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Abstract

A pseudo-Riemannian manifold is said to be timelike (spacelike) Osserman if the Jordan form of the
Jacobi operator Jf?x is independent of the particular unit timelike (spacelike) tangent vector X. The
first main result is that timelike (spacelike) Osserman manifold (M, g) of signature (2, 2) with the
diagonalizable Jacobi operator is either locally rank-one symmetric or flat. In the nondiagonalizable case
the characteristic polynomial of J£j- has to have a triple zero, which is the other main result. An important
step in the proof is based on Walker's study of pseudo-Riemannian manifolds admitting parallel totally
isotropic distributions. Also some interesting additional geometric properties of Osserman type manifolds
are established. For the nondiagonalizable JacobToperators some of the examples show a nature of the
Osserman condition for Riemannian manifolds different from that of pseudo-Riemannian manifolds.

2000 Mathematics subject classification: primary 53B30, 53C50.

1. Introduction

Let M be an n-dimensional pseudo-Riemannian manifold with the metric tensor (•, •)

of signature (p, q). Let Sp (5~) be the set of all unit spacelike (timelike) tangent

vectors X € Tp at p e M. Let Sp (e — ± ) be unit timelike (spacelike) sphere and for

X € Sp denote by Tx(S
f
p) the orthogonal complement of X e 5^. The Jacobi operator,

Rx '• F w R(Y, X)X, is a symmetric endomorphism of TPM which restricts to the

endomorphism Jfx of Tx S
( for X e Se

p. Note Jfx is not necessarily diagonalizable

unless Tx Sp has definite induced metric.

For Riemannian manifolds Osserman made the following conjecture in [22].
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CONJECTURE (Osserman). If the eigenvalues of the Jacobi operator Xx are inde-
pendent of the choice of unit vectors X e TPM and of the choice p € M, then either
M is locally a rank-one symmetric space or M is flat.

The Jacobi operator of pseudo-Riemannian manifolds may not be diagonalizable. If
the Jacobi operator is not diagonalizable, then M is not necessarily a locally rank-one
symmetric space (it may be a rank-two symmetric space—see Example 1) or even a
locally symmetric space (but may be simple harmonic—Example 3). These examples
motivated the authors to introduce the notion of timelike and spacelike Osserman
manifolds and to study their characterizations and possible complete classification.
Also the examples show that Osserman conjecture in this form does not hold. In
some of the examples the characteristic polynomial is constant, but the corresponding
minimal polynomial changes from point to point, because of the nature of pseudo-
Riemannian manifolds.

REMARK. Note that if Tx S
f
p has definite metric then since Xx is diagonalizable, the

Osserman condition at p is then equivalent to that the Jordan form of J^f is independent
of X. The following definition is a natural generalization of the Osserman condition
in the pseudo-Riemannian case.

DEFINITION. (1) M is timelike {spacelike) Osserman at p if the Jordan form of
Xx is independent of X e 5+ (X e S~).
(2) M is pointwise timelike (spacelike) Osserman if M is timelike (spacelike) Os-

serman at each p € M.
(3) M is timelike (spacelike) Osserman (globally Osserman) if the Jordan form of

Xx is independent of p e M.

REMARK. If M is a 4-dimensional manifold of signature (2, 2), the Osserman
condition is equivalent to the constancy of the minimal polynomial of the Jacobi
operator Xx-

Chi [10] has proved the Osserman conjecture for n ^ 4k, k > 1. He has also
obtained some related results [11,12]. The pointwise Osserman conjecture was studied
by Gilkey [17] and its relations with global Osserman condition by Gilkey, Swann
and Vanhecke [18]. Osserman Lorentzian manifolds were studied by Garcfa-Rio,
Kupeli and Vasquez-Abal [15] and the first two authors and Gilkey in [5]. Timelike
Osserman Lorentzian manifolds of dimension n > 2 and spacelike Osserman of
dimension m < 4 are of constant sectional curvature, which is shown in [15]; by using
a different method it was proved true for arbitrary m, n > 2 in [5].

