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ABSTRACT
Mass casualty incidents are a concern in many urban areas. A community’s ability to cope with such
events depends on the capacities and capabilities of its hospitals for handling a sudden surge in demand
of patients with resource-intensive and specialized medical needs. This paper uses a whole-hospital
simulation model to replicate medical staff, resources, and space for the purpose of investigating hospital
responsiveness to mass casualty incidents. It provides details of probable demand patterns of different
mass casualty incident types in terms of patient categories and arrival patterns, and accounts for related
transient system behavior over the response period. Using the layout of a typical urban hospital, it
investigates a hospital’s capacity and capability to handle mass casualty incidents of various sizes with
various characteristics, and assesses the effectiveness of designed demand management and capacity-
expansion strategies. Average performance improvements gained through capacity-expansion strategies
are quantified and best response actions are identified. Capacity-expansion strategies were found to
have superadditive benefits when combined. In fact, an acceptable service level could be achieved by
implementing only 2 to 3 of the 9 studied enhancement strategies. (Disaster Med Public Health
Preparedness. 2018;12:778-790)
Key Words: capacity expansion strategies, discrete event simulation, emergency response, mass casualty
incidents, surge capacity

INTRODUCTION
Mass casualty incidents (MCIs) have become of
growing concern in many locations where the occur-
rence of natural or anthropogenic hazard events is
rising. The Florida Department of Health1 categorizes
MCIs by number of expected casualties. They specify
categories I through V as having 5 through 10, 11 to
20, 21 to 100, 101 to 1000, and >1000 casualties,
respectively. Even smaller MCIs challenge a commu-
nity’s ability to provide quality patient care, quickly
exhausting local rescue and response resources. MCIs
may arise from more routine circumstances. For
example, under severe weather conditions traffic
accidents involving multiple vehicles and possible
burn victims are common. Less probable but larger
scale MCIs can arise due to human error, as would
occur with the release of hazardous materials from a
truck or train derailment. Larger MCIs may result
from more catastrophic or less localized events, such as
hurricanes. The US Federal Emergency Management
Agency (FEMA) has identified specific disaster event
types that might produce a MCI for which each state
must be prepared.

Efficient response by the health care system, especially
hospitals, is crucial to mitigating indirect loss of life
and life-impacting injuries associated with MCIs. Pre-
paredness steps and modified operational procedures

designed for these types of incidents are needed for an
efficient response, and are key elements in building
resilient communities. Furthermore, techniques for
quantifying the benefits of potential strategies for
managing MCIs within the hospitals are warranted.

In a MCI, the health care system is faced with an
abrupt increase in demand for resource-intensive care.
The efficient management of critical resources in the
form of staff (medical providers, nurses, etc.), stuff
(oxygen, medical air, blood, hospital beds, etc.), and
space (emergency rooms, operating rooms, labora-
tories, etc.) is crucial to meet surge demand require-
ments. Hick et al2 listed adaptive operational
strategies for space and supply use under conven-
tional, contingency, and crisis circumstances.

Only a few studies quantify hospital performance
specific to a MCI.2-4 Of direct relevance is work by Yi
et al,3 who simulate a generic hospital under varying
demand-capacity ratios. A few additional works dis-
cuss the need for studying the operations of hospitals
in MCIs,5,6 and others have conducted case studies to
reveal the role of hospitals in close proximity to MCI
locations for specific historical events.7 The literature
has yet to tackle the complexities of hospital
operations in a MCI. This paper seeks to address
this gap.
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It is commonly assumed that waiting times for initial service
will reach a steady state, after which point observations will
reveal little new information. However, in the context of MCIs,
nonstationary demand and service disruptions, among other
demand and supply-side changes, produce transient time per-
formance over the course of the response phase. Hospital system
performance and its evolution over this period are greatly
impacted by the initial system state: the number of available
resources (eg, nurses, internal general ward [IGW] unoccupied
beds, operating rooms [ORs]) and the number of patients
waiting to receive services (eg, be admitted to the emergency
department [ED], be admitted to an IGW, or be transferred
to an OR). This research addresses system performance within
the transient period under various initial states given dynamic
demand and demand-responsive service capabilities. Few
studies in any related field consider this transient system
behavior. Those that do relate primarily to communications,
supply chain management, and manufacturing.8,9

In this paper, a patient-based, resource-constrained model of a
generic urban hospital constructed in the Exendsim Simulation
Software environment is described. A discrete event simulation
modeling approach that uses an underlying queueing network
conceptualization of the hospital’s critical units was taken. The
modeling approach extends the work that assesses a hospital
operating in routine circumstances to MCIs.10 This approach
explicitly recognizes that the performance of the whole hospital
depends on the functionality of its units and the specific needs
and care paths of the patients. Since services share resources in
hospitals, shortfalls in one unit can negatively affect services
provided in another unit. Specific to a MCI are patient-flow
dynamics, demand management strategies, operational strate-
gies that are responsive to evolving demand patterns and
time-varying service capacities, and capacity-expansion actions.
These capacity-expansion, demand management, and opera-
tional strategies were designed based on in-depth interviews
with key hospital personnel and author experience.11 These
strategies include modified triage tactics, early-discharge
decisions, speed-up in patient care procedures, and omission
of some patient care services. In addition to presenting
these strategies for efficient surge demand handling in a MCI,
modeling adaptations for their replication are presented.

