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GENERALIZED HADAMARD'S INEQUALITIES BASED ON
GENERAL EULER 4-POINT FORMULAE
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Abstract

We present a general closed 4-point quadrature rule based on Euler-type identities. We
use this rule to prove a generalization of Hadamard's inequalities for (2/-)-convex functions
(T > 1).
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1. Introduction

Let / be a convex function on [a, b] C K, a ^ b. The following double inequality:

is known in the literature as Hadamard's inequalities (see for example [10, page 137])
for convex functions.

Hadamard's inequalities can be generalized in the following way.

THEOREM 1.1. Let f : [a,b] —• K be a convex function. Then for every x e
[a,(a + b)/2]

f{d) + f(b)
b-a I f{t)dt

>—r
b-a Ja

f(odt-<—-fi:+b-x\ d.2)
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388 M. Klaricic Bakula and J. Pecaric [2]

and for every x e [(3a + b)/4, (a + b)/2]

-1— f fit) dt - J v" • — • - "' > 0. (1.3)
b — a Ja 2

PROOF. Let x e [a, (a + b)/2]. Since / is convex on [a, b], the right-hand side of
(1.1) gives

1 f
r / fiOdt
b -a Ja l

/

a+b-x pb

Ja+b-,

ix-aV' 'I~f{x) +ia + b-2x)

b — a ua j x j a+b-x
1

2 \b — a b — a
(1.4)

Since / is convex on [a, b], for any h > 0 and Xi,i2 e [a, b] such that x\ < x2 we
have (see, for example, [11, pages 5,6])

f(X]+h) - /(*,) < f(x2+h) - f(x2). (1.5)

Consider now JC e [a, (a + b)/2]. If we apply (1.5) on h = x — a, xx = a and
x2 = a + b — x, we obtain

/ ( * ) - / ( < * ) < / ( * ) - / ( a + &-*) . (1.6)

For x e [a, (fl + b)/2] we have a + b — 2x > 0, so for such x the inequality (1.6) can
be rewritten as

, __ „ J(x)f(a) ^, , u „ J{b)-f(a
(a-\-b- 2x) < (a + b - 2x)

b a

(a + b 2x)
b — a b — a

that is,

b — a b — a

From this, a simple calculation gives us

b ~^ [ / ( a ) + /(&)] + ^b — a b — a
< fifl) + f(f>) + f{x) + f(a+b- x). (1.7)
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Combining (1.4) and (1.7) we obtain

1 f" ,,., ,. . /(«> + f(b) + f(x) + f(a + b-x)
4

from which we get

2 b-a Ja b-a Ja 2

and this completes the proof of (1.2).
Now let x € [(3a + b)/4, (a + b)/2]. Since / is convex on [a, b], the left-hand

side of (1.1) gives

1 fb

-a Ja
f(t)dt =

b-a

b-a

- p(a+b)/2 pb -l

/ f(t)dt+ f(t)dt\

'b-a (3a + b\ b-a
2 f{ +

If we apply (1.5) again on h = (Ax — 3a — b)/4,xl = (3a + b)/4andx2 = a+b—x,
we obtain

that is,

Combining (1.9) with (1.8) we obtain

so the inequality (1.3) is proved. D

REMARK 1. If in (1.2) and (1.3) we let x = (a + b)/2, we obtain

2 b-a

which is one of Bullen's results from [3]. His result was generalized for (2r)-convex
functions (r e N) in [6].
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The goal of this paper is to obtain a variant of Inequalities (1.2) and (1.3) for
(2r)-convex functions (r e N). To achieve this goal we will construct a general
closed 4-point rule based on Euler-type identities established in [4].

We recall that a function / : [a, b] -»• K is said to be n-convex on [a, b] for
some n > 0 if for any choice of n + 1 points x0,..., xn from [a, b] we have
[x0, . . . , xn]f > 0, where [x0,..., x,,]f is the n-th order divided difference of / .
If / is n-convex, then /("~2) exists and is an convex function in the ordinary sense.
Also, if / ( n ) exists, then / is n-convex if and only if / ( n ) > 0. For more details see
for example [10].

It should be noted that each continuous n-convex function on [a, b] is the uniform
limit of a sequence of the corresponding Bernstein's polynomials (see, for example,
[10, page 293]). Bernstein polynomials of any continuous n-convex function are
also n-convex functions, so when stating our results for a continuous (2/-)-convex
function / without any loss in generality we may assume that / (2 r ) exists and is
continuous. Actually, our results are valid for any continuous (2r)-convex function / .