In this paper we study spacelike (timelike) Osserman manifolds and characterize
them. More precisely, we prove the following theorem.
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THEOREM 1.1 (Main Theorem). Let M be a 4-dimensional pseudo-Riemannian
manifold of signature (2, 2). Then the following conditions are equivalent:

(a) M is timelike Osserman.
(b) M is spacelike Osserman.
(c) The universal covering space M of M is one of the following manifolds'.

(1) M is a manifold of constant sectional curvature.
(2) M is a Kahler manifold of constant holomorphic sectional curvature.
(3) M is a para-Kdhler manifold of constant para-holomorphic sectional cur-

vature.
(4) The Jacobi operator ofM is nondiagonalizable, and its characteristic poly-

nomial has a triple zero a and its curvature is given by (8.1) and (8.2).

We remark that pseudo-Riemannian manifolds (A/, g) satisfying the Osserman
condition are not completely classified. More details of existing classifications of
Kahler and para-Kahler pseudo-Riemannian space forms, based on the established
classification of the universal covering space M, are given in Section 2.

Geometry of timelike and spacelike Osserman manifolds with the nondiagonaliz-
able Jacobi operator has been studied in this paper as well as in [7, 6]. The manifolds
have to have the characteristic polynomial with a triple zero a. So far the existence of
the manifolds when a ^ 0 has been an open problem.

For Riemannian manifolds a nice open problem whether Osserman manifolds are
necessarily locally homogeneous was stated by Vanhecke (for more details see [27]).
In the pseudo Riemannian setting this is not true for timelike (spacelike) Osserman
manifolds (see [7]).

Let us mention that a timelike (spacelike) Osserman manifold (M, g) is an Einstein
self-dual or anti-self-dual manifold (see [2]). Moreover, it admits a foliation by two-
dimensional totally geodesic isotropic submanifolds. Related problems were studied
from another point of view by Akivis and Konnov in [1].

Our paper is organized as follows. In Section 2 we give some basic notions
and notations that we use throughout the paper. We also recall some basic facts
related to certain known classification results for Kahler and para-Kahler pseudo-
Riemannian space forms. In Section 3 we study the traces of Jfx and J^2 of the
Jacobi operators to establish the relations between the components of the curvature
tensor in the case of 4-dimensional manifolds of signature (2, 2). We prove that
timelike (spacelike) Osserman manifolds are Einsteinian too. Section 4 is devoted to
the linear algebra of symmetric operators in pseudounitary spaces, and especially to
symmetric operators in dimension three. In Section 5 we determine the components
of the curvature tensor, assuming timelike Osserman condition is fulfilled. It is shown
that all timelike (spacelike) Osserman manifolds are curvature homogeneous. The
proof of the Main Theorem is a consequence of the results in Section 6-Section 8. In

https://doi.org/10.1017/S1446788700003001 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003001


370 Novica Blazic, Neda Bokan and Zoran Rakic [4]

Section 6 we investigate the case when the Jacobi operator is diagonalizable. We show
that these manifolds are locally rank-one symmetric or flat spaces and we may say
that the Osserman conjecture holds. We also prove the existence and the integrability
of an almost complex and a para-complex structure in this case. In Section 7 we
show that there does not exist a manifold whose characteristic polynomial of the
Jacobi operator has a complex root. In Section 8 we investigate the case when the
characteristic polynomial of the nondiagonalizable Jacobi operator has a multiple
root. It is shown that the characteristic polynomial is necessarily with a triple root a.
The most interesting part of the proof is the nonexistence of timelike Osserman
manifolds in that class whose characteristic polynomials have roots a, a, 4a ^ 0. It
is based on Walker's local classification of the manifolds which admit a parallel null
distribution and some unexpected cancellations which took place along the necessary
computations. We also describe the curvature tensors of the manifold and we find
that they are, in both cases, very similar. We also consider the examples of timelike
Osserman manifolds for a = 0 to show that these manifolds have very interesting
and rich geometry. In Section 9, we prove, using some results of Wu [30], the
existence of a timelike Osserman locally rank-two symmetric space endowed with an
integrable para-quaternionic structure with holonomy algebra given by (9.3) and (9.4).
Nonsymmetric Ricci flat Osserman manifolds that are not even locally homogeneous
are also discussed.

