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Abstract

A general group-theoretic procedure is indicated for representing rational integers as products of other
integers. A detailed example is given.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 K 20, 10 L 10, 10 M 99, 12 C 99.

THEOREM. Let

R(x)= ]l(x+ <*,)"•

/=I
be a rational function with integer roots -a, < 0, and non-zero exponents whose
highest common factor (b^.. .,bh) is 1. Let an integer k > 3 be given.

Then every positive integer n has a representation of the form

j

where each e, = ± 1 , and the nj lie in an interval k < itj, < con for some constant c0.

The condition (bl,...,bh)= 1 is necessary. If,for example, every bt were even,
then products of the R{m) could only represent squares of integers.

We cannot at present give an algorithm to determine the constant c0.
This theorem illustrates a procedure which may be attempted whenever it is

desired to represent one or many integers as products.
Let Qx denote the group of positive rational fractions with multiplication as

group law. Let T(k) denote the subgroup generated by the positive R(m). We
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144 P. D. T. A. Elliott [2]

form the quotient group G = Qx/T(k) and construct a proof in three stages by
showing that

(i) G is finitely generated,
(ii) G has bounded order,

(iii) G is trivial.
Steps (i) and (ii) are carried out by considering the homomorphisms of G into

the additive group of rational numbers (mod 1), and of the reals, respectively.
If both (i) and (ii) have been obtained then G is finite. We have preserved the

above formulation since one can sometimes obtain (ii) without (i), and the
method may still proceed. Moreover, our following arguments generalise almost
at once to a wide class of modules, and an analogue of (ii) can be readily
formulated.

Step (iii) applies the homomorphisms of G into the finite fields which have a
prime number of elements. In other problems one could use a function field over
a finite field, since these permit (non-archimedean) topologies. In order to obtain
an appropriate action on G it is convenient to work with the quotients G/Gp

where Gp is the subgroup of G whose elements are/nh-powers.
Taken together these three steps form an analogue of the Hardy-Littlewood

(circle) method traditionally employed in the additive representation of integers.
Our steps (ii) and (iii) correspond to the introduction of the singular integral and
singular series of that method, and represent some form of the Hasse "local to
global" principle. Step (i) corresponds to the application of algebraic geometry to
the study of exponential sums on the so-called minor arcs. For an up-to-date
presentation of the classical and some modern applications of the Hardy-
Littlewood method see Vaughan (1981). For an example which illustrates the
need for auxiliary information from algebraic geometry see Davenport's paper
(1963) on cubic forms.

Product representations of the above type play a role in the theory of char-
acters. If a Dirichlet character x() satisfies

x(R(n)) = 1 for k<n<H

then our theorem shows that

x(n) = 1 for 1 < n < 7 7 / c 0 .

For non-principal characters this puts a limit on the size H may be. In this way
we can obtain a small integer n for which x(^(«)) is not zero or 1. For
background results on character sums see Burgess (1962). For an example of an
application of this type (with a different function in the role of R(n)) see Burgess
(1967).

Our present method reduces the problem to the consideration of additive
arithmetic functions on sequences of various integers. Whilst the study of such
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[3] Integers as products 145

functions lies within the scope of probabilistic number theory (see, for example,
Elliott (1979/80)), in many circumstances only partial results are readily avail-
able. Some connections between the present method and others used in obtaining
related results, together with an example involving shifted prime numbers, are
discussed following the proof of the theorem.

Divisible modules

Let G be an abelian group (written additively) which becomes a module under
the action of a principal ideal domain R. We write this action on the left side,
thus rg is defined for r in R and g in G.

We say that G is a divisible (R-) module if for every element g in G and every
non-zero member r of R we can find a further element h in G so that g = rh.

LEMMA 1. Let H be a submodule of the R-module G. Then any homomorphism of
H into a divisible R-module D can be extended to a homomorphism of G into D.

REMARK. In this and what follows the homomorphisms are module homomor-
phisms.