The interviews were conducted over multiple visits in
the course of approximately one year at the Johns Hopkins
Hospital, Suburban Hospital, and the Johns Hopkins Office
of Critical Event Preparedness and Response. The primary
sources (in addition to coauthors) included the director of
operations and an administrative director of ED/trauma, safety,
security and employee health services, among others. Extensive
discussions regarding multiple hazard scenarios were held
and findings were translated into modeling parameters.

Systematically designed experiments were conducted using
this model to investigate the performance of the representa-
tive hospital under a range of MCI demand

scenarios and response strategies. The experiments aimed to
investigate (1) the functionality of a hospital and the impact
of proposed capacity-expansion strategies (modifications to
operations and alternative standards of care) in bottleneck
formation in high-demand circumstances and (2) transient
system behavior. The impacts of demand management
through diversion of patients to alternative facilities and
modified triage were also investigated.

METHODS: HOSPITAL MCI MODELING
The whole-hospital, resource-constrained model for level I
and II trauma centers (hospitals) operating under a MCI
scenario is described. Trauma level I hospitals are equipped at
the highest level (of five levels) to provide total care for all
injuries. The model builds on the framework developed in
TariVerdi et al,10 and thus differs not in its technical
approach but rather in the details of the operations and
patient flows. Modifications to routine operations and stan-
dards are proposed, and their potential for improved MCI
handling is assessed.

Patients
In a MCI, patient arrival patterns depend on the circum-
stances of the event and unit service capacities depend on
availability of required resources (staff and stuff). As patients
arrive at the hospital, they are classified and prioritized based
on injury type, severity, and prognosis. To handle a surge in
demand for time-critical care, these triage protocols under a
MCI differ from protocols implemented in routine circum-
stances. The outcome directly impacts the number of patients
served and the burden on each of the care paths.

From a queuing perspective, within the arrival routine,
customers arrive, each carrying individualized service
requirements or survival likelihoods. Severity probability
distributions typical of the MCI class determine individual
patient survival likelihoods and therefore priorities. Survival
likelihoods are a nonincreasing function of the time spent
waiting for initial critical services based on patient injury
category. If circumstances warrant, the lowest priority custo-
mers may be turned away without treatment. For customers
who are accepted, customer priority, along with injury type,
will dictate their assignment to specific care paths. Customers
from classes with low priority are assumed to be impatient and
may choose to renege if waiting times exceed a threshold.

For routine circumstances within the ED, the Emergency
Severity Index (ESI) triage protocol12 is followed. An alternative
prioritization scheme may be followed in a MCI when the
number of patients entering the hospital in need of time-critical
treatment exceeds a hospital’s capabilities. Even before arrival
at the hospital, while at the disaster scene, first responders
triage the affected population using a rapid triage protocol,
such as Simple Triage and Rapid Treatment (START).
START classifies patients as having minor (green), delayed
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(yellow), immediate (red), and sometimes expectant (black; low
survival likelihood and high resource needs).13 Following
recommendations in the literature,14 maximum wait time
thresholds are set to 1 to 1.5 hours for immediate patients and 6 to
8 hours for delayed patients. These categories determine how
transportation resources at the incident scene are allocated
and accelerate the in-hospital triage process (Figure 1A).

At the hospital, patients who arrive by ambulance or are
tagged at the scene as immediate bypass the in-hospital triage
process. Others, including those who walk in (accounting for
approximately 90% of MCI patients), are categorized by
injury type based on an Injury Severity Score (ISS) between 0

and 75. The ISS is computed based on affected body regions
and severity levels. ISS and injury type determine each
patient’s survival likelihood, care path, and probable service
times. Alternate classification methods for this purpose have
been suggested in the MCI literature.3,15

In a MCI, casualties can be estimated using disaster planning
software, such as PACER or HAZUS-MH. As demand from
the incident arises, a drop in routine patient arrivals by 25%
during the response period can be expected17 and is assumed
here. Some incident types, such as a pandemic, generate
demand for the hospital that increases exponentially or
linearly over time; whereas in other incident types, such as

FIGURE 1
(A) Patient Classes at MCI Scene and Arrivals to Hospitals. (B) Dual Wave Phenomenon of MCI Patient Arrival Pattern.16

Abbreviations: EMS, emergency medical services; ESI, Emergency Severity Index; MCI, mass casualty incidents; START,
Simple Triage Rapid Treatment.
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no-notice incidents, patient arrivals may increase rapidly but
follow what is known as the “dual wave phenomenon”16

(Figure 1B). These arrival patterns (Figure 1B) are replicated
within the arrival routine of the model. Batch arrivals
replicate transport of groups of patients from the MCI scene.
The patients in these groups are categorized as immediate or
minor and arrive to hospital randomly following uniform
distributions on intervals [30, 60] and [15, 30] minutes
from incident start, respectively. Individual arrivals follow a
nonstationary time-dependent Poisson distribution.

