerical results indicate that
the composed scheme leads to growth in H and therefore does not preserve a two-form.

out, as shown in figure 1. The behaviour of H in time shows exponential increase, with
y = O(h?). Appendix B shows an example for which composition does appear to give
useful results, but this particular example is a reversible system, and this reversibility by
itself appears to be responsible for the positive results.

5.2. Magnetic field line

To test the proposed algorithms in a magnetic configuration representative of those of
interest to the magnetic fusion community, we use the simple analytic expression for an
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axisymmetric, toroidal magnetic field presented in Qin, Guan & Tang (2009):

BoR 0 By
A, 0,0) = 222 (rcosh — Rolog [ 14+ 527 ) ) vo — 2 vy, (5.2)
cos2 6 Ry 299

where By is a magnetic field amplitude, R, is the major radius and g, = /2 is the on-axis
safety factor. The variables (x', x?, x*) of (4.2) are replaced by simple toroidal coordinates
(r, 0, ¢), and ¢ takes the place of the time variable, as discussed in § 4.1.

First, we demonstrate numerically that the MDVI and TDVI achieve the anticipated
second-order accuracy. Next, we demonstrate that the proposed algorithms exhibit the
expected qualitative behaviour of symplectic integrators. To the axisymmetric magnetic
field of (5.2) we add a perturbation of the form

Borz .
A(r6,9) = Ao(r.0.9) = 5 - D 8isin(m6 — nig)Vo, (5.3)
0

where A, is given by (5.2). We choose two perturbative harmonics, my = 3, ny = 2 and
m; =7,n; =5, with amplitudes § = §; = 10~*. These perturbations lead to magnetic
islands at the resonant magnetic surfaces, and small stochastic field line regions in the
(my, ny) = (3, 2) and (m,, n,) = (7, 5) resonant regions.

We test the order of accuracy by varying the step A¢ in factors of two across a range
of 2° and comparing with a fourth-order Runge—Kutta scheme with an extremely small
value of A¢. See figure 2. We compare the MDVI and TDVI schemes with each other and
with the first-order variant described in Ellison ef al. (2018) in which the three variables
(r,0, ¢) are collocated, i.e. not staggered. We integrate over a large number of toroidal
transits for this comparison. Second-order accuracy is confirmed for the MDVI and TDVI
schemes, as is first-order accuracy for the non-staggered scheme. The MDVI and TDVI
schemes exhibit relatively similar accuracy, with the MDVI scheme being more accurate
for this particular example.

The Poincaré surface of section at ¢ = 0 is shown in figure 3. Figures 3(a) and 3(b)
show the second-order Runge—Kutta (RK2) scheme, with A¢ = 0.1 and A¢ =5 x 1074,
respectively. Figures 3(c) and 3(d) show the MDVI scheme for the same two values of
A¢. The RK2 results in figure 3(a) show blurriness of the Kolmogorov—Arnold—Moser
(KAM) surfaces, falsely indicating a higher degree of magnetic stochasticity. The results
in figure 3(b) are greatly improved. The two MDVI cases in figure 3(c,d), for very different
steps A¢, look almost identical, showing very good preservation of KAM tori. The TDVI
scheme leads to results essentially indistinguishable from those of the MDVI scheme for
comparable time steps.

5.3. Guiding centre

In this section we show numerical results for the guiding centre example, with
time-independent potentials and scalar potential ¢ = 0. That is, physically, the electric
field is zero. See figure 4, confirming second-order accuracy in 7 = At for the MDVI and
TDVI schemes. Interestingly, the error in the MDVI scheme is a factor of about 3 larger, in
contrast with the results shown in figure 2, where the MDVI and TDVI results are reversed.
As for the magnetic field line results, this difference is due to the very long run times.

6. Non-uniform time stepping

We first review the variational form of the extended phase-space method for a
Hamiltonian system in canonical variables. This method allows us to prescribe variable
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FIGURE 2. Comparison of the order of accuracy of the MDVI scheme, the TDVI scheme and the
collocated first-order-accuratescheme of Ellison et al. (2018) for the magnetic field line problem,
over a range of 2° in A¢. The dashed curves show Error~ / (blue) and Error~ h* (green) for
comparison.

time steps. We show an example of discretizing this action by the symplectic Euler
scheme, and show that it is a single-step method, i.e. a degenerate variational integrator.
We proceed to formulate an extended phase-space method for systems having the
form of non-canonical variables prescribed in (3.1), giving examples of magnetic
field line integration and the guiding centre equations. For the most straightforward
first-order-accurate scheme with non-uniform time steps, we exhibit an analogue of the
modified symplectic Euler schemes of (3.3a,b) and (3.5a,b). We show that this method is
a DVI scheme, connecting only two time levels, according to the discrete Hessian method
as well as by a direct substitution. We also discuss extending these non-uniform time-step
methods to second-order accuracy, as well as using adaptive time-step control based on an
error estimator.