PROOF. When R is Z, the ring of rational integers, this result appears as exercise
1 in Kaplansky's book (1969) on infinite abelian groups.

We consider the collection of all pairs {K,t) of submodules K containing H
which have a homomorphism t into D extending that defined on H. We partially
order these pairs by

if K includes K' and / extends t'. It is readily checked that any chain has an upper
bound, and by Zorn's lemma the collection contains a maximal pair, (L,T) say.

Suppose that L is not G, and let g be an element of G not in L. Let A be the
submodule generated by g and L.

If mg does not lie in L for any non-zero member m of R then A is the direct
sum of L and the module generated by g. We may define a map T: A -» D by

T(mg + X)=r(X)

for all X in L.
Otherwise there will be a non-trivial ideal of elements m in R so that mg lies in

L. Since R is principal this ideal will be generated by an element, w say.
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We now appeal to the divisibility of the module D, and let 8 be an element of it
for which r(irg) = w8. We then define

T(mg + \) = m8 + r(\).

Note that if m,g + X, = m2g + X2 then (m, — w2)g belongs to L, so that in R
ml — m2 must be a multiple of TT, say km. Hence

T(m,g + X,) - T(m2g + X2) = (m, - m2)8 + T ( X , ) - T ( X 2 )

= km8 + T(X, - X2) - kmS + r{{m2 - m,}g)

= kmS - kT(irg) = 0,

so that T is well defined.
In either case we obtain a genuine extension

( A , r ) > ( L , T ) ,

contradicting the maximality of (L, T).
Thus L — G and the lemma is proved.

We say that a homomorphism is trivial on a set of elements of a module if it
takes each of them to zero (the identity).

In what follows D will be a divisible module containing at least two elements.

LEMMA 2. Let Gl and G2 be submodules of an R-module Gx. If every homomor-
phism of G into D which is trivial on Gt is also trivial on G2, then to each element g
in G2 there is a non-zero member r of R so that rg lies in G,.

PROOF. Suppose, to the contrary, that no product rg with r in R of the element
g of G2 lies in G,. Let A be the module generated by g and G,. Since A is the
direct sum of G, and the module generated by g, we may define a homomorphism
/ of A into D by setting t(g) to be any non-zero element in D, and defining

t(rg + n) = rt(g)

for each element fi of G,.
By Lemma 1 t may be extended to a homomorphism of G into D. Moreover,

this new homomorphism is trivial on G, but not on G2, contradicting the
hypothesis of the lemma.

Lemma 2 is established.

REMARK. In our applications it will not be assumed that the modules G, and G2

have any non-trivial intersection.
Any abelian group may be considered a Z-module. An abelian group which is

divisible as a Z-module we shall call a divisible abelian group without mentioning
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[5] Integers as products 147

its module structure. In this case we can reformulate Lemma 2 as

LEMMA 3. Let Gx and G2 be subgroups of an abelian group G. Suppose that every
homomorphism of G into a (non-trivial) divisible group D which is trivial on Gx, is
also trivial on G2- Then every element in G2 has a positive multiple in Gx.

REMARK. In our applications of this lemma it will be convenient to take for D
the additive group of the real numbers, which is clearly divisible.

For groups which have torsion better can sometimes be done. Let p be a
rational number prime number and let G be a possibly infinite abelian group,
each of whose non-trivial elements has order p. Let Ff be a finite field of p
elements.

We can make Fp act on G by identifying Fp with the field of integer residue
classes (mod p), Z//?Z, and using the rule

(« (mod/>)>£) •"»«£•

In view of the ^-torsion this action is well defined. G now becomes a vector space
er Fp.

The analogue of Lemma 3 is now
over Fp.

LEMMA 4. Let Gx and G2 be subgroups of an abelian group G with p-torsion.
Suppose that every homomorphism of G into a non-trivial vector space over Fp which
is trivial on Gx is also trivial on G2. Then G2 is contained in Gx.