In Section 2 we present a general closed 4-point quadrature rule based on the ex-
tended Euler formulae and we also give two estimations of the remainder. In Section 3
we use the obtained results to prove a generalization of Hadamard's inequalities for
(2r)-convex functions (r € M).

2. General closed 4-point quadrature rule

In the paper [4] two identities, named the extended Euler formulae, have been
proved. They are given in the following theorem.

THEOREM A. Let f : [a,b] -> R be such that f(n~l) is a continuous function of
bounded variation on [a, b]for some n e N. Then for every x € [a, b]

/

and

fix) = —— / f(t)dt + Tn(x) + Rl
n(x) (2.1)

b — a Ja

fix) = -L- [ fit)dt + Tn_,ix) + R2
nix), (2.2)

b -a Ja

where

ib - a)k

= E t7 (B^J [/ ] <23)

[a,b] \b-a
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and

n\
Here, as in the rest of the paper, the functions Bk() (k > 0) are the Bernoulli

polynomials, Bk are the Bernoulli numbers and Bk(•) are periodic functions of period
one, related to the Bernoulli polynomials as

B*k(x) = B k ( x ) , 0 < * < l ,

B*k(x + 1) = B*k{x), x e OK.

In this paper we write /, b, g(t) d<p(t) to denote the Riemann-Stieltjes integral of
a function g : [a, b] -+ R with respect to a continuous function <p : [a, b] —> R of
bounded variation, and we write /a g(f) dt for the Riemann integral.

To make reading easier, let us recall some of the properties of the Bernoulli poly-
nomials (see, for example, [1, 23.1] or [2]). The Bernoulli polynomials are uniquely
determined by the following identities:

B0(x) = 1, x eR,

B'k(x)=kBk_l(x), * > 1 ,

Bk(x + I) - Bk(x) = kx*-1, k>0.

From that we haveB, (x) = x-l/2,B2(x) = x2-x + l/6, B3(x) = x3-3x2/2+x/2,
so that Z?Q and B* are discontinuous functions with jumps of — 1 at each integer. Also,
it follows that Bk(\) = Bk(0) — Bk for k > 2, so that Bk are continuous functions for
k > 2 . F r o m this w e ge t (B*)'(x) = kBl_x{x), k > \ , for every t € R if k > 3 and
for every t € R \ 1 if k = 1, 2.

Here we list some of the properties of the Bernoulli polynomials which will be used
in this paper (see, for example, [1] or [2]):

Bk(l-x) = (-l)kBk(x), n>0,xeR,

-(l-2i-")Bk, n>0,

B2k-X=0, k>\,

Bk(fi) = Bk{\), k>2,

( - l ) l B a - i W > 0 , k> 1, x € (0, 1/2),

(-l)*~'5a > 0 , r > 0 .

For ^ > 1 and fixed x € [a, (a + b)/2] we define functions Gx
k and /^ as
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and Fx(t) = GxAt) - Bx
k, for all t e K, where

Of course, if k > 2 we have Bx = [1 + (-l)k]Bk((x - a)/(b - a)) + 2Bk. Using the
properties of the Bernoulli polynomials which were mentioned in the introduction, we
can easily see that for any x e [a, (a + b)/2]

Bx
k=Gx

k{a), k>2, Bx
2r^=0, r > 1,

Fx
r{t) = Gx

2r{t) - 2 Fz?2r

Fx(a) = Fx(b) = 0, k>l,

Gx
k{a) = Gx

k(b) = [1 + ( - l ) * ]

We can also easily check that for all r > 1

+ > 1,

and

Gx 1 x — a

b-a
+ 2B2r -

•>2r

Now let / : [a, b] ->• K be such that / ( ""° exists on [a, b] for some n > 1. We
introduce the following notation for each* e [a, (a + b)/2\.

D(x) = + fia + b - x) + f(a) + /(6)]/4.
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Furthermore, we define

fo(x) = 0,

fm(x) = UTm{x) + Tm{a + b-x) + Tm{a) +- Tm(b)], 1 < m < n,
4

where Tm is given by (2.3). It can be easily checked that

*=1

For further use we will denote

?v, , Tm{x) + Tm(a + b-x) ~F Tm{a) + Tm(b)
T*{x) = and T* = .