6.1. Canonical systems

We first review the extended phase-space method in canonical variables, in one degree
of freedom for transparency. The time stepping is defined by a time-step density p(q, p),
with p(q, p) dt = d¢. We prescribe uniform steps in the time-like variable ¢, with p At ~
A¢{ = h = const. We extend the action S = [(pdg/dt — H)dt for the Hamiltonian

H=H(q,p)to
dg H(q,p) (dw 1 )}
S, = - — +r|—— de. 6.1
/ [pd{ 0(q,p) T ¢ p(gq.p) ¢ 6D

Here we have written time as the dependent variable w, and the Lagrange multiplier w
enforces the time-step condition as a constraint. We rewrite this as

dg dw H(q,p) +T[:|
S, = —_t1T— - — | dg, 6.2
/[pdi nd{ p(q,p) ‘ (62)

leading to the extended phase-space Hamiltonian K(q, p, ©) = (H(q, p) + ®)/p(q, p),
with an added canonically conjugate pair, (¢, p) — (g, p, w, 7). It is clear that, since K
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FIGURE 3. Poincaré section ¢ = 0 for the magnetic field line problem. For comparison we show
results from (a) the RK2 scheme with A¢ = 0.1, (b) the RK2 scheme with A¢ = 0.005, (c¢) the
MDVI scheme with A¢ = 0.1 and (d) the MDVI scheme with A¢ = 0.005. In all cases we have
Gfinal = 3 X 10°. The (m,n) = (3,2) and (7, 5) island chains are evident, and in the RK2 scheme
in (a) the KAM surfaces are blurred.

does not depend on ¢ explicitly, K is exactly conserved. That is, if we set 1 = —H initially,
then H + m remains exactly zero. Thus, the equations for (g, p, w, 1), using H + 1t = 0,
are

d H(q, p, d Hi(q, p,

dg _ Hi(g,p W)’ dp _ _Hi(g,p W)’ (6.3a.b)

d¢ 0(q.p) d¢ r(q.p)

d 1 d
- T oo (6.4a,b)

e~ plg,p)’ dC

Note that the imposed time-step requirement is satisfied. The extension to a
non-autonomous system, with H(q, p, 1), is straightforward.
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FIGURE 4. Error in the second-order MDVI and TDVI schemes and the first-order collocated
scheme of Ellison et al. (2018), compared with results obtained with a fourth-order Runge—Kutta
method with extremely small time step 4 = At. Results are shown over almost two orders of
magnitude in At = h. First-order and second-order reference lines, in blue dashed and green
dashed, respectively, are shown for comparison. Second-order accuracy for the MDVI and TDVI
schemes is confirmed.

For discrete integration, it is important to keep the terms (not shown) derived from H +
1 in (6.2): this quantity is not exactly zero for the discrete equations and if this quantity is
set exactly equal to zero, the symplectic nature is lost, as discussed in Richardson & Finn
(2011).

To illustrate, we discretize S, as in the symplectic Euler scheme, here for two degrees of
freedom, for uniform stepping in ¢, A = h. We have

N—1
Se1 = Z [Pr(@rer — qi) + Wi — wp) |
k=0
T H( Wisl) + T
. Z |:h dk+15 P> Wi+1 k] ' 6.5)
P P (Gir1, Pi)

The symplectic Euler scheme derived from (6.5) preserves the canonical two-degree-of-

freedom two-form
w=dg Adp+dw Adm, (6.6)

by inspection or by taking the endpoint values of dS,. This scheme is a single-step scheme,
shown either by inspection or by computing the discrete Hessian.

We now consider the special class of systems in non-canonical variables with action
of the form f (fix; — H(x, y)) dt, as in (3.1). With time-step condition p(x, y) dt = d¢ and
t — w we can write the analogue to (6.1) and (6.2):

[Ty Hon (a1
S_f[ﬁ(x’y)di p(x,y)J”[(d{ p(x,y)>] a

dx’ dw  H(x,y,w) +n:|
- x,y)—+n——- ——" | d¢. 6.7
/ [f(x Y d¢ nds“ p(x,y) ¢ 7
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Again, it is evident in the first form that m is a Lagrange multiplier enforcing the
time-step condition. We can apply uniform stepping in the new time-like variable ¢,
with A¢ = h = const., to give the required non-uniform time stepping. In (6.7) a term
involving the canonical pair (w, 1), namely tdw/d¢, is added to f; dx'/d¢. Furthermore,
the new Hamiltonian is K = (H 4+ m)/p, and the resulting action is of the same restricted
non-canonical class of (3.1). Therefore any discretization that can be applied to the action
with uniform time step can be applied to this non-canonical extended phase-space version.