Critical Hospital Services
Within the queuing network, nodes represent locations of
potential bottlenecks along critical service paths. These
bottlenecks occur within hospital units but affect the flow of
patients across units. Units included in the model, as shown
in Figure 2B, are registration and triage; the ED, including
fast-track and trauma units; operation theaters consisting of
preoperation (preop) rooms, ORs, and postoperation rooms
(postop), such as surgical intensive care units (SICUs),
postanesthetic care units (PACUs), and stepdown units;
intensive care units (ICUs); and IGWs. Laboratories and
imaging, radiology, computed tomographic (CT) scan, and
magnetic resonance imaging (MRI), are included in parallel
to these units as part of diagnostic services. Specialized
medical resources in terms of medical providers, nurses,
technicians, and critical medical supplies are also explicitly
modeled. For certain MCIs, it may be important to
include decontamination units, burn units, or other specia-
lized services. In this model, patient care paths are a function
of patient medical needs and MCI-based operational
strategies.

Federal guidelines16 dictate that health care facilities be self-
sufficient for 48 to 96 hours in the aftermath of a MCI.
During the crisis period, they must have the ability to reach a
30% increase in service capacity compared with routine
operations. To expand the capacity within critical units
during a MCI, a hospital may modify its operations or it may,
in some circumstances, be able to lower the standards of care.
For example, in a MCI registered nurses may be permitted to
serve certain patients that doctors would ordinarily treat.
Some standards of care are dictated to the hospital
and can only be lowered under government directive
(ie, state of emergency declaration). Modifications to opera-
tions thus serve two purposes: (1) to exploit untapped
capacities and (2) to maximize service rates under required
standards. Combinations of modifications and alternative
standards are referred to herein as capacity-expansion
strategies (Figure 2). Such strategies are proposed here and
replicated within the models following assumptions described
in Table 1.

The ED in routine10 and MCI conditions is depicted in
Figures 2B and C. Changes to care paths of ESI level 4 and
level 5 patients for MCI operations are noted.

Key differences between flows under routine and MCI
models can be described with reference to admissions proto-
cols, state-dependent care paths, and changes in service
requirements as described in Appendix A. Additionally,
information related to model outputs, complete list of
monitored queues and patient exit points from the system in
form of transfers and expirations (mortalities or hospital
failure to stabilize patients in a timely manner) are included
in Tables A1 and A2.

Design of Numerical Experiments
Numerical experiments were designed to assess the func-
tionality of a representative, full-service hospital under MCI
scenarios for varying demand scenarios under proposed
capacity-expansion strategies. Strategies and demand scenar-
ios are synopsized in Table 2.

Initial results were obtained to identify the number of runs
required to achieve an acceptable error of 0.05 in expected
waiting times. To achieve stability in run results while
simultaneously accounting for rare events, 50 runs were
conducted under each scenario. Each run replicated hospital
operations over a multiday, postevent period, where the
number of days considered is set to either 2 or 7. While a
2-day period was sufficient to capture the operations imme-
diately following a MCI, 7 days were necessary for a pandemic
scenario with multiday impact on demand. Each simulation
run, thus, was made over 22 or 27 days, respectively, 20 of
which were set as a simulation warm-up period. Data from
the warm-up period were not used or reported. Figure 3
reflects this warm-up period for 7-day run results. Thirty-five
combinations of modified operations (MOs) and alter-
native standards of care (ASC) as might be adopted were
specified.

The inputs to the representative urban hospital model in
terms of size (eg, number of beds, ORs), staffing, operational
parameters, routing probabilities, and service times are sum-
marized in Table 3.

The output from 50 modeled queues in the runs were mon-
itored to evaluate hospital performance under combinations
of demand inputs and capacity-expansion strategies. Average
and maximum waiting times, number of patients in the
queues, and queue lengths were collected for analysis.
Commonly used metrics from routine operations may not be
well-suited to MCI analyses. Instead, mortality and number of
patients for which the hospital failed to provide timely service
were computed. Because the physical condition of each
patient changes over time and depends on services provided,
individual probabilities of mortality change as the simulation
progresses. Mortality was presumed from patient survival
likelihoods given injury type and severity and whether the
patients successfully received services in the simulation runs
within a critical time period.
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FIGURE 2
(A) Hospital Patient Flow Model.10 (B) ED in Routine Conditions.10 (C) ED in MCI Conditions. Abbreviations: ED,
emergency department; ESI, Emergency Severity Index; ICU, intensive care unit; IGW, inpatient general ward; ISS, Injury
Severity Score; LWBS, leave without being seen; MCI, mass casualty incident; PACU, postanesthetic care unit; SICU,
surgical intensive care unit.
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RESULTS AND DISCUSSION
Results from the 7000 runs were obtained and analyzed.
Reasonableness of the designed representative urban hospital
and general modeling approach was assessed10 under routine

conditions. Initial MCI model run results were discussed with
emergency managers,11 and the model was further tuned to
incorporate elements that were not initially identified as key.
The best capacity-expansion strategies were identified.