PROOF. Since Fp is a field, any vector space over Fp is Tydivisible. According to
Lemma 2 with R = Fp, to each element g of G2 there is a non-zero member r of Fp

so that rg belongs to Gx. Once again using that Fp is a field, there is a member s of
Fp so that sr = 1, and therefore g = s(rg) itself belongs to Gx.

REMARK. In our application of Lemma 4 groups G arise which need not have
/>-torsion; so we give them it by considering the factor group G/Gp, where Gp

denotes the subgroup of/»th-powers of elements in G.

A N EXAMPLE. Let q be a rational prime and let px < p2 < • • • run through all
the rational primes. Define the integers

f( 1 ) a x = p f , aJ+x = ( p x - - - p J + x Y ( p x - - - p j y i , y = 1 , 2 , . . . .

Let A be the subgroup Qx which is generated by these a,.
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If for any / s* 2 and integer m p™ belongs to A, then there will be a
representation

P? = fl af>
1=\

for integers dh and s > 1. Since each pj+, occurs in aj+ { and in no aw with w <y,
we see that s «£ / must hold. Then m — qdt.

On the other hand (group theoretically)

PUx={Pr-'Pj)"~X (mod ,4),

and an easy inductive proof shows that

pf+> = 1 (mod ,4), / = 1,2,....

We see that every element of the group Qx/A has an order which is a power of q,
and which is at least q.

Since every element of Qx/A has a finite order all homomorphisms of it into
the additive group of real numbers are trivial. Likewise it cannot have a
non-trivial homomorphism into an F with p ¥= q. Moreover,

_ P2 '"Pj _{P\ •••Pj+\Y _ ,

for j s» 2, and

so that every element of <2i/-^ is the ^rth-power. Thus it has no non-trivial
homomorphisms into Fq.

Since no /?, belongs to A it is clear that the vanishing of the homomorphisms
into the additive group of the reals, together with those into the finite fields Fp is
not enough to ensure the triviality of Q\/A, and therefore the representation of
integers as products of the ay.

The reason for this is that the homomorphisms have ranges in groups which do
not (necessarily) possess enough structure. By considering maps into more struc-
tured groups better may be done.

Let Z), be a divisible /^-module with an identity. Suppose that for each prime
element ir of R there is a non-zero element g of Dl so that wg, = 0 .

LEMMA 5. Let G, and G2 be sub-modules of an R-module G. Suppose that every
homomorphism of G into Dx which is trivial on Gt is also trivial on G2. Then G2 is
contained in G,.
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[7] Integers as products 149

PROOF. For each g in G2, Lemma 2 guarantees that the ideal of elements r in R
for which rg belongs to G, is not empty.

Suppose that for some g in G2 this ideal is non-trivial, and is generated by a.
Let n be a prime element of R which divides a and set yu = ir~xag. Then y
belongs to G2 but not to G,. Moreover, my lies in G,.

Let A be the module generated by G, and j>. We define a map Tof A into Dt by
choosing a non-zero element 5 of Dx which satisfies TTS — 0 and setting

for every r in /? and ju in G,. If r,>» + jn, = r2^ + fi2 then (r, — r2)^ belongs to G,,
so that 7T divides r, — r2. Let r, — r2 = pir. Then

r ( r , j + Ml) - n ^ y + M2) = (r, - r2)5 = pwS = 0,

and T is well defined.
By Lemma 1 we may extend T to a homomorphism of G into £>,, which is then

trivial on G, but not G2. This contradicts the hypothesis of the lemma.
Lemma 5 is proved.

A candidate for D, is the multiplicative group of complex numbers which are
roots of unity, or its isomorphic copy the additive group (2/Z of rationals
(mod 1).

