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Abstract. In this paper, we study the dynamics of the family of rational maps with two
parameters

fa,b(z)= zn
+

a2

zn − b
+

a2

b
,

where n ≥ 2 and a, b ∈ C∗. We give a characterization of the topological properties of the
Julia set and the Fatou set of fa,b according to the dynamical behavior of the orbits of the
free critical points.

1. Introduction
Let f : Ĉ→ Ĉ be a rational map defined on the Riemann sphere Ĉ. The Fatou set F( f )
of f is defined to be the set of points at which the family of iterates of f forms a normal
family, in the sense of Montel. The complement of the Fatou set is called the Julia set,
which we denote by J ( f ). A connected component of the Fatou set is called a Fatou
component. According to Sullivan’s theorem, every Fatou component of a rational map is
eventually periodic and there are only five kinds of periodic Fatou components: attracting
domains, super-attracting domains, parabolic domains, Siegel disks and Herman rings.
The critical points of f are defined to be the points at which f is not univalent in any
neighborhood, and the critical values of f are defined to be the images of the critical
points.

An interesting and important problem in complex dynamics is to describe the topology
of the Julia sets of rational maps, such as the connectivity and local connectivity. For a
polynomial, it was proved by Fatou that the Julia set is connected if and only if the orbits
of the finite critical points are bounded. In [20], Qiu and Yin obtained a sufficient and
necessary condition for the Julia set of a polynomial to be a Cantor set. For rational maps,
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the Julia sets may exhibit more complex topological structures. Pilgrim and Tan proved
that if the Julia set of a hyperbolic (more generally, geometrically finite) rational map is
disconnected, then, with the possible exception of a finite number of periodic components
and their countable collection of preimages, every Julia component is either a single point
or a Jordan curve [17, Theorem 1.2].

For the general rational maps, it is difficult to describe the topological properties of
the corresponding Julia sets. However, for some special families of rational maps, the
topological properties of the Julia sets can be studied well. For example, the McMullen
maps Fλ(z)= zn

+ λ/zd with n, d ≥ 2 and λ ∈ C∗ have been studied extensively by
Devaney and his collaborators in a series of papers (see [3, 5–7]). Specifically, it was
proved in [6] that if the orbits of the critical points of Fλ are all attracted to∞, then the
Julia set of Fλ is either a Cantor set, a Sierpiński curve, or a Cantor set of circles. In
particular, the Julia set of Fλ is a Cantor set of circles if 1/n + 1/d < 1 and λ 6= 0 is small.
If the orbits of the free critical points of Fλ are bounded, then Fλ has no Herman rings [24]
and, actually, the corresponding Julia set is connected [7]. Since the McMullen family
exhibits extremely rich dynamics, this family has also been studied in [21] and [18]. As
a variation of Fλ, the generalized McMullen map Fλ,η(z)= zn

+ λ/zd
+ η also attracts

much interest. Some additional dynamical phenomenon happens for this family since the
parameter space becomes C2, which is two-dimensional. For a comprehensive study on
Fλ,η, see [2, 10, 12, 25] and the references therein. There also exist some other special
families of rational maps which have been well studied. For example, see [9, 11, 22].

Note that, for McMullen maps and generalized McMullen maps, the point at infinity is
always a super-attracting fixed point and the origin is always a pole. If the parameter is
close to the origin, then each of these maps can be seen as a perturbation of the unicritical
polynomial Pn(z)= zn . In this paper, we are interested in the problem of finding a two-
dimensional family of rational maps, such that the point at infinity and the origin are both
super-attracting fixed points. For this, we consider the following family of rational maps

fa,b(z)= zn
+

a2

zn − b
+

a2

b
, (1.1)

where n ≥ 2 and a, b ∈ C∗. If a = 0, then fa,b degenerates to the unicritical polynomial
Pn . Therefore, the map fa,b with (a, b) ∈ (C∗, C∗) can be also seen as a perturbation of
the simple polynomial Pn . This perturbation is essentially different from that of McMullen
maps and the generalized McMullen maps since fa,b not only keeps the dynamics of Pn

near the point at infinity but also keeps the dynamics near the origin.
A straightforward calculation (see (2.1)) shows that fa,b has two super-attracting fixed

points 0 and ∞. We use B and T to denote the immediate super-attracting basins of ∞
and 0, respectively. Then B ∩ T = ∅. The map fa,b has 4n − 2 critical points (counted
with multiplicity) since the degree of fa,b is 2n. The local degrees of 0 and∞ are both n.
Hence this leaves 2n more critical points. The forward orbits of 0 and∞ are trivial since
they are both fixed by fa,b. We call the remaining 2n critical points the free critical points.
In §2.1 we will show that these free critical points can be divided into two pairs, and each
pair has a unique critical value. We call these two critical values the free critical values
and denote them by v+ and v−. The dynamics of fa,b are determined by the orbits of these
two free critical values.
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1.1. Statement of the main results. We use A(0) and A(∞) to denote the super-
attracting basins of fa,b containing 0 and ∞, respectively. In this paper, the notation
](·) is used to denote the cardinal number of a finite set. Since the dynamics of fa,b is
determined by the free critical orbits, we give the characterization of the Julia set and the
Fatou set of fa,b by dividing the results into several cases.

THEOREM 1.1. Suppose that the two free critical values v+ and v− of fa,b are attracted
by A(∞) (similar results hold for A(0)). Then we have the following three cases.
(1) If ](B ∩ {v+, v−})≥ 1, then B is completely invariant and the Julia set J ( fa,b)=

∂B is disconnected. Moreover, except for B, other Fatou components of fa,b are
Jordan domains.

(2) If ](B ∩ {v+, v−})= 0 and ](U ∩ {v+, v−})≤ 1 for each component U of A(∞),
then the Julia set J ( fa,b) is connected.

(3) If ](B ∩ {v+, v−})= 0 and v+, v− ∈U for some component U of A(∞), then all the
preimages of U are annuli and other Fatou components of fa,b are simply connected.

Actually, we conjecture that the third case in Theorem 1.1 cannot happen†. However,
for McMullen maps [6] and the generalized McMullen maps [25], this case happens (for
example, when the Julia set is a Cantor set of circles‡). For specific examples of the first
two cases in Theorem 1.1, see §7.1 and Figure 2.