6.2. Magnetic field line integration

For the magnetic field line integration problem, we use a gauge with A; = 0, as in §4.1.
For non-uniform time stepping, we first go back to considering x> to be a coordinate and
put the action in the form in (6.7), leading to

As(x) dx’® 1
Pe= f [AZ(X)_ T om T (E B E)] a ©®

where T is a Lagrange multiplier enforcing the time-step restriction and x = (x', x?, x°).
This can again be put into the form

dx? d A0+ 7
P, = /[Az(x)—+ i T} dg. (6.9)

This action is of the form in (6.7), with two-degree-of-freedom Hamiltonian equal to
(A3 + m)/p.

We discretize this in a manner similar to the modified (adjoint) symplectic Euler scheme
described in (3.3a,b) by forming @,; = ), hL,(xy, T, Xk41, Tyt1), OF

(pel = Z [AZ(xk+1)(xi+1 - x]%) + T[k-‘rl(x]z.t,.] - Xi)]
k

A3 (Xpp1) — Ty
h— . 6.10
* ; |: o (Xig1) :| ( )

Compared with (3.3a,b), pri1 — Ax(xi1) and H(qii1, prr1) — Asz(Xky1) with more
direct substitutions for x; and Tt;.
The DEL equations from d®,; = 0 lead to the fourth-order system

Az (x)
Ar i () (0 — x7_) + h ; (‘xk;‘
d 1
+ h[As(xp) — 714] ox] o) =0, (6.11)
Az,z(xk)(x;% - x;%,l) + Ax () — Ax(xq1)
Az (xp) 0 1
+ h— +h[A — —— =0, 6.12
e [A3(xr) — 4] 22 p(x) (6.12)
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Az 3(x0)
A3 () (6} — X0 ,) + Ty — T + h—
o (xr)

+ h[As(x) ] g ! (6.13)
X)) — Tyl ——— = .
T o p ()

h
X—x_ - ——= (6.14)
TR ()

As in earlier sections, the discrete Hessian test indicates that these four equations define
a single-step scheme, and therefore a mapping on a four-dimensional space. The process
of incrementing and substitution leads to equations for which this single-step property is
explicit. For the uniform time-stepping case of § 4.1 the assumption p = p(x) means that
the time step depends on x°, which takes the place of time. This suggests the possibility
that complications such as parametric instabilities related to having a time-step density
explicitly dependent on time might arise, as in Richardson & Finn (2011). In the case
treated in this subsection, on the other hand, ¢ rather than z is the independent (time-like)
variable.

As occurred in Ellison et al. (2018), (6.12) and (6.13) appear to involve indices k — 1,
k, k + 1 and therefore appear to be two-step equations, suggesting that (6.11)—(6.14) are
difference equations of order higher than 4. However, the discrete Hessian can be shown
to have rank 4, consistent with a first-order system in (x, 1); indeed similar substitutions
to those of Ellison et al. (2018) lead to a fourth-order system, i.e. a single-step method.
That is, writing (6.12), (6.11) and (6.13) in the compact form

Ao (x) (6 — X)) + hP(xy, ;) = 0, (6.15)
Asa(x0) (5 — xp_1) + As (i) — Ax(xi1) + hQ(xy, ) = 0, (6.16)
As3(x0) (5 — ;) + T — Ty + ARGy, ) = 0, (6.17)

we find x,% — x,%_, from (6.15) and substitute into (6.16) and (6.17). When the indices are
incremented k — k + 1 in (6.15) and (6.14), we find

A2,1(xk+1)(xi+1 — X)) + hP(xX¢y1, Tpy) = 0,
P(xy, 70p)

— hAy o () ————— + Ax(xy) — Ay (xpp1) + hQ (X, 1) = 0,
A 1 (xi)
P(x;, 1t (6.18)

— hAz,s(xk)M + T — T + AR (xy, ) = 0,
Ay 1 (x)

h
X —x — =
T ()

Because only indices k and k 4 1 are involved, the single-step property predicted by the
rank of the discrete Hessian is evident. Note the solvability condition A, ; = B® # 0,
necessary for z to parameterize the length along the field line. We have performed
numerical tests with non-uniform time stepping, showing comparable properties with
uniform time stepping of the field line equations (§ 5.2). We defer computations based
on a time step adapted to an error estimator obtained by backward error analysis, as in
Richardson & Finn (2011), to a future publication.
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6.3. Guiding centre equations

Guided by the results for the magnetic field line equations, it was shown in Ellison et
al. (2018) that if the term ijl is zero, substitutions can be made to lead to a single-step
scheme. Because the requirement AI(x, u) = Ay (x) + ub;(x) = 0 must hold for arbitrary
values of u, it requires both the gauge condition A; = 0 and the physical condition b; = 0.
In Ellison et al. (2018), numerical tests were performed for axisymmetric fields and for
coordinates such that the covariant component b; is zero. In Burby & Ellison (2017), it
was shown that it is possible to find coordinates such that this condition is satisfied for
arbitrary magnetic fields, provided one component, e.g. the toroidal component, does not
change sign.

