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1. Introduction. Let {St; / e /} be a finite or infinite family of cancellative semigroups.
Let U be a cancellative semigroup, and suppose that there exists, for each / in /, a mono-
morphism <f>i • U -» Sf. We are interested in finding a semigroup T with the following
properties.

(a) For each / in /, there is a monomorphism Xt: Sj -+ T such that M^.A, = u<j>jkj for all
ue U and all /, j in /. That is to say, there exists a monomorphism X: U -> T which equals
0;/lf for all / in /.

(b)S^nS/j = Uk (i,jel; i*j).
More briefly, we wish to find a semigroup T containing isomorphic copies of each of the

Sh intersecting in an isomorphic copy of U. When such a T can be found, we shall say that
the embedding [(S,) ; £/] is possible. If moreover we can find a T which is cancellative, we
shall say that the cancellative embedding [(S,) ; £/] is possible.

In [4], the author considered the corresponding problem for a family (5,) of (not necessarily
cancellative) semigroups, and showed that the embedding [(£,-) ; U~\ was possible if U was a
group. In this paper we show that if U is a group, then the cancellative embedding [(S,); £/]
is also possible.

DEFINITION (Dubreil [2]). A subsemigroup U of a semigroup S is said to be unitary in S if,
for all u e U, s e S,

(i) us e U => s e U; and (ii) su e U => s e U.

If, for each / in /, the subsemigroup U<j>t is unitary in Sh then the embedding [(£,•) ; [/] is
possible [4, Corollary 3.4]. In the final section of this paper we show, by means of an example,
that the cancellative embedding [(£,•) ; C/] may be impossible.

2. The group case. We prove the following theorem.

THEOREM 2.1. Let {St ; / e /} be a family of cancellative semigroups, and suppose that there
exists a group U and a monomorphism </>,•: U-* Stfor each i in I. Then the cancellative em-
bedding [(S,) ; £/] is possible.

In the proof we shall use the following notation. Elements of U will be denoted by sym-
bols such as u, u', u(n\ etc. For any i in /, the symbols uh u\, and ujn) will then mean «</>,,
u'4>h and M(n)</>, respectively. We shall similarly use v, v', vw, etc. for elements of U.

The method of approach to the proof of this theorem is to consider, as in [4], the free
product Ul/Sj of the semigroups St, amalgamating U. The definition of the amalgamated free
product that is most convenient for the purposes of the present paper is as follows.

t The results of § 2 were contained in a thesis submitted to Oxford University for the degree of D.Phil. I
am grateful to Professor G. Higman and Dr G. B. Preston for much valuable advice, and also to D.S.I.R. for
financial support.
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First, consider the set W of finite, non-empty words a±a2 ... am, with each ar (r = 1,2, ..., m)
an element of some St. If multiplication in W is defined by juxtaposition, it is clear that W
becomes a semigroup. Now define elementary equivalences on the elements of W as follows.

(El) If, in the element a^ar ... amofW, two adjacent letters at andar+1 are in the same Sh

andifarar+1 = a; in Sh then a^a2 ... am andata2 ... ar_ifl*«r+2 ••• om are said to be elementarily
equivalent to each other.

(E2) If, in the element axa2 ... am of W, some ar = ute £/$;, and if ar is defined to be Uj
( = Wj(/>f l<l>j), where j is any element of I, then a^a2 ... am and a1a1 ... ar_ ia*ar+1 ... am are said
to be elementarily equivalent to each other.

Next, define two elements of W as equivalent if they can be connected by a finite (perhaps
empty) sequence of elementary equivalences of types (El) and (E2). It is easy to verify that
this is indeed an equivalence relation on the semigroup W, and in fact it is even a congruence.
We shall denote this congruence by p. Now we define Ti*vSh the free product of the semigroups
S, amalgamating U, as the quotient semigroup of W by the congruence p. This definition can
be shown to be equivalent to the definition in [4].