2. Preliminaries

Let M be a pseudo-Riemannian manifold of dimension n, p -f q — n with the
metric (•, •) of signature (p, q). For convenience we also use the notation g for the
metric. Let 6, = —1 for / = 1, . . . , p and et = +1 for i = p + 1 , . . . , n. We denote
by e\,... , en an orthonormal basis of M,

(2.1) {ei,ej) = €i8ij.

Let TM be the tangent bundle of M and X, Y, Z arbitrary vector fields. If V is
the Levi-Civita connection, then R(X, Y) : TpM - • Tp M is the pseudo-Riemannian
curvature operator given by

(2.2) R(X, Y)Z = VXVKZ - VYVXZ - V[X,nZ.

Let co, J2 be the connection 1-forms and the curvature 2-forms respectively. Then
we have

(2.3) W, = ^2 co]es, i, 5 = 1, . . . , n,

(2.4) n; =
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To explain the geometry of spacelike and timelike Osserman manifolds of signature
(2,2) we recall here some basic facts related to certain known classification results for
the universal coverings of Kahler and para-Kahler pseudo-Riemannian space forms.
The curvature tensor of pseudo-Riemannian manifold (M", g) of signature (s, n — s)
of constant sectional curvature c is

(2.5) R(u, v)w = c[g(v, w)u — g(u, w)v],

for u, v, w e TPM. Two such complete, connected, simply connected, manifolds of
the same sectional curvature c are isometric. Particularly, it is interesting for us that
there exists a classification of space forms M\ for c ^ 0 (see [29]). Their universal
pseudo-Riemannian coverings S\ and H% are spheres in the pseudo-Euclidean spaces
R5

2 and R* respectively [29].
Analogous to the projective space GP", the indefinite projective space of signature

(2s, 2n — 2s) can be constructed (for details see for example [4]). It is a Kahler space
form of the constant sectional curvature c, c ^ 0, and its curvature tensor is

(2.6) R(u, v)w = (c/4){g(v, w)u - g(u, w)v + g(Jv, w)Ju - g(Ju, w)Jv

— 2g(Ju, v)Jw],

for all u, v, w e TPM. We also have that every connected, simply connected, complete
indefinite Kahler manifold of complex dimension n, of signature (2s, 2n — 2s) and
of constant holomorphic sectional curvature c, c ^ 0, is holomorphically isometric to
€Ws(c) (see [4, Theorem 3.4]). Therefore only CP](c) is interesting for us.

The tangent bundle TS" of the n-sphere can be equipped with a pseudo-Riemannian
metric g of signature (n, n) and a para-complex structure such that P"(B) = (TSn, g,
F) is of constant para-holomorphic sectional curvature c, c ^ 0. For n > 1, Pn(B) is
complete, connected and simply connected (see [14]). Two such complete, connected,
simply connected manifolds of the same para-holomorphic sectional curvature c are
F-isometric. Particularly, for n = 2, a complete, connected, para-Kahler manifold
of constant para-holomorphic sectional curvature c, c / 0, is F-holomorphically
isometric to the space P2(B) ^ TS2 or to the space P2(B)/12 ^ TRIP2 (see [14,
Corollary 2]). Their curvature tensor is

(2.7) R(x, y)z = (c/A){g(v, w)u - g(u, w)v - g(Jv, w)Ju

+ g(Ju, w)Jv + 2g(Ju, v)Jw}.

It is interesting to notice that indefinite Kahler manifolds with vanishing holomor-
phic sectional curvature and para-Kahler manifolds with vanishing para-holomorphic
sectional curvature are also flat. But the complete classification of flat pseudo-
Riemannian manifolds is not known (see [29, Section 37, page 334]).
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3. Characteristic polynomial and its coefficients

In this section we study the traces of Wx and J^2 for an arbitrary pseudo-
Riemannian manifold with a metric of signature (p, q). We prove that a timelike
Osserman manifold with a metric of arbitrary signature (p, q) is an Einstein space.
Then we use it to establish the relations between the components of the curvature
tensor in the case of 4-dimensional manifold of signature (2,2).