For applying non-uniform time steps to the guiding centre equations, we again introduce
anew time-like variable ¢ such that p (x, u) df = d¢ for the time-step density p (x, u). Then
we make the substitution, with w = ¢ and

3

fod? L dr
Sgc=/ Az(x)E + A5 (x)

-~ Hulx u)j| dr (6.19)

going to

. odx? . dxX®  Hye(x, u)
_ i f -
Sgc_/ [Az(x) ac A% T Y } ‘

dw 1
— de. 6.20
+/[d§ p(x,u)} ¢ (020

Again this can be put in the form

ood A dw
Sge = / [Az(x)E +As(x)E + T K(x, u, n)] de, (6.21)

where K(x, u, py) = (Hgc(x, u) + 7)/p(x, u). This is an action in the form of (6.7) on the
extended phase space (x, u) — (x, u, w, ). We discretize this action in a manner similar
to that in (6.10), namely

Sge1 = ZhLd(xka U, Wiy Ty Xk 15 Uiy 15 Wi s Tag1) s (6.22)
k
with
At 2 2 ¥ 3 3
hLy = Ay (Xpp1, 1) (X — X)) + AL (X1, Uiy 1) (4 — X))
F 101 (Wig1 — wi) — WK (Xiq1, Uig1, Teg1)s (6.23)
where

Hoe (Xiq1, Ups1) + Tiqt

O (Xieq1s Uiy 1)

(6.24)

K (X1, Wier1, Tp1) =
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The DEL equations are
AL Go u) O — X)) 4+ AL Go, ) () — X)), (6.25)
—hK; (g, wy, 1) = 0, (6.26)
AL (o, ) (8 — x2_) + AL (o, w) (6 — x3_))
+AL (cr, u) — AJ (X, 1) — hKo (X, i, 1) = 0, (6.27)
AL 3 Gos u) (0F — x1_) + AL 5 Goe, u) (0 — X))
FAL (e ) — AL g1 ipr) — K3 (X, g, 70) = 0, (6.28)
by (5 — x7_)) + b3 x (g — x_ ) — hK,(xi, g, 1) = 0, (6.29)
T — T = 0, (6.30)
Wy — Wi =h K (X, ug, 7p)
pw,k
h
= — (6.31)
0 (X, uy)

The assumed time independence of the fields leads to the simple form in (6.30). Similar
to the uniform time-step case of Ellison ef al. (2018), the discrete Hessian has rank six,
consistent with a first-order system in (x,y, z, u, w, ). We start by taking (6.26) and
(6.29), written as

|:A;1(xk, Ug) A;,l(‘xkv ”k)j| |:xi - xi1j| . [hKl (ks ug, wy, T[k):|

(6.32)
by i b3 i hK, (X, U, Wi, T)

X=X,
Solving for x} — x7_, and x; — x;_,, which are written in terms of quantities with index ,
we substitute these into (6.27) and (6.28), incrementing k — k + 1 in (6.27), (6.28) and
(6.31). The resulting equations involve time steps labelled with only k and k + 1. That is,
consistent with the discrete Hessian condition, the scheme is a single-step scheme, a DVI,
and parasitic modes cannot occur. As for the magnetic field line case discussed in the last
subsection, we have obtained similar numerical results to uniform time-stepping results of
§ 5.3, and defer adaptive integration to a future publication.

6.4. Extensions for higher accuracy

From the formulation in the last two sections, it is clear from (6.9) and (6.21) that
the modification to prescribe non-uniform time stepping leads to an addition to the
phase-space Lagrangian of a term mdw/d{ or mdz/d¢ and a modification to the
Hamiltonian H — (H + 1)/p, and these terms can be discretized in exactly the same
manner as in the uniform time-step case. This means that the modifications in this section
can be applied to any discretization of the phase-space Lagrangian that leads to a DVI
scheme. Therefore, it should be straightforward to construct a non-uniform time-step
scheme for either of the second-order-accurate DVI methods of § 3.