Now, from [4, Corollary 3.7 and Theorem 2.3], we know that when U is a group, IlySj
is a semigroup with the properties (a) and (b) listed in §1. It is therefore clear that Theorem
2.1 will be proved if we prove the following lemma.

LEMMA 2.2. Under the conditions of Theorem 2.1, TlySt is a cancellative semigroup.
To prove this, it is necessary first to make some observations regarding subgroups of

cancellative semigroups.
Suppose then that a cancellative semigroup 5 contains a subgroup U. Let e be the identity

element of U. Then e must be an identity element for the whole of S, for certainly e2 = e, and
therefore, for any s in 5,

e1s = es, and se2 = se.

By cancellation, it follows that es = s and se = s for all 5 in S.
The right cosets Us of U in S satisfy the condition

Usn Us'*n~ Us= Us', (1)

for s, s' in S. For, since U is a group, we have that Uu= U for all w in U, and therefore

Usn Us' # • => 3M, u'e [/suchthat us = it's'

=*• Uus = Uu's' => Us = Us".

Also, every element of S is contained in some right coset of U, for the element 5 is contained in
the coset Us.

If now a representative element is chosen in each right coset of U, the choice being
arbitrary (except that e is chosen as the representative of the coset Ue), but thereafter fixed, it
follows that every element s in 5 has a unique representation

s = uz, (2)

where ueU, and z is a coset representative. For, by (1), the element s can belong to only one
right coset of U, so that z is uniquely determined. If now s = uz, and s = u'z, it is immediate
by cancellation that u = u'. Thus u also is uniquely determined.
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Finally, a point of terminology: if a coset representative z is distinct from e, we shall call
it non-trivial.

Now, returning to the proof of Lemma 2.2, we have that, for each i in /, U(j)f is a subgroup
of the cancellative semigroup St. The foregoing therefore applies, and we choose, for each i
in /, a system of representatives for the cosets of £/(/>,• in S{. It is now possible to follow exactly
the procedure in [3, Chapter 17] (see also [5], [6]) and to find a canonical form

UZyZ2 ...Zn

for elements in II^S,, where ueU, and zu z2, ... zn are non-trivial coset representatives in the-
Sj's such that no two adjacent z's belong to the same St. The details in the proof of this state
ment are identical with those in the group case and are omitted. Stating the result more
precisely, we have that any element a of n ^ S , is an equivalence class under p of words in the
elements of the S/s, and that this class contains, for an arbitrary fixed h in /, one and only one
word of the form uhz1z2 ... zn, in which the z's are non-trivial coset representatives, and no two
adjacent z's are in the same S(. Because of the arbitrariness of the h, it is possible to drop the
suffix on the u, and to identify the form uzt ... zn with the p-class (uhzi ... zn)p.

Suppose now that, in WySi,
xa = ya.

We wish to show that x = y. Suppose that the canonical words associated with x and y are
respectively u'hz[ ... z'm and u'jtz"l ... z'n'. The element a may be written as

(uhz1 ... zt)p = (uhp)(zyp)... (zfp),

and therefore it will be sufficient to prove that

(i)x(uhp)=y(uhp)=>x=y,

and (ii) x (zp) = y (zp) => x = y,

where z is a non-trivial coset representative.
The hypothesis in (i) is that

Since p is a congruence, it follows that

i.e. that u'hz[... z^eh = «»r» ... z'n'eh (p),

where eh is the identity element of U<f>h. Now suppose that z^eSj. Then

K z ' i - zLeHs K z [ ••• z L e j = « # i ••• ** 0») .

for the first two words are elementarily equivalent by (E2), and the last two are elementarily
equivalent by (El). Similarly

<z'i-z';e^Kz'i-z>: (p).
and we conclude that u'hz\ ... z'm =u'h'z'^ ... z'^ (p),

i.e. that x = y.
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In (ii) we are considering the two words

u'hz\...z'mz (3)

and K»Z» . . . z'^z, (4)

and the hypothesis is that
1Jf7f 7*7^ 1Jtr7rf 7lf7 (ri\

Suppose that the canonical word associated with x(zp) is u*^ ... z*.
Define i'(r)el (r = 1, 2, ..., m) by z'reSi,(r). Similarly define i"(r) (r = 1, 2, ..., n) and

i*(r) (r = 1 , 2 , . . . , p) by z ; ' e S r w , and / eS ( . . ( r ) .
Suppose that ze S.-. Several cases can arise.