Obviously, fm(x) = (fj(jc) + f/)/2.

THEOREM 2.1. Let f : [a, b] -> <R, a < b, be such that for some n e N, the
derivative / ("~f ) « a continuous function of bounded variation on [a, b]. Then for
every x e [a, b]

1 , . . . . _ , . „ , . . „ , , . and ^ ^

1

b — a

where

= D(x)- f»_,(x) + ^ ( * ) , (2.5)

PROOF. Put x = x,a + b — ^ , a , b in the formula (2.1) to get four new formulae.
Then multiply these formulae by 1/4 and add. The result is (2.4), and (2.5) is obtained
from (2.2) by the same procedure. D

REMARK 2. If in Theorem 2.1 we choose x = a we obtain the Euler trapezoidal
rule [5], and if we choose x = (a + b)/2 we obtain the Euler bitrapezoidal rule [6].

Our next goal is to give an estimation of the remainder R\{x). For the sake of
simplicity we will temporarily introduce two new variables:

x-a t-a
| and s =and s

b — a b — a
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It can be easily seen that for x,t e [a,b] we have £,5 e [0,1]. Using direct
calculations, for each £ e [0, 1/2] we obtain

- 4 5 + 1, 0 < 5 < £,

- 4 5 + 2 , £ < 5 < l - £ ,

- 4 5 + 3, 1 - £ < 5 < 1 ,

452 - 25 + 2£2 - 2 | + 2/3, 0 < 5 < £,

452 - 65

4s2 -2s,

2£ + 8/3,

0 < 5 < f,

Gl(s) =

4s2 - 65 + :

-4s3 + 352

- 4 5 3 + 652

- 4 5 3 + 952

- 3 § + l),

- 3? + 4) + 6£2 - 6§ + 3, 1 - £ < 5 < 1,

Next we present some properties of the functions G\ and F*. First we prove that
the functions G\ and F^ are symmetric for even k and skew-symmetric for odd k with
respect to 1/2.

LEMMA 2.2. Lett; € [0, 1/2] be fixed. Fork > 2 and s e [0, 1], we have

Gf (1 - 5) = (-1)*G|(5) and F*(l - s) = (-l)*F,f (*).

PROOF. AS stated at the beginning of this section, for k > 2 and 5 e [0, 1], we have

- I + 5) + Bt*

5) - ^+5)+2f i , (5 ) , 0 < 5

- 5) + Bk(—i- + 5) -

— £ — 5) + Bk(% — 5)

-£-5) + B*(l + f-5)

= (-i)kGUs),

- 5 ) , 0 < 5 < ^ ,
f^ t <-" V <*_ 1

- 5 ) , l - £ < 5
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which proves the first identity. Further, we know that F^(s) = G*(s) — Gf(O). If
k = 2i - 1, i > 2, then G2,_|(0) = G2,_,(l) = 0, so we immediately have

F*_,(l -s) = Gi^(l-s) = (-l^'-'GL,^) = (-l)2-lFl_t(s).

On the other hand, if k = 2i, i > 1, then (—I)2' = 1, so we obtain

F*(l - s) = Gi(l - s) + Gi(0)

and this proves the second identity. D

REMARK 3. It is obvious that analogous assertions hold true for the functions G*k

and F£, k > 2. In other words, if x e [a, (a + b)/2] and t e [a, b] we have

Gx
k{b - t) = ( - l and - t) = (-

LEMMA 2.3. //£ € [0, 1 /2- 1/(4V6)), then for alls € (0, 1/2), G\(s) < 0. Also

< 0,

> 0,

(0, 1/4),

(1/4, 1/2).