THEOREM 1.2. Suppose that A(∞) (respectively, A(0)) attracts exactly one free critical
value. Then the Julia set of fa,b is connected.

We will give some typical examples for Theorem 1.2 in §§7.2 and 7.3. See Figures 3
and 4. The proof of Theorem 1.2 will be divided into two main cases: the first is where
each of A(0) and A(∞) attracts exactly one free critical value, and the second is where
A(0) ∪A(∞) attracts exactly one free critical value.

Finally, we consider the case where the two free critical values are neither attracted by
A(0) nor A(∞) and we have the following theorem.

THEOREM 1.3. Suppose that v+, v− /∈A(0) ∪A(∞).
(1) If there exists a Fatou component that contains exactly one free critical value, then

J ( fa,b) is connected.
(2) If there exists a Fatou component that contains two free critical values, then the Julia

set is disconnected.

The two cases stated in Theorem 1.3 do, indeed, happen. For specific examples of these
cases, see §7.4 and Figure 5.

A subset of the Riemann sphere Ĉ is called a Cantor set of circles (or Cantor circles for
short) if it consists of an uncountable number of closed Jordan curves and is homeomorphic
to C × S1, where C is the Cantor middle third set and S1 is the unit circle. It is known that
Julia sets of the Cantor circles can appear in the McMullen family and the generalized

† One possible reason is that the Fatou component centered at the origin (i.e., T ) is fixed and another reason is
that v+, v− cannot be too close if they are attracted by∞. See (2.2) and Figure 1.
‡ Although we will prove that the Julia set of fa,b cannot be a Cantor set of circles in Theorem 1.4, we still
cannot rule out the third case in Theorem 1.1.
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FIGURE 1. A slice of the parameter space (i.e., a-plane) of fa,b , where n = 3 and b = 1/25. The colorful part
in the left-hand picture indicates the parameters such that the free critical value v+ is not attracted by 0 and
∞, while the white regions denote the parameters such that v+ is attracted by 0 or∞. The right-hand picture
indicates the dynamical behaviors of the both critical values and the colorful set is the non-escaping locus of fa,b .

FIGURE 2. The Julia sets of fa , where a = 0.16 and a = 0.1625i, respectively. These two Julia sets correspond
to the first two cases in Theorem 1.1. The one on the left is disconnected and the one on the right is connected.

McMullen family. Although some of the Fatou components of fa,b may be doubly
connected, we can still prove the following theorem.

THEOREM 1.4. For any a, b ∈ C∗ and n ≥ 2, the Julia set of fa,b can never be a Cantor
set of circles.

As a remark, we would like to point out that there exists a family of rational maps such
that 0 and ∞ are both super-attracting fixed points, but every Julia set is a Cantor set of
circles. For example, see [9] and [19].

1.2. Organization of the paper. The paper is organized as follows. In §2, the family
fa,b is introduced and some basic properties of fa,b are presented. We will also prepare
some useful lemmas in this section, which are necessary in the proofs of our theorems. In
§3, we describe the Julia set of fa,b for the case where two free critical points are attracted
by one of the super-attracting fixed points 0 and ∞ and prove Theorem 1.1. In §4, we
discuss the case where the super-attracting fixed point (∞ or 0) attracts exactly one free

https://doi.org/10.1017/etds.2015.114 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.114


Singular perturbations of the unicritical polynomials 2001

critical value and prove Theorem 1.2. In §5, we deal with the case where the two free
critical values do not belong to the attracting basins of the two super-attracting fixed points
and prove Theorem 1.3. We will prove the non-existence of a Cantor set of circles in §6.
In the last section, we give some examples to show that the various cases stated in the
above theorems (except the third case in Theorem 1.1), actually happen. The parameters
that correspond to the examples are chosen from the slice shown in Figure 1.

We would like to provide more information on the parameter space of fa,b based on
Figure 1. Unlike McMullen maps, our family fa,b essentially has two free critical orbits.
Therefore, we cannot draw the whole parameter space on the complex plane C. A way
to study the high dimensional parameter space is to study its slices, and usually the slices
with complex dimension one. As captioned in Figure 1, we choose the slice b = 1/25 and
all the examples in this paper come from this slice. For the left-hand picture, the colorful
set indicates the parameters a ∈ C∗ such that the free critical value v+ is not attracted by
0 and∞. There also exists a set in this slice corresponding to the parameters a ∈ C∗ such
that the free critical value v− is not attracted by 0 and∞, which is drawn in the right-hand
picture (mostly the blue parts and homeomorphic to the left-hand picture). These two sets
have some overlaps which are also drawn in different colors on the right-hand picture.
The different colors denote different dynamical behaviors of v+ and v−. For example, the
green parts correspond to the set of a ∈ C∗ such that neither v+ nor v− are attracted by 0
and∞.

2. Preliminaries
In this section, we prepare some preliminary results. We first study the symmetric
distribution of the critical points and the symmetric dynamical behavior of fa,b. Then
we consider the topological properties of the immediate basins of 0 and∞, respectively.
Finally, we present some classical results in complex dynamics. In the rest of this paper,
we always assume that n ≥ 2 is an integer.

2.1. Dynamical symmetry. As pointed out in the introduction, the rational map

fa,b(z)= zn
+

a2

zn − b
+

a2

b
=

zn

b
·

bzn
+ a2

− b2

zn − b
(2.1)

has two super-attracting fixed points, 0 and∞. These two points are also critical points of
fa,b with multiplicity n − 1. A direct calculation shows that the collection of poles of fa,b

is
{ξk = ω

k n√b : 1≤ k ≤ n} where ω = e2π i/n .

Besides the origin, the other zeroes of fa,b can be written as{
ζk = ω

k n
√
(b2 − a2)/b : 1≤ k ≤ n

}
.

Recall that B and T are the immediate super-attracting basins of ∞ and 0, respectively.
Therefore, each ξk or ζk is contained in the Fatou set. For 1≤ k ≤ n, we use Bk to denote
the Fatou component containing ξk and Tk to denote the Fatou component containing ζk ,
respectively. Since the degree of fa,b is 2n and the local degrees of fa,b at ∞ and 0
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are both n, we have f −1
a,b (B)= B ∪

⋃n
k=1 Bk and f −1

a,b (T )= T ∪
⋃n

k=1 Tk . Note that Bk

(respectively, Tk) may be disjoint from B (respectively, T ).
By calculating the derivative of fa,b, one can show that there are 2n critical points for

fa,b given by

c+k = ω
k n√b + a and c−k = ω

k n√b − a where 1≤ k ≤ n.

