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Abstract

It is shown that, for any field F ⊆ R, any ordered vector space structure of Fn with Riesz interpolation
is given by an inductive limit of a sequence with finite stages (Fn, Fn

≥0) (where n does not change). This
relates to a conjecture of Effros and Shen, since disproven, which is given by the same statement, except
with F replaced by the integers, Z. Indeed, it shows that although Effros and Shen’s conjecture is false, it
is true after tensoring with Q.
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1. Introduction

In this article we prove the following result.

Theorem 1.1. Let F be a subfield of the real numbers, let n be a natural number and
suppose that (V, V+) is an ordered directed n-dimensional vector space over F with
Riesz interpolation. Then there exists an inductive system

(Fn,Fn
≥0)

φ2
i
−→ (Fn,Fn

≥0)
φ3

2
−→ · · ·

of ordered vector spaces over F whose inductive limit is (V,V+).

The inductive limit may be taken either in the category of ordered abelian groups
(with positivity-preserving homomorphisms as the arrows) or of ordered vector
spaces over F (with positivity-preserving linear transformations as the arrows). Here,
F≥0 := F ∩ [0,∞), so that the ordering on (Fn, Fn

≥0) is simply given by coordinatewise
comparison.
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In [3], Effros and Shen conjectured that every ordered, directed, unperforated, rank-
n free abelian group (G,G+) with Riesz interpolation can be realized as an inductive
system of ordered groups (Zn,Zn

≥0). This was called the ‘unimodularity conjecture’,
as the connecting maps would necessarily (eventually) be unimodular. This conjecture
was disproven by Riedel in [8]. Theorem 1.1 shows that, nonetheless, upon tensoring
with the rational numbers (or any other field contained in R), the conjecture is true.
As a consequence, Corollary 5.1 says that if (G,G+) is an ordered n-dimensional
Q-vector space with Riesz interpolation, then it is an inductive limit of (Zn,Zn

≥0) (where
the maps are, of course, not unimodular).

In [6], Handelman showed that every vector space with Riesz interpolation can be
realized as an inductive limit of ordered vector spaces (Fn, Fn

≥0), though of course the
number n is not assumed to be constant among the finite stages. The focus of [6]
is on the infinite-dimensional case and, indeed, an interesting example is given of a
countable dimensional ordered vector space that cannot be expressed as an inductive
limit of a sequence of ordered vector spaces (Fn,Fn

≥0). Combined with this article, this
gives a dichotomy between the behaviour of infinite- versus finite-dimensional ordered
vector spaces with Riesz interpolation.

2. Preliminaries
We shall say a little here about the theory of ordered vector spaces with Riesz

interpolation. Although the focus is on vector spaces, much of the interesting theory
holds in the more general setting of ordered abelian groups (particularly when the
group is unperforated, as ordered vector spaces are automatically). An excellent
account of this theory can be found in the book [4] by Goodearl.

Definition 2.1. An ordered vector space consists of a vector space V together with a
subset V+ ⊆ V called the positive cone, giving an ordering compatible with the vector
space structure; that is to say:

(OV1) V+ ∩ (−V+) = 0 (V+ gives an order, not just a preorder);
(OV2) V+ + V+ ⊆ V+; and
(OV3) λV+ ⊆ V+ for all λ ∈ F≥0.

The ordering on V is of course given by x ≤ y if y − x ∈ V+.
The ordered vector space (V,V+) is directed if, for all x, y ∈ V , there exists z ∈ V

such that
x
y ≤ z.

The ordered vector space (V,V+) has Riesz interpolation if, for any a1, a2, c1, c2 ∈ V
such that

a1
a2
≤

c1
c2
,

there exists b ∈ V such that
a1
a2
≤ b ≤

c1
c2
.
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Note that (V,V+) being directed is an extremely natural condition, as it is equivalent
to saying that V+ − V+ = V . Riesz interpolation for an ordered vector space (V,V+) is
equivalent to Riesz decomposition, which says that for any x1, x2, y ∈ V+, if y ≤ x1 + x2,
then there exist y1, y2 ∈ V+ such that y = y1 + y2 and yi ≤ xi for i = 1, 2 [1, Section 23].