It is also clear that such discretizations can be applied to any time-step density p, so that
it should be straightforward to use an optimum density p based on an error estimator, to
minimize the integrated error over an orbit for the scheme at hand, as done in Richardson
& Finn (2011) and Finn (2015). Therefore, it is possible to combine the formulations of
this paper to give an adaptive second-order-accuratevariational integrator. We leave further
details to a future publication.
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7. Summary and discussion

In Ellison et al. (2018) and Ellison (2016), the concept of proper degeneracy for a
discrete time-stepping scheme for a degenerate variational system was introduced. In these
works, the focus was on systems governed by a phase-space Lagrangian, which produces
a system of first-order differential equations, the Hamiltonian equations, in canonical
or non-canonical variables. This concept relates to a discretization that preserves the
first-order nature of the Hamiltonian equations on phase space, i.e. is a single-step rather
than a multi-step scheme. Multi-step schemes are to be avoided in variational systems
because they can possess parasitic modes that can grow unphysically, as discussed in
Ellison et al. (2018). For some examples, the single-step property can be determined
by inspection simply. But it is in fact common to have a system that appears to have a
multi-step nature, but can be reduced to a form where the single-step property is evident.
However, finding the right substitutions is not always so straightforward. In this reference,
a method of addressing this single-step versus multi-step issue in terms of the rank of the
discrete Hessian was developed. In Ellison et al. (2018) and Ellison (2016), schemes that
preserve this single-step nature were called DVI schemes.

The schemes developed in Ellison et al. (2018) and Ellison (2016) are all
first-order-accurate. One aim of this paper is to develop second-order-accurate DVIs. A
commonly used method of developing a second-order-accurate scheme from a first-order
variational scheme is a special case of a composition method described for instance in
Hairer et al. (2006). This involves composing the first-order scheme @, with its adjoint
@] = &), and this method works well for discretizations that preserve the two-form
w, of the original ordinary differential equation system; this form is independent of A.
However, for other schemes the discrete equations preserve a two-form that depends
on the time step, w = w(h). The adjoint of such a scheme preserves w(—h) and it is
not obvious whether the composed map preserves a two-form at all if w(h) # w(—h).
In this paper we consider an example of a simple autonomous Hamiltonian system in
canonical variables, i.e. preserving the two-form wy = dg A dp, and a discretization of
its phase-space Lagrangian. This scheme preserves another form w(h) = wy + O(h), so
that w (h) # w(—h). Numerically, we find that, for some Hamiltonians, the orbits of the
composed scheme spiral out with increasing ¢, the growth rate of the energy behaving like
y = O(h?), showing that composing with the adjoint does not lead to a scheme with a
preserved two-form in general, and therefore does not possess the advantageous properties
of variational (symplectic) integration.

In the place of the composition method, we have constructed two centred schemes,
involving a processing scheme to advance some of the variables to the half time step, and
centring the other variables either in a midpoint or a trapezoidal manner. We call these
schemes the MDVI scheme and the TDVI scheme. We have shown these schemes to be
second-order-accurate by a backward error analysis and derived the properly degenerate
property by computing the rank of the discrete Hessian (as well as by inspection). We
have also applied the MDVI and TDVI schemes to two systems of importance to plasma
physics, namely the magnetic field line system and the guiding centre system. Both of these
systems are in a restricted class of non-canonical variables. The numerical results show the
anticipated positive properties, namely the benefits of degenerate variational integration,
the lack of parasitic modes and second-order accuracy.

The second aim of this paper relates to using non-uniform time steps. This method has
been developed for Hamiltonian systems in canonical variables in Hairer et al. (2006).
In this paper we show how to write a variational principle in extended phase space for
systems with this class of non-canonical variables. Further, using an error estimator, it is
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possible to make the time step adaptive, by minimizing the total error along an orbit, as in
Richardson & Finn (2011).

We have first reviewed the extended phase-space action principle for one-degree-of-
freedom Hamiltonian systems in canonical variables with action S = [(pg — H)dt,
allowing variable time steps. For canonical variables, this method involves a discretization
of the action with a constraint related to the variation of the time stepping, producing
a canonical symplectic integrator in the extended phase space (q,p) — (q,p,w, ),
where the extra canonical pair are time and its canonical conjugate. The extension to
non-canonical variables applies to the restricted class of systems discussed earlier, with
variables (x, y) and an action of the form f (fi(x, y)x; — H(x, y)) dt. The two well-known
examples of Hamiltonian systems in non-canonical variables of importance to plasma
physics, namely the integration of magnetic field lines and the guiding centre equations,
can be obtained via an action of this restricted non-canonical form. We have shown
how to write an extended phase-space action for this class of non-canonical variables
with non-uniform time stepping. We have developed discretizations that lead again to
DVI schemes. The generalization of the extended phase-space method, to non-canonical
variables and to the second-order-accurate DVI schemes introduced in this paper, is
straightforward. This capacity for non-uniform time stepping leads immediately to the
capability for adaptive time stepping, as described for symplectic integrators in Richardson
& Finn (2011).
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Appendix A. Detailed proofs of the DVI single-step property