(b)i'(m)=j, and z'^U^; i"(n)¥=j.
(c)i'(m)=j, and z^zeUcpy, /"(«)#/
(d)i'(m)=j, and z'mz^U^; i"(n)=j, and z'n'z$U<j)j.
(e) i'(m)=j, and z'mzeU(pji i"(ri)=j, and z'n'z^U<pj.
(f)i'(m)=j, and z^zeUfy; i"(n)=j, and z'jzeUfj.

Other cases are not essentially different.
In case (a), the two words (3) and (4) are canonical words and, being equivalent under p,

they are therefore identical. It follows that x = y.
In case (b), the word (4) is in canonical form, and is therefore identical to u'^ ... z*. In

particular ^. = ^ ,„

The word (3) is, however, not canonical, since z'm and z are both in S}. If we apply to it the
standard process (see [6]) for reducing a word to canonical form, the reduction begins

z;z = wj'V, (6)

where z' is a non-trivial coset representative in Sj, and is the final coset representative in the
canonical word associated with (3), i.e. in the word uhz\ ... z*. Thus z' = z', and combining
this with (5), we get z' = z. Thus (6) becomes z'mz = u^Pz and, since S. is cancellative, this gives
z'm = u^}\ which contradicts the assumption that z'm is a non-trivial coset representative. Thus
case (b) cannot arise.

In case (c), the word (4) is again in canonical form, so that z* = z. The standard reductior
of (3) to canonical form begins

Then H(.!) changes to u\}}_1), and the reduction continues

Zm- l W i ' (m-1) M i ' (m- 1) Z ' *• '

where z' is a non-trivial coset representative in SV^-i) , and is the final coset representative in
the canonical word associated with (3). Thus z' = z*p = z. It follows therefore that z' e Sp and
from (7) we then conclude that /' (jn— 1) =_/. Hence V (m—1) = /' {m), which contradicts the
assumption that u'hz\... z'm is a canonical word. Thus case (c) cannot arise.
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In case (d), neither (3) nor (4) is a canonical word. The reduction of (3) to canonical form
must begin

^ = «(% (8)
z;_lM<1> = ^2>z;_1, (9)

(leaving out the suffixes of the u's, as we may without confusion). The reduction of (4) begins

From (8) and (10), z' = (u^y V z = (v^y lz"z,and therefore, by cancellation in Sj,

But this, by the uniqueness of the coset representation (2), implies that «(1) = «(1) and z^ = z'n'.
In the same way, from (9) and (11) we can now conclude that M(2) = t>(2) and z^_x = z'tt'-i.
This may be continued. Now it is clear that the canonical word associated with (3) must
contain precisely m coset representatives. Similarly the canonical word associated with (4)
contains n coset representatives. Hence m = n=p, and we can continue the above argument,
proving that z'r = z'r' (r = 1, ..., m). In the final stage of the simultaneous reduction of (3) and
(4) to canonical form we get

= u
from which we immediately conclude that v! = u". We have thus proved that the canonical
words associated with x and y are identical. That is, we have proved that x = y.

In case (e), the reductions begin

and z'^z = vwz*p.

It follows that z'peSj, and therefore z'm_l also belongs to Sj. Hence V (m— 1) = /' (jri), which
contradicts the assumption that t^zj ... z'm is a canonical word. Thus case (e) cannot arise.