The category of ordered vector spaces (over a fixed field F) has as arrows linear
transformations which are positivity-preserving, meaning that they map the positive
cone of the domain into the positive cone of the codomain. This category admits
inductive limits and, for an inductive system ((Vα,V+

α )α∈A, (φ
β
α)α≤β), the inductive limit

is given concretely as (V,V+), where V is the inductive limit of ((Vα)α∈A, (φ
β
α)α≤β) in

the category of vector spaces and, if φ∞α : Vα → V denotes the canonical map, then

V+ =
⋃
α∈A

φ∞α (Vα).

If (Vα,V+
α ) has Riesz interpolation for every α, then so does the inductive limit (V,V+).

Theorem 1 of [6] states that every ordered F-vector space with Riesz interpolation
can be realized as an inductive limit of a net of ordered vector spaces of the form
(Fn, Fn

≥0). The proof uses the techniques of [2], where it was shown that every
ordered directed unperforated abelian group with Riesz interpolation is an inductive
limit of a net of ordered groups of the form (Z, Z≥0). In the case that F = Q,
[6, Theorem 1] follows from [2] and the theory of ordered group tensor products
found in [5]. Certainly, if (V, V+) is an ordered directed Q-vector space with Riesz
interpolation, then it can be written as an inductive limit of Gα = (Znα ,Znα

≥0), and then

(V,V+) � (Q,Q≥0) ⊗Z (V,V+)
� lim(Q,Q≥0) ⊗Z (Znα ,Znα

≥0)

� lim(Qnα ,Qnα
≥0).

But, in the case of other fields, we no longer have (V,V+) � (V,V+) ⊗Z (F,F≥0) (indeed,
F ⊗Z F 6� F). Indeed, although in the countable case, the net of groups in [2] can
be chosen to be a sequence, not every countable dimensional ordered vector space
with Riesz interpolation is the limit of a sequence of ordered vector spaces (Fn, Fn

≥0).
Theorem 2 of [6] characterizes when the net from [6, Theorem 1] can be chosen to be
a sequence: exactly when the positive cone is countably generated.

Using [2], one sees that an obviously sufficient condition for (V,V+) to be the limit
of a sequence of ordered vector spaces of the form (Fn,Fn

≥0) is that

(V,V+) � (G,G+) ⊗Z (F,F≥0). (2.1)

This is the case whenever F = Q. Proposition 5 of [6] also shows that (2.1) holds
when (V, V+) is simple, since, in this case, we can in fact take (G,G+) to be a
rational vector space. Also, (2.1) holds in the finite-rank case, as [7, Theorem 3.2 and
Corollary 6.2] likewise show that we can take (G,G+) to be a rational vector space.
However, Theorem 1.1 improves on this result in the finite-rank case, by showing that
the finite stages have an even more special form—their dimension does not exceed the
dimension of the limit.
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3. Outline of the proof

In light of the concrete description above of the inductive limit of ordered vector
spaces, saying that (V,V+) (where dimF V = n) can be realized as an inductive limit of
a system

(Fn,Fn
≥0)

φ2
i
−→ (Fn,Fn

≥0)
φ3

2
−→ · · ·

is equivalent to saying that there exist linear transformations φ∞i : Fn → V such that:

(i) φ∞i is invertible for all i;
(ii) V+ =

⋃
φ∞i (Fn

≥0); and
(iii) for all i, φ∞i (Fn

≥0) ⊆ φ∞i+1(Fn
≥0).

This idea is used in the proof of Theorem 1.1, which we outline now.
We rely on [7] for a combinatorial description of the ordered vector space (V,V+).

Using this description, linear transformations αε , βR : Fn → Fn are defined for all
ε,R ∈ F>0 := F ∩ (0,∞). It is shown in Lemma 4.5 that both αε and βR are invertible.
In (4.3), we associate to (V,V+) another ordered vector space (Fn,U+) whose cone is
like V+ but such that the positive functionals on (Fn,U+) separate the points. We show
in Lemmas 4.8(i) and 4.9(i) that

U+ =
⋃
ε∈F>0

αε(Fn
≥0)

and, in Lemmas 4.8(ii) and 4.9(ii), that

V+ =
⋃

R∈F>0

βR(U+).