However, there are only two critical values for these critical points. They are

v+ = fa,b(c+k )= (b + a)2/b and v− = fa,b(c−k )= (b − a)2/b. (2.2)

In this paper, we call c+k , c−k the free critical points, and v+, v− the free critical values
of fa,b. The dynamics of fa,b are determined by the orbits of these two free critical values.
Since the local degree of fa,b is two at every free critical point, f −1

a,b (v±)= {c
±

k : 1≤ k ≤
n}.

In the rest of this paper, we use M to denote the connected component of Ĉ \ B that
contains the origin and N to denote the connected component of Ĉ \ T that contains the
point at infinity. Since 0 ∈ T ,∞∈ B and T ∩ B = ∅, we have B ⊂ N and T ⊂ M .

Let U be a subset of Ĉ and a ∈ C. We denote aU := {az : z ∈U }. The proof of the
following lemma is straightforward.

LEMMA 2.1. Let ω be a complex number satisfying ωn
= 1 and suppose that U is a Fatou

component of fa,b.
(1) fa,b(ωz)= fa,b(z) and ωU is also a Fatou component of fa,b.
(2) The four sets B, T , M and N have n-fold symmetry: i.e., z ∈ B (respectively T , M

and N) if and only if ωz ∈ B (respectively T , M and N).

For a Fatou component U , different from B and T , we claim that either U has n-fold
symmetry or the sets ωkU with ω = e2π i/n and 1≤ k ≤ n are pairwise disjoint. To prove
this, we first need the following lemma.

LEMMA 2.2. Suppose γ ⊂ C is a continuous closed curve which separates 0 from ∞.
Then σγ ∩ γ 6= ∅ for all σ = e2π iθ , where θ ∈ [0, 1).

Proof. Since γ is compact, there exist two points z1 and z2 on γ such that

d(z1, 0)=min
z∈γ

d(z, 0) and d(z2, 0)=max
z∈γ

d(z, 0),

where d(·, ·) denotes the Euclidean distance in C. Then the curve γ is contained in an
annulus A(r1, r2)= {z ∈ C : r1 ≤ |z| ≤ r2}, where r1 = d(z1, 0) and r2 = d(z2, 0). The
lemma is clearly true for r1 = r2: i.e., when γ is a round circle. Hence we can assume that
r1 < r2. By the definition of r1 and r2, the curve γ connects the two boundary components
of A(r1, r2). For any σ = e2π iθ with θ ∈ [0, 1), we have σ z1 ∈ {z : |z| = r1} and σ z2 ∈ {z :
|z| = r2}. If none of them lies on the curve γ , then they must lie in different components
of C \ γ . Since γ is a closed curve in A(r1, r2) surrounding 0, any curve that connects the
boundary circles {z : |z| = r1} and {z : |z| = r2} must intersect γ . Hence, the subarc of σγ
that connects σ z1 and σ z2 must intersect γ . This implies σγ ∩ γ 6= ∅. �
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LEMMA 2.3. Let U be a Fatou component of fa,b which is different from B and T .
Suppose that z0, ω

j0 z0 ∈U, where ω satisfies ωn
= 1 and ω j0 6= 1. Then ω j z0 belongs

to U for any integer j . In particular, U has n-fold symmetry and surrounds the origin.

Proof. Suppose z0, ω
j0 z0 ∈U and ω j z0 /∈U for some j . Let γ1 be a smooth curve in U

that connects z0 and ω j0 z0. Then γ2 := ω
j0γ1 is contained in ω j0U , which is also a Fatou

component, by Lemma 2.1(1). Since ω j0 z0 ∈ γ1 ∩ γ2 ⊂U ∩ ω j0U , we obtain U = ω j0U .
Note that ω2 j0 z0 ∈ γ2 ⊂ ω

j0U : this means that U contains ω2 j0 z0. By induction, it follows
that U contains all points ωi j0 z0 and curves γi for i ∈ N, where γi = ω

i j0γ1.
By the definition of ω, there must exist a smallest positive integer k such that ωk j0 = 1.

Let γ =
⋃k

i=1 γi . Then γ ⊂U and it is a continuous closed curve. Moreover, 0 and∞ lie
in the different components of C \ γ since γ is obtained by taking the union of the curves
that are produced by rotating γ1 around the origin. For any j ∈ N, let β = ω jγ . Then
β ⊂ ω jU . By Lemma 2.2, ∅ 6= β ∩ γ ⊂U ∩ ω jU . Since ω jU is also a Fatou component,
U = ω jU . The proof is complete. �

We have the following immediate corollary.

COROLLARY 2.4. Let U be a Fatou component of fa,b which is different from B and T .
Then either U has n-fold symmetry and surrounds the origin or ωU, ω2U, . . . , ωnU =U
are pairwise disjoint, where ω = e2π i/n .

In this paper, we need to prove that some domains are simply connected or doubly
connected and the following lemma is useful.

LEMMA 2.5. (Riemann–Hurwitz formula, [1, §5.4, pp. 85–89]) Let f be a rational map
defined from Ĉ to itself. Assume that:
(1) V is a domain in Ĉ with a finite number of boundary components;
(2) U is a component of f −1(V ); and
(3) there are no critical values of f on ∂V .

Then there exists an integer d ≥ 1 such that f is a branched covering map from U onto
V with degree d and

χ(U )+ δ f (U )= dχ(V ),

where χ(·) denotes the Euler characteristic and δ f (U ) denotes the total number of the
critical points of f in U (counted with multiplicity).

Remark. Let D be a domain in Ĉ. Then χ(D)= 2 if and only if D is the Riemann sphere
Ĉ; χ(D)= 1 if and only if D is simply connected; and χ(D)= 0 if and only if D is doubly
connected (i.e., an annulus).

2.2. The general topological properties of B and T . If a simply connected domain
U ⊂ C∗ does not contain any critical values, then f −1

a,b (U ) consists of exactly 2n connected
components and each of them is simply connected. For the case where U contains a free
critical value, we have the following lemma.
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LEMMA 2.6. Let U ⊂ C∗ be a simply connected domain which contains exactly one free
critical value of fa,b. Then f −1

a,b (U ) consists of exactly n components and each of them is
simply connected. Moreover, each component of

⋃
∞

m=0 f −m
a,b (U ) is simply connected.