A ring of operators

Let S be an /^-module, containing at least two elements, defined over an
integral domain R which has an identity. Consider the set of all doubly-infinite
sequences ( . . . , s_,, s0, j , , $2,...) of elements of s. We introduce the shift operator
E whose action takes a typical sequence {$„} to the new sequence {sn+l}. If
F(x) — 2j=]CjXJ is a polynomial with coefficients in K, we extend this definition
by defining

r

F{E)sn= 2 cjSn+J.
7 = 1

In this way we define a ring of operators which is isomorphic to the ring of
polynomials with coefficients in K. In what follows operator will mean a
(polynomial) operator which belongs to this ring.

Let K be the quotient ring of R.

LEMMA 6. Let F(x) be a polynomial in R[x] which factorises into

ai(x- 0,)
1 = 1
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over some extension field of K. Then for each positive integer d

1 = 1

also belongs to R[x].
If, furthermore, R is integrally closed, then the polynomial

r
-rd TT / ^.d ad\

a 11 v x " • I

is divisible by F(x) in R[x].

REMARK. For the properties of integral closure see Zariski and Samuel (1962)
Chapter V.

PROOF. Consider the polynomial

n (*-*')
with the >>, distinct indeterminates over K. The coefficients bj of sJ, 0 <j < r, is a
symmetric function of the yt, of total degree (r — j)d. If ar, v = 0 , . . . ,r, denotes
the elementary symmetric functions of the yt, then bj is a polynomial in these av,
of degree at most rd. (See, for example, van der Waerden (1953) Volume 1,
Chapter 26.)

Specialising the _>>, to 0,, we see from our first hypothesis that every aav belongs
to R. Hence ardbj belongs to R for everyy, which justifies the first assertion of the
lemma.

Consider next the polynomial

Clearly each factor xd — Of is divisible by x — 0, in some algebraic extension of
K. By working in a large enough extension F(x) will divide W(x). Since K is a
field F(x) then divides W(x) in K[x].

For each root 0, of F(x) = 0, a9i is integral over R. The coefficients of the
polynomial

x - 6,

are thus integral over R, and so are those of the polynomial W(x)R(x)~1.
Since R is integrally closed in its quotient field, this last polynomial actually

belongs to R[x].
The lemma is proved.
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In our next two lemmas and in their application, R will be a unique factorisa-
tion integral domain with identity.

A function/(n) is said to be arithmetic if it is defined on the positive natural
integers. We shall say that it is additive if it takes values in S and satisfies the
relation

f(ab) = f(a) + f(b)
for all positive integers a and b. In the theory of numbers one traditionally
requires this relation only to hold if a and b have no common factor other than 1.
We shall not need this limitation. Thus our additive arithmetic functions are
restrictions, to the integers, of homomorphisms of the group of positive rational
fractions.

We extend the sequence/(I), /(2),.. .,of values of an arithmetic function to a
doubly infinite sequence by setting/(w) = 0 if n < 0.

Note that if/() is an arithmetic function

Ef(2n)=f(2n + \).

If, however, we define a new arithmetic function g() by g(n) = f(2n) then

(n) = g(n+l)=f(2n + 2).

LEMMA 7. In the above notation suppose that the additive arithmetic function / ( )
satisfies

yp(E)f(n) = constant, k^n^H,

for some operator \p( E). Let
s

xP(x) = a 2 (x ~ w,)r',

with distinct M,, hold over some extension field of K. Let t = r, + • • • +rs denote the
degree of^i{x). Let a positive integer d be given.

Then either there is a permutation a of the w, with

(2) *(«,•) = «?, i=l,...,s,

or there is a further non-zero polynomial ^i(x), defined over R and with degree less
than that of\p(x), so that

(3) tyx(E)f(n) = (another) constant

holds over the interval k < n < (H/d) — t.

PROOF. Consider the polynomial G(x) = a'dUs
i=\(x ~ wf Y'- By Lemma 6 4/(x)

divides G(xd) in R[x]. Therefore

G(Ed)f(n) = constant

for k =s n < H - w, where m, = deg(G(xd)/ip(x)) < t(d - 1).
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H - mx

Let G(x) = 2'J=0CjXJ. Then G(Ed)f(n) = ~2!J=0Cjf(n + dJ\ s o t h a t for k < nd

j[f(d{n+j})
t

= 2 c-
7 = 0 7 = 0

= G(Ed)f(nd) - G(\)f(d) = constant.