TABLE 1
Summary of Assumptions Compared Under Routine10 and MCI Conditions

Units Routine Conditions MCI Conditiona

ED triage On average 15 minutes per patient On average 2 minutes per patient

ED patient types 20%-25% green-tagged patients 50% green-tagged patientsb

30% yellow-tagged patientsb

20% red-tagged patientsb

ED patient arrivals Exponential interarrivals, daily arrival mean
follows bimodal normal distribution
(nonstationary time-dependent mean)

Exponential
Batch arrivals, dual wave phenomenon

ED policy and operation ED physician visits all patients Conditional ED admission (green-tagged patients)c

RN visits patientsc

RN performs proceduresc

ED capacity Waiting room only
ED cots in rooms

Add corridors and open spaces
Increase ED cots up to 20% of initial capacity

ED service time (individual servers) Average 10 minutes for a visit by ED physician Average 5 minutes for a visit by ED physician

Laboratories TAT of 60 minutes (90% completion time of
<60 minutes)

TAT of 45 minutes

Preop Not patients from inpatient ward Patients enter the hospital in need of operation

OR 1 bed per room
Elective same-day surgical admissions on
weekdays

Additional cots can be added to each room
90% cancellation of elective surgeries

PACU, ICU, SICU, step down Full expected length of stay
Taking very low risk on return of patient
(low direct discharge rates)

Patient to nurse ratio of 2:1

Shorter length of stay
10% higher direct discharge rates
Lower patient to nurse ratio (3:1)
~ 30% ICU capacity expansion

Inpatient wards 1 or 2 cots in each room
Full expected length of stay
Patient to nurse ratio of 5:1

Add cots to rooms
Place observatory cots in corridors up to 20%
of initial capacity

Shorter length of stay
30% immediate discharge
25% decrease in admission from ED
Lower patient to nurse ratio (10:1)

Abbreviations: ED, emergency department; ICU, intensive care unit; OR, operating room; PACU, postanesthetic care unit; RN, registered nurse; SICU, surgical
intensive care unit; TAT, turnaround time.

aInterview results with Johns Hopkins Hospital (JHH) and other hospitals in the JHH system (JHHS).
bSuggested.1
cUnder state of emergency.

TABLE 2
Summary of Demand and Operational Strategies

Demand
Routinea

<200 patients/day
MCI-Pandemic

250-300 patients/day MCI I/II/III

Capacity Expansion Modified Operations Alternative Standard of Care
Strategies (1) 75% scheduled operations canceled (1) Selective services

(2) Increased service rates (2) Shorter length of stay
(3) Early discharge of patients in wards (3) Lower staff to patient ratios
(4) Longer shifts for staff (4) Altered patient routings
(5) Opening extra and nonmedical space

Abbreviation: MCI, mass casualty incident.
aUsing highest demand, consistent with the fall flu season and MCI I, II, & III, corresponding to 10, 20, and 100 MCI patients.
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Moreover, incident time-of-day impacts and resulting
dynamic effects on waiting times were investigated. This
section contains results of observed queues in which sig-
nificant changes were identified.

Results
A baseline was created from results of runs for a demand of 200
ED patient arrivals per day with morning and afternoon peaks
with higher wait times, as is typical of similarly sized, busy
urban hospitals known to operate close to their capacities.18

Incidents falling under three MCI classes are replicated:

(1) MCI-P: an increase in the total number of patients
per day by up to 100 patients to replicate seasonal effects
from, for example, flu season and more severe conditions
of a pandemic.

(2) MCI-I and MCI-II: a one-time increase in arrivals of
10 or 20 red (critical) patients to replicate a MCI I or II,
respectively; such MCIs might occur in a rail transporta-
tion accident, for example.

(3) MCI-III: a dual wave arrival on day one of 100 MCI patients
following patient types described in Table 3 and arrival
pattern shown in Figure 1B for a high-casualty MCI III event.

MCI-P
The discrete event simulation model outputs are processed to
obtain 7-day average patient throughput, number of transfers,
and number of green patients who leave their queues without
being seen (LWBS) under demand scenarios with total daily
patient arrival rates of 200, 250, or 300 and routine operations
and standards of care. Analysis of these outputs indicates that
average waiting times are not significantly impacted by a surge
in demand at this level. However, the number of transfers from
the ED, number of patients diverted to another hospital upon
arrival (ie, hospital refusals), and LWBS cases increased sizably.

Detailed study of waiting times along specific patient care
paths revealed that the less severe patients (ESI levels 4 and 5)

bare the cost of the surge through increased, often unac-
ceptable waiting times and decreased throughput as a result of
transfers. With an increase of 50 patients daily, the capacity
of the waiting area for these patients was exceeded as indi-
cated by increased waiting times at registration, high number
of hospital transfers, and slight increase in LWBS cases.
A sharp rise in waiting times was also noted for severely
injured patients (ESI levels 1 and 2) in need of ICU or MRI
equipment for diagnoses. These unmet needs greatly affect
surgery theater throughput, putting patients at further risk.

Average performance improvements gained through capacity-
expansion strategies (Figure 2) under the MCI-P scenario
with a 100 daily patient increase are given in Table 4.