Although we do not have

βR1 (αε1 (Fn
≥0)) ⊆ βR2 (αε2 (Fn

≥0))

when R1 < R2 and ε1 > ε2, Lemma 4.10 does allow us to extract an increasing sequence
from among all the images βR(αε(F≥0)), such that their union is still all of V+.

4. The proof in detail

We begin with a useful matrix inversion formula.

Lemma 4.1. Let Jn ∈ Mn denote the matrix all of whose entries are 1. Then, for
λ , −1/n, In + λJn is invertible and

(In + λJn)−1 = In −
λ

λn + 1
Jn.

Proof. Using the fact that J2 = nJ, we can easily verify that

(I + λJ)
(
I −

λ

λn + 1
J
)

= I. �
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The main result of [7] shows that every finite-dimensional ordered directed F-vector
space with Riesz interpolation looks like Fn with a positive cone given by unions of
products of F,F>0 and {0}. To fully describe the result, the following notation for such
products is quite useful.

Notation 4.2. For a partition {1, . . . , n} = S1 q · · · q Sk and subsets A1, . . . , Ak of a set
A, define

AS1
1 · · · A

Sk
k = {(a1, . . . , an) ∈ An : ai ∈ Aj∀i ∈ S j, j = 1, . . . , k}.

Theorem 4.3. Let F be a subfield of the real numbers, let n be a natural number
and suppose that (W,W+) is an ordered F-vector space of dimension n with Riesz
interpolation. Then there exist:

(i) a sublattice S of 2{1,...,n} containing both ∅ and {1, . . . , n}; and
(ii) for each S ∈ S, a partition

{1, . . . , n} = E0
S q E>

S q E∗S

such that E0
S = Sc for each S and, writing E≥S := E0

S q E>
S for each S ∈ S:

(RV1) E≥S1∪S2
= E≥S1

∩ E≥S2
;

(RV2) E>
S2
* S1 whenever S1, S2 ∈ S satisfy S2 * S1 and,

writing

V+ =
⋃
S∈S

0E0
S F

E>
S

>0 F
E∗S , (4.1)

we have (W,W+) � (Fn,V+).

Remark 4.4. Corollaries 5.2 and 6.2 of [7] say that, in the cases F = R and F = Q, every
V+ given as in the above theorem does actually have Riesz interpolation. Moreover,
the proof of [7, Corollary 5.2] works for any other field F ⊆ R. However, the proof
of Theorem 1.1 only uses that V+ has the form described in the above theorem, and
therefore it gives an entirely different proof of [7, Corollary 5.2], that V+ has Riesz
interpolation (since Riesz interpolation is preserved under taking inductive limits).

Proof. This is simply a special case of [7, Theorem 3.2]. Note that (RV2) appears in
[7, Theorem 3.2] as: if S1 ( S2, then E>

S2
\S1 , ∅. This is equivalent to (RV2), since, if

S2 * S1, then S1 ∩ S2 ( S2, while, if S1 ( S2, then of course S2 * S1. �

To set up for the proof of Theorem 1.1, we now fix a subfield F of the real numbers,
a natural number n and an ordered directed n-dimensional vector space (V,V+) over F
with Riesz interpolation. In light of the previous theorem, we may assume that (V,V+)
has the structure described there. We therefore fix, for the remainder of this section,
data S, E0

S , E
>
S , E

∗
S and E≥S as described by Theorem 4.3 such that V = Fn and V+ is

defined by (4.1).
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For each i = 1, . . . , n, define

Zi :=
⋃
{S ∈ S : i ∈ Sc} and

Pi :=
⋃
{S ∈ S : i ∈ E≥S }.

Note that i < Zi and i ∈ E≥Pi
.

For ε ∈ F>0, define functionals αεi : Fn → F by

αεi (z1, . . . , zn) := zi + ε
∑
j<Zi

z j;

and, for R ∈ F>0, define functionals βR
i : Fn → F by

βR
i (y1, . . . , yn) := yi − R

∑
j<Pi,Pi,P j

y j.

Let us denote αε := (αε1, . . . , α
ε
n) : Fn → Fn and βR := ( βR

1 , . . . , β
R
n ) : Fn → Fn. Then

αε is block-triangular, and βR is triangular, as we shall now explain.
For indices i and j, we have j < Zi if and only if Zi ⊆ Z j. We therefore label the

blocks of (αε1
1 , . . . , α

εn
n ) by sets Z ∈ S, where the Zth block consists of indices i such

that Zi = Z; we shall use BZ to denote this set of indices, that is,

BZ := {i = 1, . . . , n : Zi = Z}.