In particular

G(E)f(n) = constant

over the range k < n < (H/d) — t.
If the roots of G are a permutation of the ut (in both cases neglecting the

multiplicities r,) we obtain the first of the two possibilities appearing in the
statement of Lemma 7. Otherwise G(x) and a'd~x^{x) have the same leading
terms, but are distinct. With ^,(x) = a'd~x^/(x) — G(x) we then have the second
of the possibilities.

Lemma 7 is proved.

LEMMA 8. Let

\p(E)f(n) = constant, k<n<H,

where ip(x) is a polynomial over R of degree t. Let d be an integer, d^i.
Then there are integers q,0 < q < /, and a non-zero element SofR, such that

Moreover, if H > 2Ut\2 and S is afield, then

/ («) = 0 fork + t^n< 2~6'3//.

REMARK. The same value of S may serve for all the H which satisfy the
hypothesis of the lemma.

PROOF. The hypotheses of Lemma 7 are satisfied. Suppose that a permutation a
with the property (2) of that lemma exists. Consider a cycle in the permutation,
say,

so t h a t Zj — ozj_x,j = \,...,h. T h e n b y (2)

z, = azh = zd
h = {ozh_x)

d = ••• = zf,

giving zf ~ ' = 1. In this way every root w, of \j/(x) is seen to be a root of unity,
wf' = 1 say, and each dt is a divisor of one of the numbers dw — 1, 1 < w < s.
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Let

D= f[ (dw- l)<ds2^d'2.

Then wf = 1 for every /. Clearly \l>(x) divides the polynomial

giving

a'D(ED - 1)'/(«) = constant

over the interval /c < n *£ H — t(D — 1). Arguing as in the proof of Lemma 7 we
replace n by Dn and reach

a'D(E - 1)'/(«) = constant

fork^n<(H/D)- t.
It is convenient at this point to consider the alternative (3) presented in Lemma

7. This has the form of the hypothesis of the present lemma save that the degree of
\pi(x) is less than that of ip(x), and the range [k, H] is reduced to [k,(H/D) — t].

Assume that t>\. We may argue inductively to reach an integer q, 0 < q < t,
a non-zero element 8, such that

S(E - \)qf{n) = constant

holds for

H i \ 1
( ! + + • • • + •

jt\t-q+\)

and certainly over the range k < n =s Hd~' ( '+ ]) — It.
If now S is a field, and q > 1, we set J ( « ) = (is — 1 )*"'/(«) and over this same

range have s(n + 1) — s(n) — c0, say, giving s(n) = con + c, for certain con-
stants e0, e,. Proceeding inductively in this manner we obtain a polynomial g(y),
of degree at most t, such that

/ («) = g(«) for * + / < n < Hd-'2<l+l) - It.

We next note that so long as k2 < n2 ^ Hd~'2(l+ " - 2/ we have

g ( « 2 ) - 2 g ( « ) = / ( « 2 ) - 2 / ( n ) = 0.

If now H > 2t(4t + k)2d'2(t+i), t > 1, and S has characteristic zero, the poly-
nomial g(x2) — 2g(x), which is of degree at most It, will have more than It
distinct (integer) roots. It must therefore be identically zero, that is to say g(x)
must be a constant.
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The same argument may still be made unless 5 is a field of finite characteristic
p « 2t. For such fields we have

Thus in every case

/(n) = constant, k + t < n < (2t)~lHd-'2(t+i) - 1.

Denoting this constant by c we have 2c — 2f(k + t) = /((£ + r)2) = c, giving
c = 0.

The proof of the lemma is now completed by setting d — 2 and treating the
simple case t — 0 directly.

Proof of the theorem

As in the introduction let Qx denote the multiplicative group of positive
rational numbers.