Let i < j be two fixed indices and S e {1, — 1}. We now choose orthogonal vectors
X and Y such that

(3.1) X = ae, + fa, \X\2 = a2e, + 0% = S,

(3.2) Y = fae, - ae,e,, | Y\2 = e,e, 5.

In our study of timelike Osserman spaces we assume S — — 1. For S = +1, we can
obtain similar results for spacelike Osserman spaces. Let us now make a hyperbolic
rotation in the i-th and y'-th coordinate to create a new orthonormal frame {£/}, or
more precisely,

(3.3) El=el,...,Ei= a e , + fiej;,... , Es — fad - ae^,... , En = en.

Because of (3.1) we have

(3.4) tr J(TX = /32(pjj - €i€j pu) + 2appj, - e,p,,,

where, pw = p(ek, e,) = £mem(/?(em, ek)e,, em) is the corresponding Ricci curvature.

PROPOSITION 3.1. IfM is a timelike Osserman manifold with a metric of arbitrary
signature (p,q), then M is an Einstein space. Specially, if M is a 4-dimensional
timelike Osserman manifold with the metric of signature (2, 2), then the orthogonal
sectional curvatures are the same.

PROOF. Since tr Jffx should be independent on ft the relation (3.4) yields that M
satisfies the Einsteinian condition p(X, Y) = c{X, Y) when X or Y is a timelike
vector. Since M satisfies the Einsteinian condition for all timelike vectors, then from
[13, Theorem 3.1] it follows that M is Einsteinian. The second statement is direct
consequence of the Einsteinian condition for timelike vectors. D

We now recall the well-known formula

(3.5) trX2 - -2a2 + (tr J ^ ) 2 ,

where a2 is the coefficient of A""2 of the characteristic polynomial. Using the relation
(3.5) and the Einsteinian condition one can find tr J^.2. One can see that tr J^2 is
a polynomial in p14, p12, a/}3 and ap\ Since tr J^2 has to be independent of the unit
vector X, it yields that the coefficients with f}4, f}2, aft3 are vanishing.
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4. Symmetric operators in 3-dimensional pseudo-Riemannian spaces

Let Q be a 3-dimensional pseudo-Riemannian space, that is, K3 endowed with a
bilinear, symmetric, nondegenerate form of signature (1,2). There exists in n a main
(pseudo-orthogonal) basis et, e2, e-*, such that we have (x,x) — —£,2 + t-% + £3

2 for
X =

The matrix of an arbitrary symmetric operator
the following one

with respect to a main basis is

(4.1)
(X\\ —#12 —#13

^12 #22 «23

#13 #23 ^33

We use the theory of the reduction of symmetric operators in the pseudo-unitary space
(see [20]), to see that the following theorem holds.

THEOREM 4.1. Let Jtf be a symmetric operator of Q.. Then there exists a main
basis in fi such that the matrix of Jf is consequently one of the following

(4.2)

(4.3)

(4.4)

(4.5)

or
0

_0

"*(« " 1/2)
-e(l/2)

0

0

P
•0

e(

0
0

Y.

«(l/2)
a + 1/2)

0

0"
0

a
0

a
P

0 V2/2"
a V2/2

a

p or
a 0
0 YA

for arbitrary a, p, y € R, depending on the minimal polynomial

PROOF. The theorem follows from the analysis of all the possibilities for the minimal
polynomial /x*(A.) and from [20]. The following four cases are possible.

(i 1) All ireducible factors of /A* (A.) are linear in R[X] and the matrix of W in some
main basis is given by (4.2).

(i2) If there exists an ireducible factor of /i*(A.) of degree 2, then there exists a
main basis ex, e2, h such that the matrix of Jff is of the form (4.3).
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(13) If fit(k) = (A. — a)3, then there exists a main basis eiy e2, £3 such that the
matrix of the operator J ^ is given by (4.4).

(14) If (j.k(X) has a complex root z = a + ifi, fi ^ 0, then there exists a basis eu

e2, e3 such that the matrix of <%f is of the form (4.5). •

Theorem 4.1 enables us to introduce the type of a 4-dimensional timelike Osserman
manifold with signature (2, 2) as follows.