Proof. Let V be a connected component of f −1
a,b (U ). Without loss of generality, suppose

that v+ ∈U . Then fa,b : V \ f −1
a,b (v+)→U \ {v+} is a covering map. Note that U \ {v+}

is an annulus: this means that V \ f −1
a,b (v+) is also an annulus, by Lemma 2.5. Therefore,

the cardinal number ](V ∩ f −1
a,b (v+))≤ 1 and V is simply connected. Moreover, ](V ∩

f −1
a,b (v+))≤ 1 means that f −1

a,b (U ) consists of at least n components since {c+k : 1≤ k ≤ n}
is contained in f −1

a,b (v+). Note that the degree of fa,b is 2n: it follows that f −1
a,b (U ) consists

of exactly n connected components and each of them is simply connected. The second part
of the lemma follows in a similar fashion. �

PROPOSITION 2.7. Suppose that B (respectively, T ) does not contain any free critical
values.
(1) B (respectively, T ) and each component of f −1

a,b (B) (respectively, f −1
a,b (T )) is simply

connected.
(2) If, in addition, every component of A(∞) (respectively, A(0)) contains at most one

free critical value, then every component of A(∞) (respectively, A(0)) is simply
connected.

Proof. (1) By [13, Theorem 8.9], B is either simply connected or infinitely connected.
However, by the assumption, B is super-attracting and contains no critical values except
the fixed point∞ itself. This means that B must be simply connected. The proof that each
component of f −1

a,b (B) is simply connected is similar to the proof of Lemma 2.6 and we
omit it. A similar result follows when we replace B by T and A(∞) by A(0).

(2) This is an immediate corollary of Lemma 2.6. �

PROPOSITION 2.8. If B contains at least one free critical value, then B is completely
invariant and J ( fa,b)= ∂B. In particular, if B contains two free critical values, then
J ( fa,b) is disconnected. The same conclusion holds for T .

Proof. Without loss of generality, suppose that v+ ∈ B. If there exists a critical point
c+k0

such that c+k0
6∈ B, then c+k 6∈ B for all 1≤ k ≤ n, by Lemma 2.1(2). Therefore, v+

has 2n preimages outside B (counted with multiplicity). Since fa,b(B)= B, this means
that v+ has at least 3n preimages, which is a contradiction since the degree of fa,b is
2n. Therefore, each c+k is contained in B. Since f −1

a,b (v+)= {c
+

k : 1≤ k ≤ n}, we have
f −1
a,b (B)= B = fa,b(B): i.e., B is completely invariant. The assertion J ( fa,b)= ∂B

follows by [13, Corollary 4.12].
If B contains two free critical values, then B contains 3n critical points (counted

with multiplicity). This means that B cannot be simply connected. Hence B is infinitely
connected and the Julia set of fa,b is disconnected. �
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2.3. Some useful definitions and lemmas. We will prepare some useful lemmas in this
subsection. These lemmas focus on the connectivity and local connectivity of the Julia sets
and some regular properties of the Fatou components. For the connectivity of the Julia set
of a rational map, we think the following criterion is useful.

LEMMA 2.9. Suppose that f is a rational function which has no Herman rings and each
Fatou component contains at most one critical value. Then the Julia set of f is connected.

Proof. Since f has no Herman rings, each periodic Fatou component of f is either a
(super-) attracting basin, a parabolic basin or a Siegel disk, by Sullivan’s classification
theorem. Let U be the union of all the periodic Fatou components of f . Then the Fatou
set of f is equal to

⋃
m≥0 f −m(U). The Julia set is connected if and only if all Fatou

components are simply connected. Let U be a periodic Fatou component of f . Consider
the orbit

· · ·
f
−→Um+1

f
−→Um

f
−→ · · ·

f
−→U2

f
−→U1

f
−→U0 =U.

Assume that Um is simply connected for some m ≥ 0. If Um does not contain any critical
values, then Um+1 is simply connected, by Lemma 2.5. If Um contains exactly one critical
value v, then f :Um+1 \ f −1(v)→Um \ {v} is a covering map. Since Um \ {v} is an
annulus, this means that Um+1 \ f −1(v) is also, and thus Um+1 is simply connected. By
induction, every Um′ is simply connected if m′ ≥ m. This means that, in order to prove the
Julia set of f is connected, it is sufficient to prove that each periodic Fatou component is
simply connected. We divide the arguments into three cases.

Case 1: If U is a periodic Siegel disk, then U is simply connected, by the definition.
Case 2: Suppose that U is a periodic attracting basin with period p ≥ 1. Let z0 ∈U

be the attracting periodic point and define zi = f ◦i (z0) ∈ f ◦i (U ) for 1≤ i < p. Then
there exists a small disk D0, centered at z0, such that f ◦p(D0)⊂ D0 and ∂D0 does not
contain any points in the critical orbits of f . For m ≥ 0 and 0≤ i < p, we use Dmp+i to
denote the connected component of f −(mp+i)(D0) containing z p−i (we denote z p = z0 for
convenience). Then for 0≤ i < p,

Di ⊂ Dp+i ⊂ D2p+i ⊂ · · · ⊂ Dmp+i ⊂ · · · . (2.3)

Note that each Dmp+i contains at most one critical value and ∂D0 does not contain any
points in the critical orbits of f . We conclude that each Dmp+i is simply connected by an
argument similar to the one presented in the first part of the proof. Since U =

⋃
m≥0 Dmp

and given (2.3), it follows that U is simply connected.
Case 3: Suppose that U is a periodic parabolic basin with period p ≥ 1. Let z0 ∈

∂U be the parabolic periodic point † such that f ◦mp(z) is attracted to z0 for any z ∈U .
Define zi = f ◦i (z0) ∈ f ◦i (∂U ) for 1≤ i < p. According to the dynamics of f on the
parabolic basins, one can choose a small disk D0 ⊂U such that z0 ∈ ∂D0, D0 ⊂U ∪ {z0},
f ◦p(D0)⊂ D0 ∪ {z0} and ∂D0 does not contain any points in the critical orbits of f . By
an argument similar to that of Case 2, it is easy to see that U is simply connected. �

† There exists a parabolic basin whose boundary contains two or more parabolic periodic points.
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We remark that Peherstorfer and Stroh proved a similar result to Lemma 2.9 in [15,
Theorem 4.2], where they required that each Fatou component contains at most one critical
point (counted without multiplicity).