Let G, denote its subgroup generated by the fractions

R(l) withk < / < / / ,

and let G2 be the subgroup generated by the integers in the interval k + t < n <
2-6<}H.

Let W be the group G2/Gt, viewed as the subgroup of Q}/Gx which is
generated by the cosets g (mod (7,) as g runs through the elements of G2-

Suppose that /* is a homomorphism of W into an /^-divisible group T, where R
is a principal ideal domain which acts upon W and Qx/Gx. Then by Lemma 1
there is an extension of/* which maps the whole of Qx/Gx into F. Thus there is
an additive function

/: 0, - r
which is trivial on the subgroup G,, and which is consistent with/* when suitably
restricted.

For a homomorphism / ( ) of Qx into T to be trivial on G, we must have
/(/?(/)) = 0, that is

h

(4) 2 *>//('+«/) = 0
1 = 1

for each integer / in [k, H\. Here we have assumed that the rational integers can
be given a suitable interpretation in R.
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(i) If now H 2* 2"'3A:2 and T = 5 is the additive group <2/Z, regarded as a
Z-module, then we may apply Lemma 8 with

h

^(•x) = 2 bjX"1, t — max a,,

to obtain integers m > 0 and q, 0 < q < f, so that

m(£ - 1)V(«) = 0, * + f < n < //2"'2('+1> - 2/.

Note that S is not a field, so we are not permitted to appeal to the second
assertion of that lemma.

However, if q > 1 the function m(E — ^ " ' / ( n ) is constant on the interval
[k + t, 2-6t'H] and, if f(j) = 0, k + t <j < k + It, will be zero there.

Arguing inductively we see that the assumption (4) now forces mf(n) to be zero
over the whole range [k, 2~6'3H].

In our above notation: if/* is trivial on the subgroup of W generated by the
cosets j (modG,), j: = k,.. .,k + t, then /* is trivial on Wm the group of
wth-powers of the elements in W.

By Lemma 5 the group Wm is finitely generated, with they (modG,) as
generators. Moreover, the value of m does not depend upon the value of H.

(ii) We now apply the above argument with T = S the additive group of the
real numbers, regarded as a Z-module. In fact we can apply Lemma 2 directly. In
this case the hypothesis (4) leads to the conclusion

for the reals are a field and we may apply the full force of Lemma 8.
Since each of the above integers j lies in the interval [k + t,2'6'3H], there are

positive integers Hj so that

j ^ = \ (modG,).

Let fi denote their product.Then each g in W satisfies gm = ]\kjtl'+tj
Sj (mod Gx)

for some 5y, and so

gmii= 1 (modG,).

Thus W has bounded order.
This brings us to the end of stage (ii) of the proof. We have shown that for each

integer n> k + t there is a representation

with k < nt• < 46'(n + k2). Moreover, the value of the exponent m\i does not
depend upon H. However, we cannot give bounds for the /xy and so for /i. As we
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tighten our grip upon the exponent of n, the constant c0 which appears in the
statement of the theorem begins to slip away from us.

(iii) To complete our proof we apply this argument with T = S = Fp, a finite
field of p elements, but with £>, replaced by Qx/Q\, G} by G/Qf.

Once again S is a field, and for an / which takes values in Fp to vanish on
G\/Qf w e must have

t(E)f(n) = 0 for k^n^H.

Here the polynomial i//(x) is interpreted by considering the coefficients as in the
residue class field Z/pZ. Since as rational integers the bt have highest common
factor 1, ip(x) will not then vanish identically.

We conclude from Lemma 8 that

/ (n) = 0 on[0,2"6'3i/].

Thus G2 C G\QP
X for every prime p.

In particular each integer n> k + t has a representation

with Vj = ±1 and k < r^ < 46'(n + k2). Clearly the primes which appear in a
canonical factorization of the fraction z do not exceed

max A("\n + k2 + a,)<Cin.
l«si«s*

If now nip > 1 and p divides m/x, then

this time with A: < n, < 46'3(c,« + A:2). Note that if z has a prime factor t which is
less than k, then we consider it as a ratio (A: + t)s/(k + t).