Results from Table 4 show improvements that are not neces-
sarily proportional to the capacity changes incurred through
expansion strategy implementations. Further, they indicate that
an expansion strategy aimed at a particular hospital unit may
have negative or positive secondary effects on other units. By
example, the canceling of 75% of elective surgeries (MO1)
eliminated OR waiting times and decreased postop waiting
times by more than 90%, but simultaneously released only 15%
of the beds in the IGWs. Effects of expansion strategies trans-
cend the units they targeted. In the experiments, speeding up
processes in the ED (MO2) increased throughput in the ED
itself, but simultaneously improved functionality of operation
theaters and decreased bed availability in the IGWs (Figure 3).
The improvement in the functionality of the operation theaters
resulted from increased ED efficiency, which further decreased
the probability that patients reach a critical state requiring that
they be transferred to the higher acuity care paths that include
operations. As patients clear the ED, more patients will be
admitted to the hospital, leading to higher inpatient admission
numbers and lower IGW bed availability.

As the impact of each capacity-expansion strategy extends
beyond its specific target, predicting the effects across the
hospital of combined strategies is difficult. For insight into the
effectiveness of combining strategies, two capacity-expansion
strategies were considered simultaneously under the MCI-P
scenario: MO2 and ASC4. These were chosen to address
bottlenecks noted along patient care paths. These modifica-
tions specifically target bottlenecks in lab test result inter-
pretation and ED procedures that rely on available ED
physicians. Each strategy alone creates marked improvements.
For example, MO2 and ASC4 each led to an increase in
throughput of ESI level 4 and level 5 patients by approxi-
mately 30% and 40%, respectively. When combined, effect
was a tenfold increase in throughput of the same patient
categories. An added benefit is a combined effect of
decreased hospital transfers and LWBS cases by roughly
one-half. It is noteworthy that when implemented separately,
there was no significant impact on LWBS cases and only
ASC4 resulted in improvements in hospital transfers.
A negative consequence, however, of this combination is that

Warm-up period

FIGURE 3
Daily Average Number of Available Inpatient General
Ward Beds in MO1 and MO2 in MCI-P Scenarios
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TABLE 3
Design of Representative Hospital with Routing Probabilities and Service Time Distributions for Routine10 and MCI Conditions

# IGW beds # ED beds # ED trauma rooms # ORs # Preops
200 45 2 10 20
# PACU # SICUs # Stepdowns # ICUs
15 10 10 20

Factor Unit Description Source

MCI patient arrival Hours Exponential mean following dual wave pattern Florida Department of Health (FDH)1

Triage tag output (routine; MCI) Probability Green 0.3; 0.2 (Khare et al, 2009)20

Yellow 0.54; 0.3 (Klein and Reinhardt, 2012)21

Red 0.16; 0.5
ED provider/ED midlevel provider/
RN time (in MCI)

Minutes Exp (10) (Klein and Reinhardt, 2012)21

Categories of red (trauma) patients Probability Expectant (black tag) 0.0
ED trauma treatment 0.2
Transfer to OR 0.68
Transfer to ICU 0.12

Routine Patient Arrivals
Patient arrival Hours Exponential: mean is from bimodal

distribution in 24 hoursa
(Armony et al, 2015)18

Target surgical procedures Rate 1.6 patients per day per bed admitted
from 6 AM to 6 PM

(AHA Data and Directories)19;
(Yi et al, 2010)3

Initial triage
Triage time Minutes Discrete probability distribution: (Whyme et al, 2015)b,11

X=x P(X=x)
15 0.9
2 0.1

Triage tag output Probability Discrete probability distribution: (Khare et al, 2009)20

X=x P(X=x)
ESI-4 & -5 0.3
ESI-2 & -3 0.54
ESI-2 & -1 0.16

ESI Level 4 and 5 Patients

Categories Probability Discrete probability distribution: (Khare et al, 2009)20

X=x P(X=x)
ESI-4 0.50
ESI-5 0.50

ED physician (provider)/ED midlevel
provider

Minutes Exp (10) (Klein & Reinhardt, 2012)21

Leave without being seen (LWBS) Hours 3, Leave w.p of 0.5 (Hsia et al, 2011)22;
threshold 8, Leave w.p of 1 (Armony et al, 2015)18

ESI Level 2 and 3 Patients

General requirements
Survival time duration Hours Uniform (6,8) (AMEDD, 2016)23

ED physician time, first visit Minutes Exp (15) (Khare et al, 2009)20

ED nurse/technician time after first
ED physician’s visit

Minutes Exp (10) (Whyme et al, 2016)11

Diagnosis Probability Discrete probability distribution: (Whyme et al, 2016)11

X=x P(X=x)
Laboratory only 0.5
Laboratory and imaging 0.5

Lab test time Minutes Exp (60) (Hawkins, 2007)24

Lab doctor time - comments Minutes Exp (2) (Whyme et al, 2016)11

Imaging Probability Discrete probability distribution: (Whyme et al, 2016)11;
X=x P(X=x) (Gunn et al, 2013)25

Radiology 0.6
CT scan 0.35
MRI 0.05

Radiology time (procedure) Minutes Exp (15) (Hawkins, 2007)24; (Jackson, 2015)26

CT scan time (procedure) Minutes Exp (60) (Whyme et al, 2016)11;
(Gunn et al, 2013)25

MRI time (procedure) Minutes Exp (120) (Gunn et al, 2013)25

Radiologist time to comment on Minutes Radiology Exp (5) (Whyme et al, 2016)11

results CT scan Exp (20)
MRI Exp (20)