A rational map is called hyperbolic if its critical points are all attracted by the attracting
cycles. It is called subhyperbolic if each of its critical points is either attracted by an
attracting cycle or eventually periodic. A rational map is called geometrically finite if its
critical points in the Julia set are eventually periodic. Clearly, a hyperbolic rational map
must be subhyperbolic, and a subhyperbolic rational map must be geometrically finite.

For the local connectivity of the Julia set of a rational map, the following theorem was
proved by Tan and Yin.

THEOREM 2.10. [23, Theorem A and Lemma 2.1] Let f be a geometrically finite rational
map.
(1) If the Julia set of f is connected, then it is locally connected.
(2) The boundary of a simply connected Fatou component of f is locally connected.

A Jordan domain is a component of the complement of a Jordan curve in Ĉ. Pilgrim
proved the following result on Jordan domains.

LEMMA 2.11. [16, Proposition 2.8] If f is a rational map and U is a Jordan domain
whose closure contains at most one critical value v of f , then every component V of
f −1(U ) is also a Jordan domain. If v ∈ ∂U, then f |V : V →U is a homeomorphism.

A set K ⊂ C is said to be full if it is compact and connected, and if its complement is
non-empty and connected. A full set is said to be non-degenerate if it is not a single point.
Pilgrim proved the following lemma.

LEMMA 2.12. [16, Proposition 2.5] Let K be a non-degenerate full subset of C whose
boundary is locally connected. Let U be a bounded component of Ĉ \ ∂K (if any). Then
U and Ĉ \U are both Jordan domains.

For subhyperbolic rational maps, Morosawa established a useful lemma to prove the
boundary of a Fatou component is a Jordan curve [14, Lemma 6]. In this paper, we will
use its general form as stated in the following lemma.

LEMMA 2.13. Let f be a rational map and U a Fatou component of f with locally
connected boundary such that f (U )=U. If there is a component W of Ĉ \U and a
Fatou component V of f such that V ∪ f −1(V )⊂W , then the boundary of U is a Jordan
curve.

Proof. Without loss of generality, we assume that ∞∈U . By the assumption, each
component of Ĉ \U is a non-degenerate full subset of C. Suppose that Ĉ \U has exactly
one component W . Then W is a non-degenerate full subset of C. Since ∂U is locally
connected, it follows, by Lemma 2.12, that W and Ĉ \W are both Jordan domains. By
f (U )=U and a fundamental property of the Julia set [1, Theorem 4.2.7(i), p. 71], for
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arbitrary z ∈ V ⊂W but at most two points,

J ( f )⊂
∞⋃

n=1

f −n(z)⊂W . (2.4)

This means that U = Ĉ \W and ∂U is a Jordan curve.
Suppose that Ĉ \U contains at least two components. Let W ′ be a component of Ĉ \U

that is different from W . Since ∂U is locally connected, it follows that W and W ′

are Jordan domains, by Lemma 2.12. Since ∂W ′ ⊂ ∂U and f (U )=U , it follows that
f (∂W ′) is contained in ∂U and it is a continuous closed curve. If f (W ′) ∩W 6= ∅, then
W ⊂ f (W ′). This means that there is a Fatou component V ′ in W ′ such that f (V ′)= V .
However, this contradicts the assumption that V ∪ f −1(V )⊂W . Hence f (W ′) ∩W = ∅
and f −1(W )⊂W . Similar to the first case, for arbitrary z ∈ V but at most two points, we
have (2.4). Therefore, U = Ĉ \W and ∂U is a Jordan curve. �

3. Both free critical values escape to the same basin
In this section, we consider the case where both free critical orbits are attracted by
one of the basins of 0 and ∞ or, equivalently, v+, v− ∈A(0) or A(∞). By Sullivan’s
classification theorem on the Fatou components of rational maps, the Fatou set F( fa,b) of
fa,b is equal to A(0) ∪A(∞) and the Julia set is J ( fa,b)= Ĉ \ (A(0) ∪A(∞)).

Proof of Theorem 1.1. Without loss of generality, we suppose that two free critical orbits
of fa,b are attracted to the point at infinity.

(1) If B contains at least one free critical value, then B is completely invariant and
J ( fa,b)= ∂B, by Proposition 2.8. Since v+ and v− are attracted by∞, this means that B
contains all the free critical points since B is completely invariant. In particular, B contains
3n critical points (counted with multiplicity). Note that B is either simply connected or
infinitely connected. If B is simply connected, then, by Lemma 2.5, each point in B has
3n preimages. This is impossible since the degree of fa,b is 2n. Hence B is infinitely
connected and the Julia set of fa,b is disconnected.

By the assumption, we know that the Fatou set of fa,b is B ∪A(0). Since two free
critical orbits are attracted by∞, the basin A(0) contains exactly one critical value 0. In
order to prove that each component of A(0) is a Jordan domain, by Lemma 2.11, it is
sufficient to prove that T is simply connected. Note that N is the component of Ĉ \ T
containing ∞. Clearly, B = f −1

a,b (B)⊂ N . By Theorem 2.10 and Lemma 2.13, ∂T is a
Jordan curve and hence each component of A(0) is a Jordan domain.

(2) Suppose that ](B ∩ {v+, v−})= 0 and every connected component of A(∞)
contains at most one free critical value. According to Proposition 2.7, every component in
A(0) ∪A(∞) is simply connected. Thus J ( fa,b)= Ĉ \ (A(0)

⋃
A(∞)) is connected.

(3) Let U (v+, v−) be the connected component of A(∞) \ B that contains v+ and v−.
By Lemma 2.7(1), B is simply connected. Since U (v+, v−) is mapped to B by a conformal
map, it follows that U (v+, v−) is also simply connected. Since U (v+, v−) contains free
critical values, there exists a component V of f −1

a,b (U (v+, v−)) such that V contains at
least one free critical point.
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If V contains exactly one free critical point, say c+i for some i (the similar argument can
be applied to c−i ), then V is simply connected and each set of the form e2kπ iV , where 1≤
k < n, is simply connected. Moreover, by the symmetry stated in Corollary 2.4, each one
of these sets contains exactly one free critical point of the form e2kπ ic+i . However, there
exists another Fatou component V ′, such that c−i ∈ V ′ and fa,b(V ′)=U (v+, v−). This is a
contradiction since U (v+, v−) cannot have 2n + 2 preimages (counted with multiplicity).
Hence this case is impossible.