Arguing inductively we strip off the primes in mp to reach

with &</!,-< c"+l, where u denotes the total number of prime divisors of ntfi.
With co = c"+] the' theorem is proved.

Since we do not have a bound for v, c0 cannot be computed.
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Sets of uniqueness

Let us now adopt the less restrictive condition that an arithmetic function / ( )
be called additive if

f(ab) = f(a) + f(b)
whenever the (positive) integers a and b are coprime, and completely additive if
this relation holds for all pairs of integers. The homomorphisms which were
applied in the earlier part of this paper were thus defined by completely additive
arithmetic functions.

A sequence

A: al < a2<

of positive integers with the property that every real additive arithmetic function
which vanished on them also vanished identically, was said by Katai (1968a) to be
a set of uniqueness. In particular, he proved (1968b) that if to the sequence

P: 3 < 4 < 6 < • • • < / ? + 1 < • • • ,

where the p are primes, we adjoin finitely many integers then we obtain a set of
uniqueness. He conjectured that P itself was a set of uniqueness. This was
established to be true by the author, Elliott (1974).

It was proved by Wolke (1978) and Dress and Volkmann (1978) that if a
sequence A is a set of uniqueness for an additive arithmetic function then every
positive integer has a representation

with e(y,) = ± 1 . The h may vary with n. This amounts to a form of Lemma 3
with the additive group of the real numbers as D. Our present method differs in
the following regard:

We deal with modules, rather than vector spaces over the rationals as they did,
and we localise the integers used in the product representation.

It followed from the author 's proof of Katai 's conjecture that (as Wolke, and
Dress and Volkmann mentioned) there is a representation

with the Pi prime and e, = ± 1.
Let

M(x)= m a x | / ( x ) | , E(x) = max|/(/> + 1) | .

In a later paper the author (Elliott (1976)) proved that for completely additive
functions / («) there are positive (absolute) constants so that

(6) M(x)
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holds for * s* 2. In view of our present Lemma 3 this now shows that the primes
in the representation (5) may be restricted to the range p < nB. Assuming only
that/( ) be additive I established only the weaker result

M(x)^AE(xB) +AM((logxf)

for some C > 0.
That (6) holds for all additive function/() was proved by Wirsing (1980), and

he strengthened the representation (5) by restricting the primes pi to lie in an
interval n < pt< nB, and having both h and the total number of factors in the
product bounded above independently of n.

If P, denotes the subgroup of Ql which is generated by the (/>, + 1) in
particular Wirsing's result shows that Qx/Px has bounded order. For the sequence
P this brings us to the end of stage (ii) of the general procedure discussed at the
beginning of the present paper.

In order to prove that every integer n has a representation

it is sufficient (and also necessary) that for each prime q, a completely additive
arithmetic function /( ) with values in the integers (mod q) which satisfies
f(p + 1) = 0 (mod q) for all primes p must also satisfy /(«) = 0 (mod q) for
every positive integer n.

Multiplicative functions

An arithmetic function <j>(n) is said to be multiplicative if it satisfies

for all pairs of positive coprime integers a, b and to be completely multiplicative if
this relation holds for all positive integers a and b.

We can now state

LEMMA 9. Let ax,a2,. • •, be a sequence of positive integers. In order that every
positive integer may have a representation of the form

n = f[ ap
7=1

for some integers dJt positive negative or zero, it is necessary and sufficient that
every completely multiplicative arithmetic function which is 1 on the ay and whose
values are roots of unity, be identically 1.
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PROOF. We apply Lemma 5 with G2 = G = Q]y G,, the subgroup of Qt

generated by the an, and consider maps into the multiplicative group of roots of
unity.