THEOREM A.1 (linearized single-step property). Let L,(z1, 22) be a properly degenerate
discrete Lagrangian, and introduce the m x m matrices [A(zi, 22)], [B(z1, 22)], [C(z1,
22, 73)] with components

Aij(zl, ) = Mji(zl, 22), (A1)

ng(Zl, ) = M;‘/’(Z]a 22), (A2)
dL, 2La

Cij(z1, 22, 3) = —— (21, ) + —— (22, 23). (A3)
07507, 07,0z

Under the following transversality assumptions:

(G)for each (zi, z2), (2}, 25) € Z X Z near the diagonal, im[A(z,, z2)] Nim[B(Z|, 2,)] =
{0} and
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(G2)for each (21, 22). (2}, 2y) € Z x Z near the diagonal in Z x Z and (Z{,25,23) € Z x
Z x Z near the diagonalinZ x Z x Z,

[C(&], 23, Z)](ker[B(z}, 25)]) (A4)

is a graph over im[A(z;, 25)],

the DEL equations linearized about a trajectory k +—> z2 whose neighbouring samples
satisfy |z) = 2| < & for some small § > 0 independent of k are equivalent to a single-step
method.

REMARK A.2. If L, is some properly degenerate discrete Lagrangian satisfying (G1) and
(G2), then all properly degenerate discrete Lagrangians in a neighbourhood of L, will
satisfy (G1) and (G2). In practice this observation greatly simplifies the task of verifying
(G1) and (G2) because the h — 0 limit of a properly degenerate discrete Lagrangian is
usually quite simple to analyse.

REMARK A.3. The condition |2y, — 20| < 8 is generally satisfied provided that the time
step h in a variational integrator is sufficiently small.

Proof. The proof picks up at the end of the proof sketch of theorem 2.4.
To that end, consider the linear map @ : RY — X;,; x Y, given by

@ (8z) = ([mx(k + D]C(k + D]dz, [B(k)]8z). (AS5)

By (2.30)-(2.31) it is enough to show that the kernel of @ is trivial. To see that this is
so, first note that by transversality assumption (G2) the linear space [C(k + 1)](ker[B(k)])
must be of the form

[C(k + D](ker[B(k)])
= {wx + I'(wx) | wx € im[A(k + D]}, (A6)

where I" : im[A(k + 1)] — im[B(k + 1)] is a linear map. In particular, dim [C(k + 1)]
(ker[B(k)]) = dimim[A(k + 1)] = m/2, which by the rank-nullity theorem implies that
[C(k+ 1)] | ker[B(k)] is invertible onto its image. Now suppose that @ (§z) = 0. This
implies that §z must be in the kernel of [B(k)]. Therefore [C(k + 1)]6z € [C(k + 1)]
(ker[B(k)]) must have the form

[C(k+ D]dz = wx + I"(wx), (A7)
for a unizue wy € im[A(k + 1)]. But because [ty (k + 1)][C(k 4 1)]5z = 0, it must be the
case that

0 = [nx(k+ D][C(k + 1)]éz
= [mx(k + D](wx + I'(wx))
= wx, (A8)
which implies that §z = 0. O

THEOREM A.4 (nonlinear single-step property). Let L,(zy,z2) be a properly degenerate
discrete Lagrangian that satisfies the transversality conditions (G1) and (G2) given in the
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statement of theorem 2.4. Solutions k — z; of the DEL equations near a given solution
k > 0 that satisfies |z} 1 — 2ol < 8 for some sufficiently small k-independent § > 0 are
generated by a single-step method ¢ : Z — Z. In other words,

Zer1 = @(2i), (A9)
for each k.

Proof. First we introduce some convenient notation. Let & : Z x Z — R™ and 8 :Z x
Z — R be the functions defined by

oL,
(21, 22) = —— (21, 22), (A10)
07,
oL,
Bi(z1,22) = —— (21, 22)- (A11)
0z)
For each 7 € Z, also define the related functions oz : Z — R™ and $; : Z — R™ according
to
@:(2) = a(z, 2), (A12)
B:(2) = Bz, 2). (A13)

Finally, introduce the DEL operator E : Z x Z x Z — R™ given by
E(z1, 22, 73) = (21, 22) + B(22, 23), (Al4)
and the associated function E, : Z x Z — R™ given by
E.(z21,22) = E(21, 2, 22). (A15)

In terms of these notations, the DEL equations may be written in several equivalent ways:

0 =E(zk—1, Zk» 2+1) (A16)
=FE, (Zk—1, Zks1) (A17)
=0, (zk-1) + By (Zk41) (A18)
= (zk-1, 2) + B2k, Zi1)- (A19)