PROOF. For the sake of simplicity we will denote

-4s3 + 3s2 - 2s(3£2 - 3f + 1), 0 < s < £,

-4s 3 + 6.s2-2s(3£2 + l) + 3£2, § < * < l - $ ,

-4s 3 + 9s2 - •

Hf(s), 0<

If we write Hf(s) as A/f (j) = ^[ - 4s2 + 3s - 2(3£2 - 3£ + 1)], we can see that
Hf (0) = 0 and that //f (|) = £(-10£2 + % - 2), so if for a given £ e [0, 1/2]
the number -10£2 + 9£ — 2 is negative it means that the joining point (£, H\{^)\ =
(£, #!(£)) is under the x-axis. This will be true for £ e [0, 2/5). The sign of Hf (s)
is determined by the sign of the function y(s) = —4s2 + 3s — 2(3£2 — 3£ + 1).
This function will have zeros s, = 3/8 - (A/Z>)/8 and s2 = 3/8 + (VD)/8 if
D = -96£2 + 96f - 23 > 0, that is, if £ € [1/2 - 1/(4^6), 1/2]. Furthermore,
_y(0) = -2(3£2 - 3£ + 1) < 0 which means that (if they exist) both zeros 5, and
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s2 are positive. Of course, if § = 1/2 - 1/(476) the function y has only one zero
s = 3/8. We want to know if it is possible for £ e (1/2 - l/(4\/6), 2/5) to have
£ < Si (because this will imply that Hf(s) < 0 for all 0 < s < £). This in fact is not
possible because if £ < s\ then we have£ < 3/8, and 3/8 < 1/2 — 1/(476). This
means that Hf(s) < 0 for all 5 6 (0, £) can be true only if D < 0, and this will be
true for £ e [0, 1/2 - 1/(476)] c [0, 2/5).

Now we must check Hj for such £. If £ < s < 1/2 we have

H%'(s) = -12s2 + 125 - 2(3§2 + 1),

H*"(s) = -24s + 12 = 12(1 - 2s) > 0,

which means that H\ is convex for any choice of such £. Since // |(£) < 0 and
fl|(l/2) = 0, we can deduce that H\(s) < 0 for all s € (?, 1/2). This means that if
£ e [0, 1/2 - 1/(476)), then G%(s) < 0, s e (0, 1/2), and for £ = 1/2 - 1/(476)
we have Gf (s) < 0 , s 6 (0, 1/2) \ {3/8}.

On the other hand, if § € (2/5, 1/2] the joining point (£, //f (£)) = (£, «f (§)) is
above the x-axis, and we want Hf (s) to be positive for all s € (0, §). This, of course,
cannot be true because (2/5, 1/2] C (1/2 - 1/(476), 1/2], which means that //f
surely has a zero S\ < 3/8 < 2/5 < £.

And in the end, we must separately investigate Gj/2 because at this special point
£ = 1/2 the function G\ has only one branch for s € [0, 1/2], that is, we have

G\/2(s) = s(-4s2 + 3s - 1/2), 5 e [0, 1/2].

We can easily see that G\/2(s) < 0 , J £ (0, 1/4) and Gl
3

/2(s) > 0, s e (1/4, 1/2). •

Of course, from the above results we have G\(t) < 0, t e (a, (a + b)/2) for any
x e [a, (a + b)/2 - (b - a) / (476)) , and also

Gf+b)/2(t) > 0, f e ((3a + b)/4, (a + b)/2).

LEMMA 2.4. Forr >2andx e [a, (a + b)/2-(b-a)/(4y/6)), the function G\r_x

has no zeros in the interval (a, (a + b)/2). The sign of this function is determined by

(-D'-'G^.CO > 0, te (a, (a + b)/2).

Also,

^ > 0, te (a, (a + b)/2) \ {(5a + 3*)/8},

> 0, te (a, (3a + b)/4),

< 0, r e ((3a + b)/4, (a + b)/2).
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PROOF. Let x e [a, (a + b)/2 - (b - a)/(4\/6)). If r = 2, then the assertion
follows from Lemma 2.3. Assume now that r > 3. In that case we have 2r — 1 > 5
and the function G2r_, is continuous and at least twice differentiable. We know that

ir* V(t\
{2r ~ 1 ) ( 2 r ~ 2 )

_ ^ (2.

and that G*r_, (a) = G£r_, ((a + fc)/2) = 0.
Suppose that G\r_x has another zero a e (a, (a + b)/2). Then inside each of the

intervals (a, a) and (a, (a + b)/2) the derivative (G^.,) ' must have at least one zero,
say fix e (a, a) and f52 e (a, (a + b)/2). Therefore, the second derivative (G£._,)"
must have at least one zero inside the interval (Pi, /32) C (a, (a + b)/2). Thus, from
the assumption that G2r_, has a zero inside the interval (a, (a + b)/2) it follows that
G2r_3 also has a zero inside the interval (a, (a + b)/2). From this we could deduce
that the function G\ also has a zero inside the interval (a, (a + b)/2) which is not
true. Thus G2r_, cannot have a zero inside the interval (a, (a + b)/2). Furthermore,
if Gx