Treatment decision Probability Discrete probability distribution: (Whyme et al, 2016)11;
X=x P(X=x) (Hurwitz et al, 2014)27

No treatment 0.2
ED treatment 0.7
Transfer to OR 0.1
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TABLE 3
Continued

Factor Unit Description Source
ED treatment breakdown ED procedure needed 0.4 (Whyme et al, 2016)11; Hurwitz et al,

Nurse monitoring 0.6 2014)27

Requires ED physician to perform
procedures

ED physician time Minutes Exp (60) (Whyme et al, 2016)11

ED nurse Minutes ED physician time + exp (60)c (Whyme et al, 2016)11

Patient monitoring time Minutes Exp (15) (Whyme et al, 2016)11

IGW LoSd Days Lognormal (3.87,3.26) (Armony et al, 2015)18; (AHA, 2016)19

Post ED routing Probability Discrete probability distribution: (AHA, 2016)19; (Shi et al, 2015)28

X=x P(X=x)
Direct discharge 0.01
Delayed discharge 0.47
IGW 0.4
ICU 0.12e

Transfer delay to IGW Minutes Discrete probability distribution: (Armony et al, 2015)18

X=x P(X=x)
10 0.04
30 0.46
160 0.5

Discharge delay Minutes Exp (40) (Whyme et al, 2016)11

Treatment/monitoring by nurses
ED nurse Minutes Exp (10) (AHA, 2016)19

Patient monitoring time Minutes Exp (60) (AHA, 2016)19

Post-ED routing Probability Discrete probability distribution: (AHA, 2016)19; (Shi et al, 2015)28;
(Khare et al, 2009)f,20

X=x P(X=x)
IGW 0.25
Discharge 0.75

ESI Level 1 and 2 Patients
Categories of trauma patients Probability Discrete probability distribution: (AHA, 2016)19

X=x P(X=x)
ED trauma treatment 0.2
Transfer to OR 0.68
Transfer to ICU 0.12

Survival time duration Hours Uniform (0.5,1.5)
ED trauma treatment
Trauma physician and nurse time Minutes Max (Exp [45], ED lab/ED lab and imaging

test time duration)
(AHA, 2016)19

Trauma nurse time Minutes Max (Exp [45], ED lab/ED lab and radiology
test time duration)g

(AHA, 2016)19

Renege to OR Minutes 15 w.p. 1
Following routing Probability Discrete probability distribution: (AHA, 2016)19

X=x P(X=x)
IGW 0.8
Postops 0.2

OR
Pre OR routing Preop required 0.01h (AHA, 2016)19

Preop not required 0.99
OR with preop
Preop physician time Minutes Exp (30) (Barbagallo et al, 2015)29

OR physician, nurse time Minutes Exp (90)i (Barbagallo et al, 2015)29; (AHA,
2016)19

Postop routing Probability Discrete probability distribution: (Whyme et al, 2015)11; (AHA, 2016)19

X=x P(X=x)
SICU 0.3
PACU 0.4
Stepdown 0.3

OR mortality rate Percentage National average over all
patient typesj

2.9 (Armony et al, 2015)18;
(QuickStats, 2016)30

SICU mortality rate Percentage Range 8%-19% used 13.5 (QuickStats, 2016)30

SICU LoS Days Triangle distribution (0.25,6,2) (SCCM, 2016)31

PACU Minutes Normal distribution (95,43) (Waddle et al, 1998)32;
(Barbagallo et al, 2015)29

Post PACU routing Probability Discrete probability distribution: (AHA, 2016)19; (Whyme et al,
2016)11; (Khare et al, 2009)20

X=x P(X=x)
IGW 0.4
Stepdown 0.3
Dischargek 0.3
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it led to an increase in waiting time for the OR by blocking
the IGWs and postop units. It might be more effective and
less deleterious to add staffed beds to the IGWs. Other
examples of superadditive impacts of combined strategies
were observed and included in Appendix B.

MCI-I and MCI-II
To analyze the impact of a MCI I or MCI II on hospital per-
formance under routine operations and standards of care, 2-day
performance measure averages were recorded. From these results
it was noted that, while the additional 10 critical patients did
not affect overall ED performance, all needed surgery, and thus
waiting times in the ORs increased from less than 5 minutes to
100 minutes. It is recommended in military triage guidelines
that waiting times for this class of patients not exceed 90 min-
utes. The model thus will choose to transfer the patients whose
expected waiting times exceed this limit. Consequently, in the
MCI-II case, no further increase in waiting times at the ORs
was noted. Additional performance loss was observed in the
postop units, which suffered from a doubling of waiting times
and an increase of 300 minutes in average transfer times from
the OR to the stepdown unit and an increase of 417 minutes in
average transfer times from the PACU to the stepdown unit.
The important role of well-functioning trauma rooms in
stabilizing critical patients was also noticeable.