By the constant-rank theorem, for each z the level sets of either «, or B, are
m/2-dimensional submanifolds that foliate Z. We will call a level set of o, an «-leaf,
and a level set of B, a B-leaf. We may choose mutually disjoint neighbourhoods U of
each z such that the intersection of either the a-foliation or the B-foliation with Uy is
diffeomorphic to R"™/? x R™?2, In particular we may define smooth maps

ye U > R™2, (A20)
vl U — R™2, (A21)

such that the restriction of y* (/) to Uy is a quotient map for the «-foliation (B-foliation)
intersected with Uy. Moreover, we may assume without loss of generality that y*(z)) =
0 = y/(z)), independent of z.
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Because, for each z, o, is constant along the «-leaves and f, is constant along the
B-leaves, the DEL operator E(z, z,z3) only depends on the «-leaf that contains gz
and the S-leaf that contains z3. Therefore for each z; € Z there must be a function
g, : R"? x R™? — R™ defined by the relation

E. (z—1, 2t41) = &,(X, Y), (A22)
X =y (z1), (A23)
Y = sz (Zrt1)s (A24)

for z;, € Uy.

By hypothesis (G1) the derivative De_, (X, Y) : R™? x R™? — R™ is invertible for each
(X, Y) and z; € Uy. Therefore by the inverse function theorem the function ¢, restricts to
a diffeomorphism on a neighbourhood of (X,_(z), Yis1 () = (V2 (-, ¥F (2041))- At
the price of possibly shrinking the Uj, we may assume that this neighbourhood is all of

R™? x R™/2.
Let (X, Y.) = (g,)"" be the inverse of the diffeomorphism &, : R™? x R™? — R™.
The DEL equations E(z;_1, 2k, Zk+1) = 0 imply
0 =&, (v @1 ¥2 @), (A25)
which is equivalent to
ye (@) = X,(0), (A26)
vl @) = ¥, (0). (A27)

In particular, shifting (A26) gives the m equations for the m unknowns z;:

A

F* (@ zi) = ¥2, (@) — X, (0) = 0, (A28)
FP (2 zien) = v2 (@) — ¥, (0) = 0. (A29)

The proof will therefore be complete if we can show that the mapping zi,
(F*(zt, Zs1)s FP (zi, z31)) s a diffeomorphism for fixed z; in a neighbourhood of z) P

To that end, note that by the implicit function theorem it is enough to show that the
linear map

D : (SZk_H
= (Do FO (), 20 DI82041 1, Dy FP (2, 20 ) [824]) (A30)

has a trivial kernel. Demonstrating that this is so amounts to reproducing the proof of
theorem 2.4. The summary is the following.

Suppose that 8z, is in the kernel. Because y | (z)) = 0 for each z;41, §z;1 must satisfy

N d| -~
0=6% = | Xy ese O, (A31)
0
B d B0
0= 6)/ = & ]/Z(k,(Zk_H +€62k+1). (A32)
0
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The second equation (A32) will be satisfied if and only if 6z, tangent to the S-leaf
passing through z{. This means

Bydz,, =0, (A33)

or 87,41 is in the kernel of the matrix [B] defined in (2.26). Moving now to (A31), note
that because ¢, (X,,,,(0), Y., (0)) = 0 by definition, differentiating in z;; at zg .1 gives

Zk+1

0 = Dxeg_(0.0)[8X] + Dyey (0,0)[8Y]

Lkt 1

d
+ —

T 0, 0), (A34)

0
ezkﬂ-&-ﬂ?zkﬂ

where we have used ()A(ZQ+1 (0, f/z

y®, y?, and we have introduced

2+1)(O) = (0,0) by our normalization convention for

~ d
§Y = —
de |,

A

Yo tesz, (0). (A35)

Each of the derivatives in (A34) may be expressed in terms of derivatives of E by implicitly
differentiating (A22), which leads to

[A18X + [Clzk41 + [BISY =0, (A36)

where 6X is any vector that satisfies

Dy ()I8X] = 3X, (A37)
8Y is any vector that satisfies
Dyz‘§+] (2,,)[8Y] = 87, (A38)

and the matrices [A], [B], [C] are defined in (2.25)—(2.27). Now using 5X = 0, (A37)
implies that 6X must be in the kernel of [A]. Therefore if we apply the projection matrix
[7x] guaranteed by transversality assumption (G1) to (A36), we obtain

[1x1[C182k41 = 0. (A39)

But because 8z, is in the kernel of [B], transversality assumption (G2) implies that
5Zk+1 =0. O

Appendix B. Reversibility: a warning
We first consider the one-degree-of-freedom Hamiltonian
r+q  agp’