For βR, note that if j < Pi, then Pi ⊆ P j, and from this it follows that βR is triangular.

Lemma 4.5. For all ε,R ∈ F>0, αε and βR are invertible.

Proof. That βR is invertible follows from the fact that it is triangular with 1’s on the
diagonal. To show that αε is invertible, as we already noted that it is block-triangular,
we need to check that each block is invertible. In matrix form, the Zth block of αR is
equal to

I|BZ | + εJ|BZ |

and, by Lemma 4.1, this block is invertible. �

Notation 4.6. For x ∈ Fn, let us use Sx to denote the smallest set S ∈ S such that S
contains

{i = 1, . . . , n : xi , 0}.

In upcoming proofs, induction arguments will often involve induction over a
collection of subsets. Here, a ‘nonincreasing order’ means taking a sequence
which contains no increasing subsequence (and ‘nondecreasing order’ is defined
analogously).

Lemma 4.7. Let ε,R ∈ F>0 be scalars and let z ∈ Fn. Then

Sz = Sαε (z) = SβR(αε (z)).
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Proof. To show that Sαε (z) ⊆ Sz, it suffices to show that αεi (z) = 0 for all i < Sz, which
we show in (a). Likewise, we show in (b) that zi = 0 for all i < Sαε (z), in (c) that
βR

i (αε(z)) = 0 for all i < Sαε (z) and in (d) that αεi (z) = 0 for all i < SβR(αε (z)).
(a) If i < Sz, then Sz ⊆ Zi and, therefore, for every j < Zi, we have j < Sz and so

z j = 0. Since αR
i (z) is a linear combination of {z j : j < Zi}, it follows that αR

i (z) = 0.
(b) We shall prove this by induction on the blocks BZ , iterating Z ∈ S in a

nonincreasing order. The base case is Z = ∅, where the result is trivial. Since i < Sαε (z)

if and only if Zi ⊇ Sαε (z), we only need to consider Z ⊇ Sαε (z).
For a block Z ⊇ SαR(z) and an index i ∈ BZ ,

0 = αεi (z) = zi + ε
∑
j∈BZ

z j + ε
∑

j:Z j)Z

z j. (4.2)

By induction, we have that z j = 0 for all j satisfying Z j ( Z; that is to say, the last term
in (4.2) vanishes. Hence, the system (4.2) becomes

0 = (I|BZ | + εJ|BZ |)(zi)i∈BZ ;

and, by Lemma 4.1, it follows that zi = 0 for all i ∈ BZ , as required.
(c) For (c) and (d), let us set y := αε(z). If i < Sy, then again Sy ⊆ Zi and so y j = 0

for all j < Zi ⊆ Pi. Since βR
i (y) is a linear combination of {yi} ∪ {y j : j < Pi}, βR

i (y) = 0.
(d) If i < SβR(y), then

0 = βR
i (y) = yi − R

∑
j<Pi,Pi)P j

y j.

As above, j < Pi implies that j < SβR(y). Hence, if we iterate the indices i ∈ S c
βR(y) in a

nondecreasing order of the sets Pi, then induction proves that yi = 0 for all i < SβR(y). �

Our proof makes use of the following positive cone:

U+ :=
⋃
S∈S

FS
> 0Sc

. (4.3)

Lemma 4.8. Let R, ε ∈ F>0 be scalars. Then:

(i) αε(Fn
≥0) ⊆ U+; and

(ii) βR(U+) ⊆ V+.

Proof. (i) Let z ∈ Fn
≥0. By Lemma 4.7, we know that αεi (z) = 0 for i < Sz. Let us show

that αεi (z) > 0 for i ∈ Sz, from which it follows that αε(z) ∈ U+.
For i ∈ Sz,

αεi (z) = zi + ε
∑
j<Zi

z j;

so evidently αεi (z) ≥ 0 and αεi (z) = 0 would imply that z j = 0 for all j < Zi. But, if
that were the case, then we would have Sz ⊆ Zi and, in particular, i < Sz, which is a
contradiction. Hence, αεi (z) > 0.
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(ii) Let y ∈ U+. Then we must have yi > 0 for all i ∈ Sy. By Lemma 4.7, we already
know that βR

i (y) = 0 for all i ∈ S c
y = E0

Sy
. Thus, we need only show that βR

i (y) > 0 for
i ∈ E>

Sy
. For such an i,

βR
i (y) = yi − R

∑
j<Pi,P j,Pi

y j.