For MCI-I or MCI-II, capacity-expansion strategy MO1
(canceling elective surgeries) was found from the experiments
to provide the needed OR capacity to handle the extra

critical patients for these incident scenarios. A less intrusive
version of MO1, in which surgery patients who arrived at the
hospital prior to the MCI are moved from preop to the IGWs so
that their surgeries can be delayed until after the MCI patients
are served, was tested. This adapted MO1 strategy eliminated
OR waiting times and reduced average waiting times in postop
units; the average SICU, PACU, and stepdown waiting times
dropped by 62%, 60%, and 42%, respectively.

MCI-III
Results for 100 additional MCI patient arrivals to the
hospital following the dual wave phenomenon (explained in
Methods) under routine operations and standards of care
indicate an untenable situation. The main entry point to the
hospital for all patient types, including those arriving by
ambulance, quickly became blocked, patients were diverted,
and LWBS cases rose sharply. There was also an increase in
ED waiting times. Surprisingly, however, the waiting times in
the operation theaters was not as great as they were for the
MCI-I and MCI-II scenarios, perhaps due to the dual-wave
arrival pattern in which the critical patients arrivals are more
spaced out over time.

ASC3 and MO1 capacity-expansion strategies can be
combined to increase ED capacity. The results of runs aimed
at testing this hypothesis showed an acceptable increase in
waiting times in the ED for a significant improvement or even
elimination of waiting times for the ORs, SICU, and
stepdown unit.

Stepdown LoS (for patients
transferred in from PACU)

Days Triangle distribution (0.5,1.5,1) (SCCM, 2016)31

Post stepdown routing Probability Discrete probability distribution: (Whyme et al, 2016)11;
(Armony et al, 2015)18

X=x P(X=x)
Post stepdown routing Probability IGW 0.5

Discharge 0.5
Stepdown LoS (for patients
transferred in from OR)

Days Triangle distribution (0.25,6,2) (SCCM, 2016)31

IGW LoS Days Normal distribution (4.5,2) (AHA, 2016)19; (Armony et al, 2015)18

ICU LoS Days Triangle distribution (0.25,6,2) (SCCM, 2016)31

ICU mortality rate Percentage Range 10%-29% used 20% (QuickStats, 2016)30

Abbreviations: ED, emergency department; ICU, intensive care unit; IGW, LoS, length of stay; inpatient general ward; MCI, mass casualty incident; OR, operating
room; PACU, postanesthetic care unit; preop, preoperation room; postop, postoperation room; RN, registered nurse; SICU, surgical intensive care unit; TAT,
turnaround time.

aSample of patient arrival realization.10
bInterview results with JHHS.
cAdditional ED nurse time is for patient monitoring and transfer preparation.
dICU and inpatient length of stay are shown to be significantly different between patients in various ISS levels.
eWe assumed that 12% of all ED and elective admissions are directed to the ICU. This assumption was based on large-scale studies of ICU utilization and stakeholder

feedback.
fInpatient admission rate is 57% for ESI level 2 and 31% for ESI level 3 patients. Remainder are discharged.
gNurse remains in charge until patient are released to the next unit or discharged.
hOR preparation for ED transferred patients is completed in ED and during transfer.
iNot including turnaround time.
jMortality rate can be significant, such as 4.9% for cardiovascular patients, or as low as 0.92% for orthopedic surgeries.33
kPACU-discharge patient path corresponds to same-day/outpatient surgery. Patients in PACU-stepdown and OR-stepdown paths that are released less than 24 hours

after surgery contribute to about 60% of OR patients as estimated for 2013 US community hospitals.19

TABLE 3
Continued

Factor Unit Description Source
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TABLE 4
7-Day Average Performance Improvements Under Capacity Expansion Strategies for MCI-P

Capacity
Expansion
Strategies Description Waiting Times Patient Throughput Patient Transfers

MO1 75% cancellation of
elective surgeries/
operations

No wait time in OR
90% decrease in SICU
50% decrease in stepdown

Opening up 15% IGW capacity that
can increase the floor admission

No significant
changes in total

MO2 Speed up ED processes
by 25%

No wait time in OR
95% decrease in SICU and PACU
70% decrease in stepdown
(N)a blocked IGWs

34% increase of ESI 4/5 (treated
in ED)

23% increase in ESI 2/3 (for
patients that are receiving full
treatment in ED)

27% increase in floor admission
33% increase in ESI 1 (ED-ICU)

No significant
changes in total

MO3 24 hours early
discharge of patients
in IGW

5% decrease in ED for ESI 2/3 patients
5% decrease in postop care

Opening up 30% IGW capacity that
can increase the floor admission

10% increase of patient throughput
in operation theaters

No significant
changes in total

MO4 Longer shifts for staff:
ED doctors and
stepdown unit

50% decrease for patients in no need
of surgery and ICUs

Increase of IGW wait time from 2 to
6 hours for patients with lowest priorities

Operating theaters blocked:
11 hour wait for ICU
50 hour wait for ORs
(N) blocked IGWs

30% increase of ESI 4/5
20% increase in ESI 2/3

30% decrease in
hospital transfer

MO5 50% increase in
waiting areas and
30% increase in ED
beds

75% decrease in postop units No significant change 52% decrease of
hospital transfers

(N) 88% increase of
ED main treatment
transfers and
expirations

ASC 1 Direct exit of 50% of
ESI 4/5 patients after
initial triage point

Slight decrease in waiting times in ED after
triage (average of 5 minutes)