2 * 2

H =

(BI)

Applying either the scheme in (3.3a,b) or its adjoint in (3.5a,b), we find, of course,
first-order accuracy but also good long-time properties, the latter because of the
preservation of the two-forms in (3.6) and (3.7). If we compose the two schemes,
we also find good long-time properties, and with second-order accuracy. However,
these favourable properties are traced not to the preservation of a two-form but to the
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reversibility of the Hamiltonian in (B1): the symmetry R : (g, p) — (g, —p) leaves H
invariant, and the fixed points of this symmetry are p = 0. This reversibility is inherited
by the exact time-4 map @, i.e. @, satisfies

Rod, =@, ' oR. (B2)

If a discrete scheme 7}, also satisfies this map reversibility, it should have the favourable
properties due to reversibility (see Finn 2015). In fact, neither 7; nor TZ (where adjoint
is defined as TZ = T~,}; see Hairer et al. (2006)) satisfy this map reversibility property.
However, T}, does satisfy the related property weak reversibility (defined previously in
Finn (2015)),

RoT,=T_,0R, (B3)

and similarly for T}l From this property it follows that the composed scheme ¥, = T}, o TZ
(or T; o Ty,) is also weakly reversible, and because it is self-adjoint, it is also reversible.
This map reversibility appears to be responsible for the observed good long-time
behaviour.

As discussed in Richardson & Finn (2011) and Finn (2015), it can be misleading to
evaluate a scheme by testing it on a reversible Hamiltonian system, because good results
might be obtained solely due to the reversibility property and not from any property
inherited from the variational nature.

The Hamiltonian H = (p? + ¢*)/2 + agp?/3 considered in § 5.1 has another symmetry
(g, p) = (—q, —p), but this symmetry preserves the point (g, p) = (0, 0) rather than a
line (p = 0), and such a symmetry does not endow any special properties, so we do not
consider this Hamiltonian to be reversible (see Richardson & Finn 2011; Finn 2015). And
indeed, the results in § 5.1 show that the orbits spiral out, showing the lack of a preserved
two-form.

Appendix C. Analogue of the symplectic Euler scheme for the magnetic field line
problem

Here, we consider the most direct analogue to the symplectic Euler scheme for canonical
variables, applied to the class of non-canonical systems of §3. We specialize to the
magnetic field line problem for concreteness, and have

Ly(xy, 53, X)) = A, g, ) (0 — X0 + hAs(x, X, ). (C1)

If this system has a preserved two-form with w (—h) = w(h), it can be composed with its
adjoint to preserve w and obtain second-order accuracy. Note that L; depends on x! at only
one time level and therefore, as noted in § 2, its discrete Hessian has rank 1. This shows
that the system is indeed properly degenerate, and is a DVI.

Its preserved two-form is found simply by looking at the endpoint terms in dS for
k=0,1:

S = Ay (x}, x})(x] — x3) + hA3(x), x7), (C2)
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from which we find
dS = [As1 (xg, ) (] — x5) + hA3 1 (xg, x7) ] dx;
+ [—Asr (g, )] dog + [As 1 (x], ) (5 — x7) + hAs (x}, x3) ] dx;
+ [A22 (g, ¥ (] — x5) + hA3 2 (xg, x7) + A (xg, x7) — A (x), x3) | dof
+ [A22(x}, 1) (05 — x7) + hA3 2 (x], 15) + Ax(x], 13) — Ax (3, x3) | d;
+ [A2 (. )] d, (C3)

with the last term subtracted in the dx3 term. Because of satisfying the DEL equations, all
the terms except for the endpoint terms

dS = Ay (x), x3) dog — Ay (x, x7) dx; (C4)
vanish, and d°S = 0 leads to the preservation of the two-form is composed
w = dA, (x5, x7) A dx. (C5)
Upon substituting

hA3,1 (x(l)a X%)

—_——, (C 6a.,b)
Ay (X(l), X%)

2_ 2 1,2 1,2
X, =X + hu(xy, x7),  u(xg, x7) =

equal to 1B (x}, x1) /B (x}, x7) and from the dx) term in dS, we find the preserved two-form
w equals

(Ao, (x5, x7) 4 hA 5 (g, xDu(xg, x7) + O(h?)) dxg A dxg, (C7)

the flux invariant B;dx) A dx} of the continuous system plus an O(h) correction,
proportional to A,,. As for the modified symplectic Euler scheme of § 3.1, the adjoint
of this scheme preserves the same form but with w(h) — w(—h) # w(h), and therefore
the composition of this scheme with its adjoint cannot be assured of having a preserved
two-form. The essential difference between this scheme and the symplectic Euler scheme
for a canonical system is the dependence of A, on x? in (C1).
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