In case ( /) , the reductions begin

and z;'z = uj0, (14)
zi '_14o = y(2)z;. (15)

(We write it for /' (m — 1) and i" (n — 1); it is obvious that these are equal, since both are equal
to /* (/?).) It follows from (12) and (14) that

and therefore, by cancellation in Sj, (uy>)~1 z'm = (vy>)~1z'n
l. By the uniqueness of the coset

representation (2), this implies that u<.u = t^1) and z'm = z'n'. From (13) and (15) we now get
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z* = {u<^))~iz'm_xu[^ — (v^)~1 z'n'_1vjc
i\ and since w'1* = D*1* we can use cancellation in Sk to

obtain (u^)1"1^-! = O ^ ) " 1 ^ ' - ! - F r o m t n i s it; follows that uf> = i^2) and z ;_ t = z; '_r

This argument may now be continued exactly as in case (d), giving x = y.
We have proved that n^S1,- is right-cancellative. By taking the elements of H^Si in a

canonical form z^ ... znu, with the z's as left-coset representatives, and going through a pro-
cedure exactly dual to the above, we can show that n ^ S , is also left-cancellative.

This completes the proof of Theorem 2.1.

3. A counterexample. First, we recall some definitions and basic results. A relation p
on a semigroup S may be thought of as a subset of S x S. If p is an equivalence relation, the
statement (x, y)ep will usually be written x = y{p). The congruence relation generated by a
set Z of elements of S x 5 is denned as the smallest congruence on S containing 2.

We define a. free semigroup as the set of finite and non-empty words in a set of generators,
multiplication being defined by juxtaposition. The following result is well-known [1].

For every semigroup S there exists a free semigroup F {not unique), and a congruence a on F
such that F\a <=± S.

This may be interpreted as giving the presentation of 5 by generators and defining rela-
tions. The generators are the generating set T of the free semigroup F, and the defining
relations are any collection of elements of Fx F which generate the congruence a.

The manner in which a set of defining relations Z e Fx F generate a congruence a on the
free semigroup Fis easy to describe. Suppose tha t /=psq , g = ptq, where/?, qeFor are empty,
and (s, t)eH. Then we shall say that each of/and g is obtained from the other by an elementary
transformation based on the defining relation {s, t). For two elements x, y of F, we then have
that x = y {a) if and only if y can be obtained from x by a finite {perhaps empty) sequence of
elementary transformations each of which is based on a defining relation in S.

The following notational device will be useful. If w (say) denotes an element of the free
semigroup F, then the element wo of the semigroup Fja will be denoted by w. That is to say, if
a word in the generators of a semigroup is denoted by a certain letter, then the same letter in
bold face is used to denote the corresponding element of the semigroup.

In what follows it will be unnecessary to use the precise notation of §1, and we shall
usually make no distinction between a semigroup and its isomorphic image.

Our assertion is that there exist cancellative semigroups S and T, each of which contains a
cancellative semigroup U as a unitary subsemigroup, for which the cancellative embedding
[5, T ; £/] is not possible. This is shown by the following example.

Let U be {«, v, x, y}, a free semigroup on four generators. Let S have generators
{u, v, x, y, a, b) and defining relations {{au, bv), {ax, by)}. Let T have generators {«, v, x, y, c, d,f)
and defining relations {{uc, xd), (yd, vf)}. Then

(i) U, being free, is a cancellative semigroup [7];

(ii) S is cancellative, and U is a unitary subsemigroup of S;

(iii) T is cancellative, U is a unitary subsemigroup of T, and c ^ f;

(iv) the cancellative embedding [S, T; {/] is not possible.

Assume for the moment that (ii) and (iii) are true, and suppose that (iv) is not true. That

https://doi.org/10.1017/S204061850003464X Published online by Cambridge University Press

https://doi.org/10.1017/S204061850003464X


AN EMBEDDING THEOREM FOR CANCELLATIVE SEMIGROUPS 25

is, suppose that there exists a cancellative semigroup ^containing S and Tas subsemigroups,
with Sr\T= U. Then in K,

auc = axd = byd = bvf = auf,

and therefore, by cancellation, c =f. But c # f in T. Thus we have a contradiction, and the
cancellative embedding [S1, T ; £/] is not possible.