Since i ∈ E>
Sy

, we have Pi ⊇ Sy. Therefore, if j < Pi, then j < Sy and so y j = 0. Thus,
we in fact have βR

i (y) = yi > 0. �

Lemma 4.9. Let U+ be as defined in (4.3). Then:

(i) U+ =
⋃
ε∈F>0

⋂
ε′∈F>0,ε′<ε α

ε′(Fn
≥0);

(ii) V+ =
⋃

R∈F>0

⋂
R′∈F,R′>R β

R′(U+).

Proof. (i) Let y ∈ U+. Define m := min{yi : i ∈ Sy} > 0 and M := max{yi : i ∈ Sy}, and
suppose that ε ∈ F>0 is such that

ε <
m

2nM

for all Z ∈ S. Let us show that z = (αε)−1(y) satisfies zi ≥ 0 for all i.
We will show, by induction on the blocks BZ (iterating Z ∈ S in a nonincreasing

order), that
0 ≤ zi ≤ M

for all i ∈ BZ . By Lemma 4.7, we already know that this holds for Z ⊇ Sy (since this
implies that i < Sy, which means that zi = 0).

For i ∈ BZ ∩ Sy, set

Ci := zi + ε
∑
j∈BZ

z j = yi − ε
∑

j<Z,Z j)Z

z j.

Then
Ci ≥ m − εnM > m − m/2 = m/2

and
Ci ≤ M.

By Lemma 4.1,
zi = Ci −

ε

nε + 1

∑
j∈BZ

C j.

On the one hand, this gives

zi > m/2 − εnM = m/2 − m/2 = 0

and, on the other, it gives
zi ≤ Ci ≤ M,

as required.
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(ii) Let x ∈ V+. For R ∈ F>0, let us denote yR = (yR
1 , . . . , y

R
n ) := ( βR)−1(x). For all

i < Sx, we already know that yR
i = 0. Moreover, for all i ∈ E>

Sx
and all R,

xi = yR
i − R

∑
j<Pi,P j,Pi

yR
i ;

but note that if j < Pi ⊇ Sx, then j < Sx, and therefore we have yR
i = xi > 0.

We will show by induction that, for each i ∈ E∗Sx
, there exists Ri ∈ F>0 such that for

all R′′ ≥ R′ ≥ Ri,
yR′′

i > yR′
i > 0.

We iterate the indices i in a nonincreasing order of Pi. The base case can be proven by
the same argument as for the inductive step.

For the index i,
yR

i = xi + R
∑

j<Pi,P j)Pi

yR
j . (4.4)

If we require that R ≥ max{R j : P j ) Pi}, then, by induction, we know that yR
j ≥ 0 for

all j < Pi. Moreover, since i < E≤Sx
, this means that Sx * Pi and therefore by (RV2)

in Theorem 4.3 there exists some j0 ∈ E>
Sx
\Pi. Notice that P j0 ⊇ Sx, whereas Sx * Pi,

whence P j0 , Pi; combined with the fact that j0 < Pi, this shows that yR
j0

does appear
as a summand in the right-hand side of (4.4). Thus,

yR
i = xi + R

∑
j<Pi,P j,Pi

yR
j ≥ xi + RyR

j0 = xi + Rx j0 .

Since x j0 > 0, there exists R = Ri for which the right-hand side is positive, and so
yR

i > 0.
Since yR

j is a nondecreasing function of R for all j for which P j ) Pi, it is clear from
(4.4) that so is yR

i . �

Lemma 4.10. Let R1, ε1 ∈ F>0 be scalars. For any R′ > R1, there exist R2, ε2 ∈ F>0 with
R2 > R′ and ε2 < ε1 such that

βR1 (αε1 (Fn
≥0)) ⊆ βR2 (αε2 (Fn

≥0)).