If V contains at least two free critical points, there are two cases. The first case: V
contains two free critical points c+i and c+j for 1≤ i 6= j ≤ n (a similar argument can be
applied to the case when V contains c−i and c−j ). Then V contains c+k for all 1≤ k ≤ n

by the symmetry and V = f −1
a,b (U (v+, v−)). In particular, V contains all the free critical

points. This means that V is an annulus, by Lemma 2.5. Moreover, all the preimages of V
are doubly connected. The second case: V contains two free critical points c+i and c−j for
1≤ i, j ≤ n. If V contains at least three free critical points, then we are back to the first
case. Hence we assume that V contains exactly two free critical points c+i and c−j . Then
ωk V , where 1≤ k ≤ n and ω = e2π i/n , are pairwise disjoint and each ωk V is an annulus
by Lemma 2.5. Moreover, all the preimages of ωk V are doubly connected.

We have proved that all components of
⋃
∞

m=1 f −m
a,b (U (v+, v−)) are doubly connected.

By Proposition 2.7, the rest of the Fatou components are simply connected. �

4. One of the basins attracts exactly one free critical value
In this section, we consider the case where A(∞) attracts exactly one free critical orbit of
fa,b. We show that in this case the Julia set is always connected.

4.1. Polynomial-like mappings. In order to prove Theorem 1.2, we need the
polynomial-like mapping theory introduced by Douady and Hubbard in [8].

Definition. A triple (U, V, f ) is called a polynomial-like mapping of degree d ≥ 2 if
U and V are simply connected plane domains such that U ⊂ V , and f :U → V is a
holomorphic proper mapping of degree d. The filled Julia set K ( f ) of a polynomial-like
mapping f is defined as

K ( f )= {z ∈U : f ◦k(z) ∈U ∀k ≥ 0}.

The Julia set of the polynomial-like mapping f is defined as J ( f )= ∂K ( f ).

Two polynomial-like mappings (U1, V1, f1) and (U2, V2, f2) of degree d are said to
be hybrid equivalent if there exists a quasiconformal homeomorphism h defined from a
neighborhood of K ( f1) onto a neighborhood of K ( f2), which conjugates f1 to f2 and
satisfies the complex dilatation µh = 0 on K ( f1). The following theorem was proved by
Douady and Hubbard in [8].

THEOREM 4.1. (The straightening theorem, [8, Theorem 1, p. 296])
(1) Every polynomial-like mapping (U, V, f ) of degree d ≥ 2 is hybrid equivalent to a

polynomial of degree d.
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(2) If K ( f ) is connected, then the polynomial is uniquely determined up to conjugation
by an affine map.

COROLLARY 4.2. Suppose (U, V, f ) is a polynomial-like mapping of degree d ≥ 2. Then
K ( f ) and J ( f ) are connected if and only if all critical points of f are contained in K ( f ).

Proof. By Theorem 4.1(1), there exists a quasiconformal mapping h, defined from a
neighborhood W f of K ( f ) to a neighborhood of the filled Julia set K (P) of a polynomial
P with degree d , which satisfies P ◦ h = h ◦ f in W f .

Suppose that all critical points of f are contained in K ( f ). Then all the d − 1 finite
critical points of P are contained in K (P). By [4, Theorem 4.1, p. 66], the Julia set J (P)
of P is connected. Therefore, J ( f )= h−1(J (P)) and hence K (P) are both connected.

Suppose that K ( f ) is connected. Then K (P) is also connected. Still by [4, Theorem
4.1, p. 66], the filled Julia set K (P) contains all the d − 1 finite critical points of P . This
means that K ( f ) contains exactly d − 1 critical points. Since (U, V, f ) is a polynomial-
like mapping of degree d ≥ 2, by the Riemann–Hurwitz formula stated in Lemma 2.5,
it follows that U contains exactly d − 1 critical points since U and V are both simply
connected. Therefore, all critical points of f are contained in K ( f ). �

4.2. Only one escaping free critical orbit. The proof of Theorem 1.2 is based on the
consideration of several cases. In this subsection, we assume that only one free critical
value is attracted by A(0) ∪A(∞). The following lemma is used to prove the non-
existence of Herman rings in the family fa,b.

LEMMA 4.3. [26, Main theorem] If a rational map f has only one critical orbit in its
Julia set, then f has no Herman rings.

Now we prove Theorem 1.2 in the following case.

THEOREM 4.4. Suppose that A(0) ∪A(∞) attracts exactly one free critical value. Then
the Julia set of fa,b is connected.

Proof. Without loss of generality, we assume that v+ ∈A(∞) and v− 6∈A(0) ∪A(∞).
The proof is divided in the following two cases: (1) v+ ∈A(∞) \ B and (2) v+ ∈ B.

(1) Suppose that v+ ∈A(∞) \ B. Then each Fatou component of fa,b contains at most
one critical value. By Lemma 4.3, fa,b has no Herman rings. By Lemma 2.9, this means
that J ( fa,b) is connected.

(2) Suppose that v+ ∈ B. Then B is completely invariant and J ( fa,b)= ∂B by
Proposition 2.8. We use the dynamics of fa,b to construct a polynomial-like mapping
and prove that its Julia set is connected and quasiconformally conjugate to the Julia set of
fa,b.

Since ∞ is a super-attracting fixed point, we can choose a small simply connected
neighborhood D0 of ∞ such that v+ 6∈ D0, fa,b(D0)⊂ D0 and ∂D0 is a Jordan curve
which is disjoint from all the critical orbits. For m ≥ 0, let Dm be the connected component
of f −m

a,b (D0) containing D0. Then

D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dm ⊂ · · ·
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and B =
⋃

m≥0 Dm . Since v+ ∈ B, there must exist m0 ≥ 1 such that v+ ∈ Dm0 \ Dm0−1.
By the Riemann–Hurwitz formula, we conclude that both Dm0 and V := Ĉ \ Dm0 are
simply connected. In particular, since ∂D0 is a Jordan curve which is disjoint from all the
critical orbits, this means that Dm0 and V are Jordan domains. We clearly see that v− ∈ V ,
T ⊂ V and f −1

a,b (V )⊂ V .

