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LAWS IN GROUPOIDS DERIVED FROM SEMIGROUPS

ANN CHI KIM

A simple change of the operation in a commutative semigroup leads

to a groupoid. It is shown that it has no finite basis for its

laws.

1. Introduction

Denote by N the set of positive integers, and by N the additive

semigroup of positive integers (so that N is the carrier of N ).

Introduce a new binary operation \1 (written as a right-hand operator) on

N by putting

xyU = 2x + 3y •

Then N becomes the carrier of a groupoid, which will be denoted by

G(2, 3) , or later by G for short. An obvious generalisation is obtained

if the coefficients 2, 3 are replaced by some other positive integers,

say a, b ; the resulting groupoid, with the operation y defined by

= ax + by ,

is denoted by G(a, b) . Further generalisations suggest themselves: the

semigroup N can be replaced by an arbitrary semigroup S , with carrier

S , and multiplication by a and b by two arbitrary endomorphisms of

S ; thus if "+" is still used for the semigroup operation in S , and if
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a, 3 are two endomorphisms of S , written as left-hand operators, a new
operation u can be defined by

xy\i = ax + fy ,

defining a groupoid G(ct, 3) with carrier S .

This paper is concerned with one-variable laws in these groupoids, and

in fact concentrates on those in G(2, 3) , as they are typical of the more
general si tuation. The main result states that the laws of G(2, 3) in
any number of variables have no finite basis. Some further generalisations
are also mentioned, but not treated in deta i l .

2. The special case

In this section we consider G(2, 3) , though some of the
considerations (obviously) have more general application. A "word" U
over G(2, 3) is obtained from "variables" x, y, . . . , z by operating on
them with \i , repeatedly: for example

w = yx\ixx\xyw .

This can be "evaluated" in N , to give, in an obvious notation,

|w| = rx + 8y + . . . + tz

with r, 8, . . . , t € N ; in the above example,

|u| = 36a; + 13# .

If two words u, u ' on evaluation give the same resul t ,

\w\ = | W ' | ,

then W = w' i s a law in G(2, 3) • Thus for example i f

w' = yxxwxyw ,

then

| u ' | = 36* + 13y = \w\ ,

whence

(1) yxvxxyyw = yxxwxyw

i s a law in G(2, 3) . I t is not difficult to verify that this is in fact
a law in a l l G(a, b) , and indeed in G(cc, 3) whenever the underlying
semigroup S is commutative and the two endomorphisms a and 3 commute
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with each other.

As from here on we shall be mainly concerned with G(2, 3) , we write

briefly G for this groupoid. If W is a word over G in the single

variable x , then |w| = rx , with r € N . I t is not difficult to

compute r ; one can do i t by simply replacing x by 1 . For brevity of

notation we put

||u|| = r if \w\ = rx .

The numbers r that thus arise in G are just al l the integers of the

form 12M + 1 and 12n + 5 , for n > 0 - the easy verification is

omitted. Again if ||id|| = ||u'|l . then W = w' is a law in G . To see

when this happens, we first establish a criterion:

LEMMA 1. If u, v, u', v' are single-variable words in G , then

(2) Humid = llu'w'ull

if, and only if, there is an integer I such that

(3) ||u|| - Hii'll = 121 and \\v'\\ - \\v\\ = 81 .

Proof. As

if , and only i f ,

2||u|| + 3IHI =

(2) is equivalent to

Since, moreover, the difference between any two numbers of the form

in G is a multiple of h , there are integers m, n such that

( 5 ) IMI - Hu'll = »wi , l ly ' l l - \\v\\ = kn .

Substi tut ing in (k) gives

(6) 8m = 12n ,

whence m = 3l and n = 2l for some integer I . Then (5) and (6)

combine to give (3) . / /

LEMMA 2. Let r € N satisfy

(7) r 5 l or 5 (mod 12) and r > Ul .
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Then there are at least two distinct one-variable words u, w' over G

uith

IMI = I k ' I I = r
(giving the law w = w' in G ) .

Proof. Assume the number r sa t i s f ies the conditions (7). Then

there i s at l eas t one single-variable word W over G such that

w = uv]i , and ||u|| = r .

Assume f i r s t that ||u|| = 1 (mod 12) . I f ||y|| > 8 , then

||u|| - 8 = 5 (mod 12) and ||u|| - 8 is posi t ive: thus i t i s i t s e l f of the

form ||y'|| . Also ||u|| + 12 = ||u'|| for some word u' . By Lemma 1 then,

with 1=1,

(8) r = ||uuy|| = ||u'u'y|| .

I f ||y|| S 8 , then ||y|| = 1 , and we have

HI = 2||«|| + 3||u|| = 2||u|| + 3 > kl ,

whence ||u|| > 19 ; but as \\u\\ = 1 or 5 (mod 12) , even ||w|| > 25 .

Then there i s a word u' such that ||M'|| = ||w|| - 2k . There i s also a v'

such that ||v'| | = ||y|| + 16 (= IT) , and Lemma 1, with I = -2 , again

yields (8). Next assume that ||v|| 5 5 (mod 12) . If ||y|| > 16 , one

similarly finds u' and u ' with ||M'|I = IMI + 2U and ||y'|| = l|w|| - 16 ,

and applies Lemma 1 with I = 2 to obtain (8). I f ||y|| 5 16 , then

||y|| = 5 , and

INI = 2||«|| + 3||u|| = 2||M|| + 15 > Ul ,

whence \\u\\ > 13 . Now choose u' and v' so that ||M'|I = ll"ll - 12 and

||y'| | = IMI + 8 . and apply Lemma 1 with I = -1 , to get (8). Putting

w' = w'u'y completes the proof of the lemma. / /

I t follows that to each number r that satisfies (7) there is a non-

tr ivial law w = w' in G with ||u|| = ||w'|| = r ; and i t is easily seen

that with increasing r there are an increasing number of such laws.