No significant change for other
groups

10% decrease in
LWBS

ASC 2 1-Day early discharge
in stepdown units
and IGWs

47% in registration
(N) 53% increase in ED waiting room for
ESI 3, 4, & 5

Average of 40% to 50% decrease in postop units

22% increase in stepdown units
when transfer directly from OR

16% decrease in
hospital transfers

(N) 28% increase in
LWBS

ASC 3 Lower staff-to-patient
ratio in post operation
units and IGWs
Adding 25% cots and
beds in operation
theaters and IGW

No wait time in OR
50% decrease in preop
Decrease in postops:
92% for SICU
40% for Stepdown
65% for PACU

19% increase in stepdown
7% increase in SICU

No significant
changes in total

ASC 4 RNs visit low and
medium ESI patients

95 decrease in ED waiting time for ESI 2/3 patients,
97% decrease in waiting for ED physician to
perform a procedure or confirm a diagnosis

94% decrease in wait time of postop units
(N) blocked IGWs

9-fold increase of ESI 4/5 patient
throughputs

23% increase in ED throughput of
ESI 2/3 patients without imposing
waiting time on other units

49% decrease in
hospital transfers

26% decrease in ED
main treatment
transfers

Abbreviations: ED, emergency department; ESI, Emergency Severity Index; ICU, intensive care unit; IGW, inpatient general ward; LWBS, leave without being seen;
MCI, mass casualty incident; MCI-P, an increase in the total number of patients per day by up to 100 patients to replicate seasonal effects from, for example, flu
season and more severe conditions of a pandemic; OR, operating room; PACU, postanesthetic care unit; preop, preoperation room; postop, postoperation room; RN,
registered nurse; SICU, surgical intensive care unit.

a(N) indicates statistically significant negative impact.
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Timing and Dynamics
Experimental results discussed thus far assumed that the first
incident-related arrival would occur at noon. Additional runs
under both MCI-II and MCI-III scenarios were conducted
with an incident occurrence near midnight. Overall, night-
time waiting times for the ORs were comparatively low as
there are no scheduled operations, and patient processing
times were generally higher. Results in Figure 4 also indicate
that an incident arising at noon would lead to higher peak
waiting times, despite faster patient processing. Consequently,
the average mortality rate is expected to be greater (2.7 versus
0.67 patients per day) for an incident arising at noon as
opposed to midnight.

CONCLUSIONS
Several important observations were made from analysis of
the numerical run results and proposed capacity-expansion
strategies. First, response capability depends on not only the
number of critical patients but their arrival pattern and injury
types. A hospital can better serve a larger number of critical
patients if they arrive over time than it can fewer critical
patients arriving all at once. Such insights can be used in
regional response planning and can help a hospital in choosing
between potential capacity enhancement options depending
on its trauma response capability. For example, for a trauma
level I hospital it might be best to increase the number of IGW
beds to free up space in the ED and ORs, whereas for a trauma
level III hospital, enhancing the capacity of the ED directly
could better enhance response. Additionally, the modeling
approach proposed here reveals that capacity-expansion
strategies, such as increasing the number of ED beds, may
not be effective without concomitant enhancements to other
facilities or increases in indirectly related resources. Second,
the results show that capacity enhancement plans, when

combined, can have a superlinear impact if paired carefully.
In fact, only 2 to 3 enhancement types were needed to reach
acceptable service levels for suitable combinations.

A third observation, a critical point for hospital bottleneck
analysis, is that the longest wait times were not necessarily
found at bottlenecks, but often were noted at the entry to
downstream services. Analysis steps taken in this work can be
replicated to find the initial point of bottlenecks in hospital
patient flows. Fourth, the model run results indicate that
implementing strategies of alternative standards of care was
more effective in improving hospital performance than imple-
menting strategies that would modify operations. Allowing
nurses to handle low–injury class patients and early discharge
strategies were found to be the most effective of such changes in
standards. The effects of such strategies on long-term patient
wellness (ie, 30-day return risk) needs further study. Finally, and
more generally, the results show the criticality of taking a
holistic view of hospital functionality in terms of both inter-
actions along patient care paths that cross units and medical
staff and resource availability and constraints.

The accuracy with which the model replicates a specific
hospital, and thus estimates its performance, is a function of
how well it simulates actual conditions in terms of not only
demand, space, physical resources, and processes, but actions
and decisions of the hospital personnel. To calibrate the
model accordingly will require observation of the hospital and
its functionality under rare events.

This work highlights minimum required information to
monitor hospital functionality and captures the dependencies
between those elements in MCI conditions that would help
hospitals with different sizes to replicate and rebuild the
model. The proposed modeling framework could also serve
within a real-time forecasting tool for predicting next period
resource needs and capacity requirements. Predictions can be
employed to choose appropriate capacity enhancement
modifications, changing priorities, or demand management
strategies (eg, redirecting patients) and forecast their effec-
tiveness as compared to the costs and difficulties associated
with their implementation.
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FIGURE 4
Hospital Functionality Over 24 Hours of the Transient
Period (Day 1 Following the MCI III). Abbreviations: ED,
emergency department; ESI, Emergency Severity Index;
MCI, mass casualty incident.
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