Proof. Let e1, . . . , en be the canonical basis for Fn, so that Fn
≥0 is the cone generated by

e1, . . . , en. Then, for each of i = 1, . . . , n, we have by Lemma 4.8 that

βR1 (αε1 (ei)) ∈ V+;

and thus, by Lemma 4.9(ii), there exists R2 > R′ such that

( βR2 )−1( βR1 (αε1 (ei))) ∈ U+

for all i = 1, . . . , n. By Lemma 4.9(i), there then exists ε2 < ε1 such that

(αε1 )−1(( βR2 )−1( βR1 (αε1 (ei)))) ∈ Fn
≥0
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for all i = 1, . . . , n, which is to say that

βR1 (αε1 (ei)) ∈ βR2 (αε2 (Fn
≥0)).

Since Fn
≥0 is the cone generated by e1, . . . , en, it follows that

βR1 (αε1 (Fn
≥0)) ⊆ βR2 (αε2 (Fn

≥0)),

as required. �

Proof of Theorem 1.1. Let R1, ε1 ∈ F>0 and, using Lemma 4.10, inductively construct
sequences (Ri), (εi) ⊂ F>0 such that Ri →∞, εi → 0 and, for each i,

βRi (αεi (Fn
≥0)) ⊆ βRi+1 (αεi+1 (Fn

≥0)).

Set φi = βRi ◦ αεi : Fn → Fn. By Lemma 4.9, we have V+ =
⋃∞

i=1 φi(Fn
≥0).

Our inductive system is thus

(Fn,Fn
≥0)

φ−1
2 ◦φ1
−→ (Fn,F

n
≥0)

φ−1
3 ◦φ2
−→ · · ·;

as explained in Section 2, the inductive limit is(
Fn,

∞⋃
i=1

φi(Fn
≥0)

)
= (V,V+),

as required. �

5. Consequences

Corollary 5.1. Let (V,V+) be an n-dimensional ordered directed Q-vector space with
Riesz interpolation. Then there exists an inductive system of ordered groups

(Zn,Zn
≥0)

φ2
1
−→ (Zn,Zn

≥0)
φ3

2
−→ · · ·

whose inductive limit is (V,V+).

Proof. By Theorem 1.1, let

(Qn,Qn
≥0)

φ2
1
−→ (Qn,Qn

≥0)
φ3

2
−→ · · ·

be an inductive system whose limit is (V,V+). Since positive scalar multiplication gives
an isomorphism of any ordered vector space, we may replace any of the connecting
maps with a positive scalar multiple, and still get (V,V+) in the limit. Hence, we may
assume without loss of generality that φi+1

i (Zn) ⊆ Zn. Then, letting φ
i+1
i = φi+1

i |Zn , we
have an inductive system

(Zn,Zn
≥0)

φ
2
1
−→ (Zn,Zn

≥0)
φ

3
2
−→ · · ·

whose limit (G,G+) satisfies (G,G+) ⊗Z (Q,Q≥0) � (V,V+).
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Now, we may easily find an inductive system

(Z,Z≥0)
ψ2

1
−→ (Z,Z≥0)

ψ3
2
−→ · · ·

whose limit is (Q,Q≥0) (such an inductive system necessarily has ψi+1
i given by

multiplication by a positive scalar Ni; and the limit is (Q,Q≥0) as long as every prime
occurs as a divisor of infinitely many of the Ni).

Thus, by [5, Lemma 2.2], (V,V+) is the inductive limit of

(Zn,Zn
≥0) ⊗Z (Z,Z≥0)

φ
2
1⊗Zψ

2
1

−→ (Zn,Zn
≥0) ⊗Z (Z,Z≥0)

φ
3
2⊗Zψ

3
2

−→ · · · ,

which is what we require, since (G,G+) ⊗Z (Z,Z≥0) = (G,G+) for any ordered abelian
group (G,G+). �

Corollary 5.2. Let (G,G+) be a rank-n ordered directed free abelian group with Riesz
interpolation. Then there exists an inductive system of ordered groups

(Zn,Zn
≥0)

φ2
1
−→ (Zn,Zn

≥0)
φ3

2
−→ · · ·

whose inductive limit is (G,G+) ⊗Z (Q,Q≥0).

Proof. This follows immediately, as (G,G+) ⊗Z (Q,Q≥0) is an n-dimensional ordered
directed Q-vector space with Riesz interpolation. �
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