DEFINITION 4.2. Let M be a 4-dimensional timelike (spacelike) Osserman manifold
of signature (2,2). We say that M is of type

(la) if J^x is diagonalizable;
(Ib) if the characteristic polynomial of the Jacobi operator Jffx has a complex root;
(II) if the minimal polynomial of the Jacobi operator Jffx has a double root a;

(III) if the minimal polynomial of the Jacobi operator J ^ has a triple root or.

5. The components of the curvature tensor

In this section, as the first step, we find^the components of the curvature tensor
in a main basis at a fixed point, studying all the possibilities for the matrix of the
Jacobi operator that appear in Theorem 4.1. Then we can extend it to a smooth local
moving frame in a neighbourhood U of an arbitrary point. The Jacobi operator is of
the same type along U and the moving frame forms a main basis at every point of U.
To establish the existence of such a moving frame we will choose a neighbourhood U
to be contractable. Then the existence follows from the fact that a vector bundle over
a contractable base has to be trivial.

Of course, we assume from now on that M is a 4-dimensional timelike Osserman
manifold with the metric (•, •) of signature (2, 2). All the components of curvature
tensor in a main basis for a timelike Osserman manifold are constant, see Theorem 5.1.

In this section we find the full curvature tensor of the endomorphism J(fx for all
types of manifolds from Definition 4.2. More precisely, we have

THEOREM 5.1. Let M be a 4-dimensional timelike Osserman manifold with the
metric of signature (2, 2).

(a) If M is of type (la), then the only non-vanishing components of the curvature
tensor {with respect to main basis from Theorem 4.1) are:

^3443 = ?̂2112 = #> ^2332 — ^4114 = ~ c > -̂ 4224 = ^3113 = ~b,

Rl2M = x = e(b + c - 2a)/3, /?1423 = v = e(b + a - 2c)/3, where e = ± 1 .

https://doi.org/10.1017/S1446788700003001 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003001


[9] Osserman pseudo-Riemannian manifolds of signature (2, 2) 375

(b) If M is of type (Ib) or (II), then there exists a main basis such that the only
non-vanishing components of the curvature tensor are:

#1221 = #4334 = a, R2U3 = #2443 = ~Y< #1234 = X = {-2a + b + c ) / 3 ,

#1331 = #4224 = —b, #1224 = #1334 = Y, #1423 = y = (a + b - 2 c ) / 3 ,

#1441 = #3223 = —c, #B42 =•-x - y, ye {-y, y], £ = y/y,

where x — y = c — a,2x+y = b — a, x +2y = b — c, e = I.
(c) If M is of type (III), then the only non-vanishing components of the curvature

tensor (with respect to main basis from Theorem 4.1) are:

#1221 = #4334 = ~#1331 = ~#4224 = —#1441 = —#3223 = <*>

#2114 = #2334 = —#3114 = #3224 = k, #1223 = #1443 = #1332 = ~#1442 = &>

where k € [k, —k], e = k/k.

In all cases the main basis with s = 1 exists.

PROOF. The proof follows by long and straightforward calculations using the Os-
serman condition, which implies the constancy of tr X\, trjff^ and tr Jf£ o n t n e u m t

vector X. •> D

6. Geometry of manifolds when Xx is diagonalizable

This section is devoted to the study of Osserman manifolds with the diagonalizable
Jacobi operator. In the first step we use the formula for the covariant differentiation
of the curvature tensor R as well as the second Bianchi identity and the properties of
the Ricci tensor p to prove that it is a locally symmetric manifold. As a consequence,
in the second step we consider in more details the existence of certain complex and
para-complex structures. Moreover, in this section it is confirmed that the modified
Osserman conjecture for pseudo-Riemannian manifolds holds under the additional
assumption that the Jacobi operator is diagonalizable.

Throughout this section we use the basis et, e2, e3, e4 of the tangent space TPM
given by (3.1M3.3) and its dual basis denoted by 6\ 62, 6\ 04. We denote by ^, fij
the connection 1-forms and the curvature 2-forms respectively.