2r_2(t) > 0 for t € (a, (a + b)/2), then from (2.6) it follows that G2r_, is convex
on (a, (a + b)/2), and hence G£r_,(0 < 0 for t € (a, (a + b)/2). Similarly, if
G2r_3(O < 0 for t 6 (a, (a + fc)/2), then from (2.6) it follows that G2r_, is concave
on (a, (a + b)/2), and hence Gx

2r_x(t) > 0 for t e (a, (a + b)/2). Since G\{t) < 0
for t € (a, (a + b)/2), we can conclude that

For the special cases x = (a + b)/2 — (b — a)/(A-j6) and x = (a + b)/2, the proof
is similar so we skip the details. D

COROLLARY2.5. Forr > 2andx 6 [a, (a + b)/2 — (b — a)/(4y/6)], thefunctions
(— 1)' F2r(t) and (— 1 )rG2r(0 are strictly increasing on the interval (a, (a + b)/2) and
strictly decreasing on the interval ((a + b)/2, b). Consequently, a and b are the only
zeros of F£. in the interval [a, b] and

PROOF. Let r > 2 and x € [a, (a + 6)/2 - (ft - a)/(4x/6)). We know that
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and by Lemma 2.4 we also know that (—l)r~'G|r_1(f) >Oforallf e (a,{a + b)/2).
Thus the functions (— \)r F2r(t) and (— l)rG2r(?) are strictly increasing on the interval
(a, (a + b)/2). Also, by Lemma 2.2, we have F$r(b - t) = F*r(t) and G\r(b - t) =
Gx

2r(t) for t € [a,b], which implies that {-\)rF$r{t) and (-l)rG^r(f) are strictly
decreasing on the interval ((a + b)/2,b). Further, F2r(a) = F2r{b) = 0, which
implies that \F2r(t)\ achieves its maximum at t = (a + b)/2, that is,

= 2

Also,

max | G2r (t) | = max

F
b — a

— a

= max

nx 1

/JC-fi2rU-

G* (a +
G-{ 2
-a\
~a) + Blr

)

,2

The special case x = (a + b)/2 — (b — a)/(4\/6) can be investigated similarly. •

COROLLARY 2.6. For r > 2 the functions (-\)rF£+b)n(t) and ( - l ) r G^ +

strictly increasing on the intervals (a, (3a + &)/4) a«d ((a + b)/2, (3a +
and strictly decreasing on the intervals ((3a + b)/4, (a + b)/2) and ((3a + b)/4, b).
Consequently, a, (a + b)/2 and b are the only zeros of F2°+ m the interval [a, ft]
and

max

max
ie[a,b]

F(a+b)/2

2r

(0

(0

3a + b)/4)\ = 22-2r(2 - 2'-2r)|Z?2r|,

G%+b)/2{(3a + b)/4)\ =

PROOF. The proof follows similarly to the proof of Corollary 2.5, using the fact
that F2

(
r
a+*)/2((a + b)/2) = 2[B2r - B2r{\/2) + 2(2"2r - \)B2r] = 0. D

COROLLARY 2.7. For r > 2 and x e [a, (a + b)/2 - (b - a)/(4\/6)], we have

we Ziave

— f-aja
= 2 B

2r -a
B

2r
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and

b-,

PROOF. Let r > 2 and x e[a,{a + b)/2 - {b - a)/(4s/6)]. Using Lemmas 2.2
and 2.4 we get

f\G*2r_l{t)\dt =
Ja

= 2

MO

b

+»)/2

— a

2r

G\r_x(t)dt

Gx
2r{s)

a

b-a
r - G*2r(a)

which proves the first assertion. Using Corollary 2.5 and the fact that F2r{a) =
f£(fo) = 0, we can deduce that the function F2r does not change its sign on the
interval (a, b). Therefore we have

f Fl(t)dt = f [Gx
2r{t)-B*2r]dt

J a J a

b-a b

-Gx
2r+i(t) -{b-a)B*2r2/- + 1

= 2(b - a) B2r

which proves the second assertion. Finally, we use the triangle inequality to obtain
the third formula. •

COROLLARY 2.8. For r > 2, we have

f
J a

w(a+b)/2,
2r-\ \ G^*)/2(0 dt = b—-24-2r(l-2-2r)\B2r\.