A form of this result would be implicit in Theorem 2 of Dress and Volkmann
(1978). There they were interested in what properties a sequence Oj must have in
order that one could reconstruct a complex-valued completely multiplicative
function <J>( ) from its values <j>(aj). In particular </>(«) was allowed to be
sometimes zero. However, the proof which they give is not complete.

Translated into our present circumstances, let V be the subgroups of Qt

generated by the ay in Lemma 9. They aim to prove that Qx/V is trivial by
showing that otherwise one can construct a complex-valued multiplicative <j>( )
which is 1 on the a,, but not identically 1.

Employing a form of Lemma 3 (see our earlier comments on their method) they
prove that every element of Q,/Fhas a finite order. By adjoining rational primes
to F a larger group Vx is obtained so that the order of each element in Qx/Vx is
divisible by some particular prime q. A further group V2 is now formed by
adjoining to F, the <jrth-powers of the rational primes needed to generate Q\/Vx,
and (as they maintain) one obtains a group Q]/V2 each of whose non-trivial
elements has order q.

Their aim is now to obtain a non-trivial map of Q\/Vx into some vector space
over the field F and for that they need Qx/V2 to be non-trivial. This, however,
need not be the case. If, for example, V is generated by the integers at (1) then in
the above argument V = Vv with every element of Qx/Vx being a gth-power. The
construction of V2 by Dress and Volkmann now gives Qx = V2.

One may instead argue as follows. Let G be the group Qx/V. If for some prime
p the group G/Gp is non-trivial then (regarded as vector spaces over Fp) there
exists a non-trivial homomorphism of G/Gp into Cp, the multiplicative group of
pth roots of unity. We have

where the first two maps are the natural projections. This defines a non-trivial
completely multiplicative function </>(«) on Qx which has the value 1 on V.

Otherwise G = Gp for every prime p. The group G is thus a torsion group
which is divisible. Such groups are the direct sum for varying rational primes/?, of
isomorphic copies of the group Z(/)°°) (Kaplansky (1969) Theorem 4). This last is
the group of rational numbers (mod 1) which are generated by the fractions whose
denominators are powers of the prime/?. In particular Z(/7°°) is isomorphic to the
multiplicative group C* of roots of unity whose orders are powers of p. This gives
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where the first map is the natural projection, the second is by means of a
projection onto one of the direct summands isomorphic to Z(/?°°), and the last is
an isomorphism. Once again we obtain a non-trivial multiplicative <j>(n) which is
one on V.

Since no such <f>() exists Qx/Vmust be trivial, as asserted.
This method of proof is interesting in that it illustrates how much of the

structure of g , / F i s determined by homomorphisms into the additive reals or the
finite fields Fp.

In our proof of the (main) theorem maps into the additive real rather than the
multiplicative complex numbers were employed, since addition is generally more
familiar than multiplication. The steps (i)-(iii) are practical in other examples.

Simultaneous representation

Let Q2 = <2, © Qx be the direct sum of two copies of the multiplicative group
of positive rationals. Let an, n = 1,2,..., and bm, m— 1,2,..., be two infinite
sequences of integers, and let G be the subgroup generated by the pairs an® bn.

If / ( ) is a homomorphism of Q2 into (for example) the additive group of the
real numbers, then we can decompose it as

/()=/,()+/2()

where

/ , ( r 0 , ) = / ( r © O ) , f2(r®s)=f(0®r)

for all r and sinQv This naturally defines two maps of Qx into R.
The group Q2/G is now studied by considering those additive functions /•("),

i — 1,2, which satisfy

for all n. If these must vanish identically, then to each pair of positive integers m,,
m2 we can find further integers k > 0, n, > 0, e, = ± 1 , i=l,...,s, so that
(simultaneously)

The preceding theory may thus be adapted to deal with the simultaneous
representation of integers. For example, let (w,,3) = 1, (m2,5) = 1 hold. Then
we can obtain the representation

" » = n ( 3 » + l ) \ r n = f [ ( 5 « + 2 ) \
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Since the complications increase, however, we shall furnish the details of such an
application on another occasion.
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