Let U be the connected component of f −1
a,b (V ) containing T . We claim that U =

f −1
a,b (V ). Otherwise, by the symmetry, f −1

a,b (V ) has exactly n + 1 simply connected
components: i.e., U and U1,U2, . . . ,Un , where fa,b|U :U → V is of degree n and
{U1,U2, · · · ,Un} is invariant under the rotation z 7→ e2π i/nz. Since V ∪ Dm0 = Ĉ, it
follows that f −1

a,b (Dm0)= Ĉ \ f −1
a,b (V )= Ĉ \ (U ∪

⋃n
k=1 U k) is connected. Therefore

f −1
a,b (Dm0)= Dm0+1, by definition. Note that Dm0+1 contains 2n − 1 critical points

(counted with multiplicity) and consider the map fa,b : Dm0+1→ Dm0 , by the Riemann–
Hurwitz formula in Lemma 2.5: so

deg( fa,b|Dm0+1)= 2− (n + 1)+ (2n − 1)= n.

This is a contradiction since deg( fa,b|Dm0+1)= 2n. Therefore, U = f −1
a,b (V ).

Note that U contains 2n − 1 critical points (counted with multiplicity), and hence U
is simply connected. Now we have a polynomial-like mapping (U, V, fa,b) with degree
2n. Since v− 6∈A(∞), it follows that all the critical orbits of (U, V, fa,b) are contained
in U . Therefore, the Julia set of (U, V, fa,b) is connected, by Corollary 4.2. Since
Ĉ \U ⊂A(∞), this means that the Julia set of the polynomial-like mapping (U, V, fa,b)

is homeomorphic to that of the rational map fa,b. Therefore, the Julia set of the rational
map fa,b is connected. �

4.3. Two free critical orbits are attracted to 0 and∞, respectively. In this subsection,
we consider the case where the two free critical orbits are attracted by two super-attracting
basins A(0) and A(∞), respectively. We first prove the following Theorem 4.5 and then
give some specific examples in Figure 4.

THEOREM 4.5. Suppose that v+ ∈A(∞) and v− ∈A(0). Then we have the following
four cases:
(1) if v+ ∈ B and v− ∈ T , then J ( fa,b) is a Jordan curve;
(2) if v+ ∈ B and v− /∈ T , then J ( fa,b) is connected and each component of A(0) is a

Jordan domain;
(3) if v+ /∈ B and v− ∈ T , then J ( fa,b) is connected and each component of A(∞) is a

Jordan domain; and
(4) if v+ /∈ B and v− /∈ T , then J ( fa,b) is connected.
Similar results follow when v− ∈A(∞) and v+ ∈A(0).

Proof. (1) Suppose that v+ ∈ B and v− ∈ T . By Proposition 2.8, both B and T are
completely invariant and the Julia set J ( fa,b)= ∂B = ∂T . Note that B = f −1

a,b (B)⊂ N ,
where N is the connected component of Ĉ \ T containing∞. Therefore, ∂T is a Jordan
curve by Lemma 2.13: i.e., the Julia set J ( fa,b) is a Jordan curve. Actually, by a theorem
of Sullivan [4, Theorem 2.1, p. 102], J ( fa,b) is a quasicircle.
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(2) The proof of the connectivity of J ( fa,b) is similar to the one given in Case 2 of
Theorem 4.4 (by constructing a polynomial-like mapping). The proof of the regularity of
the boundaries of the Fatou components is similar to the one given in the second part of
the proof of Theorem 1.1(1).

(3) Consider the conjugacy 1/ fa,b(1/z); the result follows immediately by (2).
(4) Since v+ ∈A(∞) \ B and v− ∈A(0) \ T , according to Proposition 2.7, every

connected component in A(0) ∪A(∞) is simply connected. Thus the Julia set J ( fa,b)

is connected. �

Proof of Theorem 1.2. By Theorems 4.4 and 4.5, it follows that if A(∞) (respectively,
A(0)) attracts exactly one free critical value, then the Julia set of fa,b is connected. �

5. Both free critical values do not escape
In this section, we consider the case that v+ and v− do not belong to A(0) ∪A(∞). Hence
each Fatou component in A(0) ∪A(∞) is simply connected.

Proof of Theorem 1.3. (1) By hypothesis, there is a Fatou component that contains
exactly one free critical value. Then every Fatou component contains at most one critical
value and, by Lemmas 2.9 and 4.3, the Julia set J ( fa,b) is connected.

(2) Suppose that the Fatou component U (v+, v−) contains two free critical values.
Hence fa,b is geometrically finite. By the classification theorem of periodic Fatou
components, U (v+, v−) is either an attracting basin (including super-attracting basin) or
a parabolic basin. This means that U (v+, v−) is either simply connected or infinitely
connected. If U (v+, v−) is infinitely connected then J ( fa,b) is disconnected. Instead, if
U (v+, v−) is simply connected then it follows, with an argument similar to the proof of
Theorem 1.1(3), that all its preimages are doubly connected. �

6. The Julia set cannot be a Cantor set of circles
Proof of Theorem 1.4. Suppose that there exist a, b ∈ C∗ and n ≥ 2 such that the Julia set
of fa,b is a Cantor set of circles. By the definition, fa,b has exactly two simply connected
Fatou components and the rest of the Fatou components are all doubly connected. Note that
B and T are both super-attracting basins. They are either simply connected or infinitely
connected. The latter case is impossible since J ( fa,b) is a Cantor set of circles. Therefore
B and T must be simply connected.

We claim that B cannot be completely invariant and all the components of f −1
a,b (B) \ B

are doubly connected. In fact, if f −1
a,b (B)= B, then ∂B is the Julia set of fa,b (see [13,

Corollary 4.12, p. 48]), which contradicts the assumption that J ( fa,b) is a Cantor set of
circles. Note that fa,b(T )= T so f −1

a,b (B) ∩ T = ∅. Since all the Fatou components of
fa,b are annuli except B and T , this means that all the components of f −1

a,b (B) \ B are
doubly connected. If B contains no free critical values then, by Proposition 2.7(1), each
component of f −1

a,b (B) is simply connected. Therefore, in any case, J ( fa,b) is not a Cantor
set of circles.
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7. Examples
In this section, we study some examples that correspond to the various assumptions in
Theorems 1.1, 1.2 (corresponding to Theorems 4.4 and 4.5) and 1.3.