Also,

i r
/ F2r (0

-a Ja

and
1 fb

>-a Ja
72r (0

PROOF. The proof is similar to the proof of Corollary 2.7. •
LEMMA 2.9. Let x e [a, (a + b)/2 - (b - a)/(4>/6)]. Iff : [a, b] -» K is such

that for some r > 2 </ze derivative / ( 2 r ) « continuous on [a, b], then there exists a
point r] e [a, b] such that
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PROOF. Let x € [a, (a + b)/2 - {b - a)/(4\/6)]. For n = 2r > 4 and / such
that / ( 2 r ) is continuous on [a, b~\ we can rewrite R\r{f) as

rb (h — a\lr~x

where
cbir= f (-\yFZ(t)f«r

Ja

If m = min[o,ft] /
( 2 r ) (0 and M = max[a>] /

( 2 r ) (0 , then m < / ( 2 r ) (0 < M, r € [a, ft].
From Corollary 2.5 we have(-l)rF2*r(0 > 0, t 6 [a, fc], so

m

Since

/ (-l)rFl(t)dt <Ir<M f (-\)rF*2r{t)dt.
J a J a

b

F^(t) dt = -{b- a)Bx
2r = -2(b - a) \ Blr

we obtain

< Ir <2M(-iy-l(b-a)\B2r

By the continuity of / ( 2 r ) on [a, b] it follows that there must exist a point ?j e [a,
such that

ir = 2{-\y~\b - a) \B2, (J^) + *^\ /(2r) in) •

From that we can easily obtain (2.7). •

LEMMA 2.10. Iff : [a, b] ->• K w 5MC/I that for some r >2the derivative / ( 2 r ) w
continuous on [a, b], then there exists a point rj E [a, b] such that

PROOF. The proof follows analogously to the proof of Lemma 2.9. •

THEOREM 2.11. Letxe[a, (a+b)/2-(b-a)/(4<j6)]. Assume that f: [a, b]-» D&
is 5MC/I f/raf /<2r' is continuous on [a, b]for some r > 2. If f is a (2r)-convex or
(2r)-concave function, then there exists a point & € [0, 1] such that

Iff
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PROOF. By Corollary 2.5 for t e [a, b] we have

0 < (-ir'F*(0 < (-iy-lFl((a

The rest of the proof is similar to the proof of Lemma 2.9. •

Theorem 2.11 can be improved in a way that the derivative / ( 2 r ) need not be
continuous on [a, b]. To obtain such a result we use the following theorem from [7,
Theorem 1].

THEOREM B. Let <p : I ->• DS, / c OS, be a monotonic function, and let p :
K —> K be a periodic function with period P such that for some a € K and n e M
[a,a+nP] C / . Suppose that there exists some x0 6 (a, a + P) such that p(xo) = 0,
p{x) > Ofor all x e [a, x0) and p(x) < Ofor all x e (x0, a + P]. Suppose also that
f° p(x)dx = 0.If<p is increasing on [a, a + nP], then

/

a+nP i na+nP

p(x)<p(x)dx<—(<p(a+nP)-<p(a)) \p(x)\dx, (2.8)
and this inequality is sharp. If <p is decreasing on [a, a + nP], then the inequality
(2.8) is reversed.

THEOREM 2.12. Assume that the function f : [a, b] —> OS is such that for some
r > 2 the derivative Z ^ " 1 ' is continuous and increasing on [a, b]. Then for every
x e [a, (a + b)/2 - (b - a)/(4^/6)] we have

\2 b - a) \b — a

and this inequality is sharp.

PROOF. We know that the function F£_, is periodic with period P = b — a. From

Theorem 2.4 and Lemma 2.2 for r > 2 and x e [a, (a + b)/2 - (b — a)/{4-j6)] we

have: F2*_,((a + b)/2) = 0, fa F^r_y{t) dt = 0 and also

b)/2,b).
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This means that if in Theorem B we choose p(r) = ( - l ) ' "
and n = 1, then from (2.8) we obtain

, (0,^(0 = /(2r"0(0

- r(-
J a

and combining this with Corollary 2.7 we obtain

b-a

From Theorem 2.1 we know that

-r^— f f(Odt-
b-a Ja

h T2r_x{x)

so

fl) 2 r ' '
2(2r)!

b — a — a
D

THEOREM 2.13. Ajwrne tfzar the function f : [a,b] -> R is such that for some
r > 2 f/ze derivative / ( 2 r ~ ' ' w continuous and increasing on [a, b]. Then we have

b /(a) + f(b) + 2f((a + b)/2) ~
f(t)dt - —-———^ --± + r2r_,b-a

and this inequality is sharp.