It remains to prove (ii) and (iii) above. It is easy to show that the subsemigroup of S
generated by u, v, x, y is free, so that (up to isomorphism) U is a subsemigroup of S. Now let
w(1), M(2) be words in the generators of U, and s a word in the generators of S, and suppose that
u(1)s = u(2). Then M(2) and M(1)J are connected by a sequence (perhaps empty) of elementary
transformations based on the denning relations of S. Now it is clear that the word «(2) cannot
be changed by an elementary transformation based on a definining relation of S, since neither
of the defining relations of 5 involves a word entirely in the generators of U. Thus the sequence
connecting «(2) and M(1IS must be empty. That is to say, the two words must be identical. In
particular, s must be a word in the generators of U. We have thus proved that u(l >s e U => s e U,
and the dual result may be proved similarly, showing that U is a unitary subsemigroup of S.

Next, we show that S is left-cancellative. The following lemma clearly establishes this.

LEMMA 3.1. Let g be a generator of S, and let s(l\ s(2) be words in the generators of S.
Suppose that gs^^ andgs^ are connected by a sequence S^1 of elementary transformations based
on the defining relations of S. Then there is a sequence Sf2 of elementary transformations
connecting J ( 1 ) and sw, and the length ofS^2 is not greater than the length ofS^1.

We prove this lemma by induction on the length / of SP±. A simple verification shows that
it holds for / = 1. Suppose therefore that it holds for I <n, and t h a t g s w a n d g s w are connected
by a sequence of elementary transformations of length n (^2) . We can clearly restrict ourselves
to the case where the first step is gsO) -* J ( 3 ) and the last step is sw -*gsw, where neither J ( 3 )

nor j ( 4 ) begins with g, for otherwise the induction hypothesis would immediately give the
desired conclusion. Thus g must be the first letter in a word occurring in a denning relation
of S; in other words g must be a or b. It will be sufficient to consider the case where g = a,
and where the first step is based on the relation (au, bv). That is,

gs<l) = ausm and sm = bvs(5\

At the end of the sequence there are two possibilities. Either

(a) gsw = aus™ and j(4> = W 6 ) ;

or (b) gsw = axsi6) and sw = bys<6).

In case (a) we have a sequence of n — 2 elementary transformations connecting bvs^ and
bvs^6K Therefore by the induction hypothesis there is a sequence of at most n—2 steps con-
necting us<5> and vs<-6K Applying the induction hypothesis again, we find that s(5) and J ( 6 ) are
connected by a sequence of elementary transformations, and the length of this sequence is at
most n — 2. Now j ( 1 ) = us{S) and J ( 2 ) = usw, so that obviously there is a sequence of at most
n — 2 elementary transformations connecting s(1) and s<-2K

In case (b) we have a sequence of n—2 elementary transformations connecting bvs(5) and
bys^6\ By induction therefore, vs(5) and jtf(6) are connected by a sequence of elementary
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transformations. But this is impossible, since no elementary transformation based on a de-
fining relation of S—and hence no finite sequence of such transformations—can change a
word beginning with v to a word not beginning with v. Therefore case (b) cannot arise, and we
have proved that S is left-cancellative.

The proof that S is right-cancellative is closely similar. By the same inductive method as
above we can prove a lemma differing in statement from the lemma just proved only in that
•s(1)# and swg replace gfi(1) and gs^. Thus S is a cancellative semigroup.

A similar approach is used to prove that U is a unitary subsemigroup of T, and that T is
cancellative. The proof involves no new ideas and is therefore omitted. To prove that c # f
in T, consider the class of words in the generators of T which can be obtained from the word c
by means of a finite sequence of elementary transformations based on the defining relations of
T. It is immediately obvious that this class consists of the single word c. It certainly does not
contain the word/, and therefore the two elements c and f of T are distinct.
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