As stated in the introduction, in order to study the parameter space of fa,b, one can
study its slices instead. Since we just need to find some specific examples, we will fix
these in a particular slice (n = 3 and b = 1/25)

fa(z) := z3
+

25a2

25z3 − 1
+ 25a2 where a ∈ C∗. (7.1)

The parameter space of this slice has been drawn in Figure 1, in the introduction.
Moreover, by (2.2),

v+ =
(1+ 25a)2

25
and v− =

(1− 25a)2

25
. (7.2)

7.1. Examples corresponding to Theorem 1.1.

PROPOSITION 7.1. In the slice b = 1/25 with n = 3, if |a| ≥ 1, then v+, v− ∈ B.

Proof. By (7.2), if |a| ≥ 1,

|v+| ≥ 20|a|2 and |v−| ≥ 20|a|2. (7.3)

Therefore, if |z| ≥ 20|a|2,

| fa(z)| ≥ |z|3 −
∣∣∣∣ 25a2

25z3 − 1

∣∣∣∣− 25|a|2 ≥ |z|3 −
5|a|2

|z|3
− 25|a|2 ≥ 2|z|.

This means that {z ∈ C : |z| ≥ 20|a|2} is contained in the Fatou set of fa and hence
contained in B. By (7.3), we know that v+, v− ∈ B. �

Remark. It is clear that the condition on a in Proposition 7.1 is not optimal. There exist
many smaller a such that v+, v− ∈ B. In Figure 2, we choose a = 0.16 and generate a
disconnected Julia set such that v+, v− ∈ B. A reason to choose a small a is to guarantee
that the reader could see a clearer structure of the Julia set. Otherwise, the Julia set will
look like a circle decorating some discrete points if a is large.

For the second case of Theorem 1.1, let a = 0.1625i. We then have v± =

−0.620 156 25± 0.325i. By a direct calculation,

f ◦11
a (v±)≈ (3.41∓ 1.38i)× 1013.

By a proof similar to that of Proposition 7.1, one can see that v± tends to ∞ under the
iterations of fa . The positions of the free critical values (points marked red) and the
connectivity of the Julia set of fa can be seen from the picture on the right in Figure 2.
This provides an example corresponding to the second case of Theorem 1.1.

For the third case of Theorem 1.1, as stated in the introduction, we conjecture that
this case cannot happen, although it happens for McMullen maps and the generalized
McMullen maps.
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FIGURE 3. The Julia sets of fa , where a =−0.1175+ 0.1293i (left) and a = 0.1716+ 0.1206i (right), which
correspond to the two cases in the proof of Theorem 4.4. The Julia set on the right is quasiconformally

homeomorphic to the Julia set of a polynomial with degree 6.

7.2. Examples corresponding to Theorem 4.4. The proof of Theorem 4.4 was divided
into two cases. For the first case, we choose a =−0.1175+ 0.1293i. Then

v+ =−0.267 806− 0.501 0375i and v− = 0.202 194− 1.018 2375i.

By a direct calculation,

f ◦9a (v+)≈ (−2.57− 2.39i)× 1011.

As in the proof of Proposition 7.1, one can see that v+ ∈A(∞). One can check that v+ is
not contained in B (see the picture on the left in Figure 3). Moreover, a direct calculation
shows that the orbit of v− under fa is bounded and is attracted by an attracting cycle with
period three.

For the second case, let a = 0.1716+ 0.1206i. Then

v+ = 0.755 755+ 1.275 948i and v− = 0.069 355+ 0.793 548i.

By a direct calculation,

f ◦4a (v+)≈ (1.55− 1.86i)× 1013.

As before, one can see that v+ ∈A(∞). One can verify that v+ ∈ B (see the picture on
the right in Figure 3). Moreover, a direct calculation shows that the orbit of v− under fa is
bounded and is attracted by an attracting cycle with period two.

7.3. Examples corresponding to Theorem 4.5. There are four cases in Theorem 4.5. We
collect four examples in Table 1 and the corresponding Julia sets are drawn in Figure 4.
The positions of the free critical values can be observed from the pictures directly.

7.4. Examples corresponding to Theorem 1.3. There are two cases in Theorem 1.3.
We now consider the examples corresponding to these two cases. For the first case, let
a = 0.1413i. We have v± =−0.459 142 25± 0.2826i. By a direct calculation, one can
verify that the orbit of v± under fa is bounded and is attracted by an attracting fixed point
≈−0.467 630 76± 0.280 705 88i.
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TABLE 1. The parameters and the orbits corresponding to Theorem 4.5. They all satisfy v+ ∈A(∞) and
v− ∈A(0). The corresponding Julia sets are drawn in Figure 4.

Parameters f ◦ka (v+) f ◦la (v−)

a = 0.13 f ◦7a (v+)≈ 4.3× 1018 f ◦4a (v−)≈ 8.2× 10−15

a =−0.026+ 0.176i f ◦6a (v+)≈ (1.1+ 2.1i)× 1028 f ◦4a (v−)≈ (2.5− 3.4i)× 10−13

a = 0.095+ 0.078i f ◦5a (v+)≈ (−1.1− 5.0i)× 109 f ◦4a (v−)≈ (6.7+ 0.1i)× 10−11

a =−0.1+ 0.097i f ◦5a (v+)≈ (2.0− 0.6i)× 1021 f ◦7a (v−)≈ (2.3+ 6.5i)× 10−8

FIGURE 4. The Julia sets of fa , where a = 0.13, a =−0.026+ 0.176i, a = 0.095+ 0.078i and a =−0.1+
0.097i, respectively (from the upper left-hand corner to lower right-hand corner), which correspond to the four

cases in Theorem 4.5.

For the second case, let a = 0.0142+ 0.1413i. We have v+ =−0.425 701 25+
0.382 923i and v− =−0.482 501 25− 0.182 277i. By a direct calculation, one can verify
that the orbit of v+ and v− under fa both are attracted by an attracting fixed point
≈−0.418 981 79+ 0.371 367 47i.

See Figure 5 for their Julia sets and the positions of the free critical values.
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