3. Modification of the special groupoid

In preparation for the proof of the main result in the next section,

we now introduce a modification of G . This will depend on a positive
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integer k , to be specified later. First we define, for any two numbers

x, y € N with greatest common divisor (x, y) ,

_ i _ x . . . _ M

* " (x,y) ' y (x,y) '

so that (xf, y') = 1 . Then we define a new binary operation y* on N

as carrier as follows:

xy\i* = xy\i if x'y'v- 5 k ,
(9)

xy\i* = x if x'j/'y > k ;

here y is, of course, the operation of G . The groupoid with carrier N

and this binary operation y* is denoted by Gf . If W is a word over

G , the word over Gf obtained by replacing y by y* is denoted by

W* . Note that W* can not, like W , be evaluated in N to give a

linear combination of the variables with coefficients in N , because xyy*

is itself no longer a single linear combination of x and y . However,

if w* is a word in a single variable x , say, then w* can be evaluated

unambiguously in W , to give

with r* € N . Again, if two one-variable words w*, w'* over Gf give

the same result on evaluation: •

\w*\ = |w'*| ,

then W* = w'* is a law in Gt . Again one readily sees that the r* € N

that occur here (or, equivalently, that lie in the carrier of the sub-

groupoid of Gf generated by 1 ) are all of the form 12n + 1 or

12n + 5 , with n > 0 (but now not all of these numbers need occur).

LEMMA 3. Let w be a one-variable word over G . If \\w\\ < k ,

then \w*\ = |u| .

Proof. We first notice that x* = x . Next let w = uv\i , where

u, v are words in x . As

IMI = 2IMI + 3IMI ,

both ||u|| < ||u|| 5 k and ||u|| < ||u|| < k , so tha t we may assume tha t

|M*| = \u\ = ||u||x and |w*| = | y | = ||u||x .
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Now W* = u*v*\i* , and the first part of the definition (9) of \i*

applies, so that

|w*| = (2|M|+3lM|)x = (2||u||+3||tf||)*= |u| ,

as claimed. / /

4. The main results

We now show that the laws of G are not finitely based, in other

words, that they do not follow from any finite number among them. The

question of what algebras, or classes of algebras, are finitely based has

long been of interest; see, for example, Tarski 's survey [2], pp. 277-278.

LEMMA 4. Let L be a set of laws of some class C of algebras, and

let L1 be the set of one-variable specialisations of members of L , that

is to say the set of laws obtained from those in L by putting all

variables equal to a single one, say x . Then every one-variable law of

C that is a consequence of L is also a consequence of L .

This is the one-variable case of a well known (and almost obvious)

fact applicable to any fixed finite number of variables; see Neumann [ I ] ,

p. 39- / /

THEOREM. If L is any finite set of laws of G , then there is a

one-variable law of G that is not a consequence of L . Thus the set of

laws of G is not finitely based.

Proof. Denote again by L the set of one-variable specialisations

of members of L . By Lemma k i t suffices to show that there is a law of

G that does not follow from L . To this end we choose the integer

k € N such that

(10) k > max{||u|| | there is a law w = w' or w' = W in L^\ ,

and k = 36n + 5 for some integer n > 1 .

With this choice of k we form Gf as in the preceding section. Now if

U = w' is a law of G in L , then Lemma 3 together with the choice of

k guarantees that

= \w\ = |w'| =
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so that w* = w'* is also a law of G* . Thus all the laws in L are

also, after replacing u by ]i* , laws of Gf ; and so are then all the

consequences of L . It remains to exhibit a law of G that is not valid

in G*.

Put

e = 2kn + 1 , s' = 36n + 1 ,

where n is the integer in the definition (10) of k . There are one-

variable words, say z and z' , such that, in G ,

N| = 8 , Us! = 8' .

Put w = X3U , w' = z'x\i . Then

whence wQ = w' i s a law in G . We now compute |u*| and IUQ*I •

F i r s t not ice t ha t as 8 < k and s ' < k , we have

\z*\ = | s | = ex , | s ' * | = \z'\ = e'x .

Now (1, e) = (s', 1) = 1 , and lsu = srly = J2n + 5 > k , so the second

part of the definition (9) applies to give

|w*| = |a:*2*y*| = |x(sa;)u*| = x ,

|u'*| = |zrjla;*iJ*| = |(sfa:):cu*| = s'x .

As s' > 37 , these two are different, and w* = w'* is not a law in G* .

It follows that W = w' is not a consequence of L , as required. //

5. Some general comments

One can use the same kind of consideration to prove corresponding

results for G(a, b) for arbitrary a, b other than a = b = 1 . The

subgroupoid generated by 1 in G(a, b) is never free, as the law (l) is

always satisfied; and one easily makes others like it. This answers a

question asked by B.H. Neumann. The laws valid simultaneously in all

G(a, b) , that is to say the laws of the variety generated by all
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G(a, b) , warrant further study. We only remark that if u = wr is such a

law, then w and w' are words of equal length: this is easily seen by

considering them in (the semigroup) 6(1, l) .

The groupoids here considered can be modified in a number of ways.

One such modification uses the following definition of a binary operation

y :

I f x f y then xy\i = ax + by , and xx\i = ax , where a, b, c € N .

Denoting the resulting groupoid, on N as carrier, by G(a, b, o) , one

sees that G(a, b, a+b) is simply the G(a, b) considered before. These

G(a, b, a) provide further examples of groupoids without finite bases for

their laws. We omit the proof.
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