PROOF. The proof is similar to the proof of Theorem 2.12. •
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3. Hadamard's inequalities for (2r)-convex functions

Now we can give our main result: a generalization of Hadamard's inequalities for
(2/-)-convex functions, r > 2.

THEOREM 3.1. Assume that f : [a, b] -> OS is such that for some r > 2 the
derivative / ( 2 r" ! ) is continuous on [a, b], and assume that f is (2r)-convex on [a, b].
Ifr is odd, then for all x e [a, (a + b)/2 - (b - a)/(4s/6)] U {(a + b)/2)

/(a) + f{b) 1

and for all x e [a + (b - a)/(2>/3), (a +

( ;+ f e-J )
+f,r- lw>o. 0.2)

//> is even the above inequalities are reversed.

PROOF. Let x e [a, (a + b)/2 - ib - a)/(4\/6)]. In the case n = 2r > 4, from
(2.5) we get

b

where

2_ /
-O Ja

—-— / F;
4(2r)! JlaM

 2r

If/ is (2r)-convex then df^2r~l)(t) > 0 on [a, b], and since by Corollary 2.5 we know
that (-l)rF2*0) > 0, t e [a, b], we obtain R\r(x) > 0 for r even and R\(x) < 0 for
r odd. The same is true if x = (a + b)/2. This means that for r odd we have

that is,

+ fib)
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and the above inequality is reversed if r is even. This completes the proof of (3.1).
Now let x € [a + (b — a)/(2V3), (a + b)/2\ and suppose that r is odd. We can

use the analogous results from [9, Theorem 2.1 and Corollary 2.4] to obtain

2 0,
b-a Ja

 J 2 Zr~

and the reverse if r is even. This completes the proof. D

The interested reader can find several sharper variants of (3.2) in [8].

References

[ 1 ] M. Abramowitz and LA. Stegun (eds.), Handbook of mathematical functions with formulae, graphs
and mathematical tables, Applied Math. Series 55, 4th printing (National Bureau of Standards,
Washington, 1965).

[2] I. S. Berezin and N. P. Zhidkov, Computing Methods, Vol. I (Pergamon Press, Oxford, 1965).
[3] P. S. Bullen, "Error estimates for some elementary quadrature rules", Univ. Beograd Publ. Elek-

trotehn. Fak., Ser. Mat. Fiz. 602-633 (1978) 97-103.
[4] Lj. Dedic, M. Matic and J. Pecaric, "On generalizations of Ostrowski inequality via some Euler-type

identities", Math. Inequal. Appl. 3 (2000) 337-353.
[5] Lj. Dedic, M. Matic and J. Pecaric, "On Euler trapezoid rule", Appl. Math. Comput. 123 (2001)

37-62.
[6] Lj. Dedic, M. Matic, J. Pecaric and A. Vukelic, "Hadamard-type inequalities via some Euler-type

identities—Euler bitrapezoid formulae", Nonlinear Stud. 8 (2001) 343-372.
[7] M. Klaricic Bakula, J. Pecaric and A. Vukelic, "Interpolation of periodic functions and applications

on some integration formulae of interpolatory type", Bull. Math. Soc. Sci. Math. Roumanie 48
(2005) 261-275.

[8] J. Pecaric and A. Vukelic, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and
convex functions, Functional Equations, Inequalities and Applications (Kluwer, Dordrecht, 2003).

[9] J. E. Pecaric, I. Peric and A. Vukelic, "Sharp integral inequalities based on general Euler two-point
formulae", ANZIAM J. 46 (2005) 555-574.

[10] J. E. Pecaric, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical
applications (Academic Press, New York, 1992).

[11] A. W. Roberts and D. E. Varberg, Convex Functions (Academic Press, New York, 1973).

https://doi.org/10.1017/S1446181100003552 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100003552