6.1. The components of the covariant derivative of the curvature tensor when
J(fx is diagonalizable. The main purpose of this subsection is to prove that VR = 0

is diagonalizable.
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We combine (2.3) with the components of the curvature tensor for type (la) (Theo-
rem 5.1 (a)) to compute all curvature 2-forms ty

Q2
3 = n3 = ye

l A e4 + c92 A e\ n* = n\ = ye2 A e3 + c9l A e\

(6.1) Ql = Ql = (x+y)elA63 + bd2A04, Ql
3 = n\ = (x+y)92

 A94+91 A93,

The following proposition deals with the symmetry properties of the connection
1-forms which allow us to prove V/? = 0 and the integrability of an almost complex
and a para-complex structure.

PROPOSITION 6.1. The eigenvalues a, b, c from Theorem 5.1 (a) cannot be all dif-
ferent.

PROOF. We combine (6.1) and the components of the curvature tensor with the
structural equations and their differentials,

(6.2) dtii = 5^ (n j A co] - aSs A J2J),
s

for ^2, fij and £2\ to obtain

(a - c)B A (01 A 64 - 92
 A 6>3) + (b- a)C A (9l Ad* + 92 A 94) = 0,

(6.3) (b - c)A A (92 A 93 - 9X A 94) + (b - a)C A (<?' A 92 - <93 A 94) = 0,

(b - c)A A (01 A 03 + 92
 A 94) + {c- a)B A (9l

 A92 + 93 A 94) = 0,

where

A = co2 - co4 = Ax9
l + A29

2 + A39
3 + A49

4,

(6.4) B=to\ + a>\ = Brf1 + B29
2 + B39

3 + B49
4,

C = a)\-co\ = Q9l + C29
2 + Q93 + CA94.

Let us assume that a, b, c are different. One can see that the equations (6.3) form a
linear system of equations. Solving this system we get

Bi — sA4, B2 = —sA3, Bi = —sA2, B4 — sA\,

(6.5) Q-tA3, C2 = tA4, C3 = rAi, C4 = tA2,

b — c b — c
for s = 5*0, / = ^ 0.

a — c a — b

Now, we introduce 1-forms <p\<p2,<p3 and <p4 as follows:

(6.6) A = <p2, B = s<p3, C = t<p4,

(6.7) <pl =A29
l-Atf2-A49

3+ A39
4.
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Using the structural equations and the second Bianchi identity, it follows from (6.6)
that

d<p2 = n2-n4- st<p3 A <p4, d<p3 = Q* + ft4. - t<p2 A <p\

dip4 = Q.\-Sl\- stp3 A <p2.

First notice that <pl, cp2, <p3 and <p4 form an orthogonal basis of T*M. Now we compute
the components of the covariant derivatives of the forms A, B and C, and then we use
(6.6)-(6.8) to find the divergence of <pl

diva) = — A21 + Ai-2 — A4.3 + A3 4, div tp =2(x — a) + stTl,
(6.9) ,. , „ ' ' „ ' j . i

= 2{b + x + v) + /n, f divcp = 2(y — c) + sn,
where we put n = —A2 — A\ + A\ + A\ = \\A\\2. From the last three equalities of
(6.9) we get:

(6.10) 3 d i V = ^- -[(b - cf + {a- cf + (a- b)2].
{a - c)(a - b)

Now we have two possibilities either Fl ^ 0 or n = 0. If FT ^ 0 we will express
div<pl in another way. Let r}i,r}2,r)i and rj4 denote the corresponding dual basis of <pl,
<p2, cp3 and <p4 in TPM. T h e n

(6.11) ? ] t
where Aj are the connection forms with respect to the base {??,}. Notice that

<pl A <p2 - <p3 A <p4 = - n ( 6 > ' A e2 + e3 A e 4 ) ,

(6 .12) <pl A <p3 - <p2 A v?4 = n(6>' A 6>3 + 62 A 6»4),

A e4 - e2 A 6>3).

Consequently, the differentials J^2, dcp3 and rf^)4 can be expressed in terms of <p',
since, d<p' = — A', {t)) )(p> A <pl +..., where . . . denotes forms not containing cp' Acp1.
We finally find

(6.13) A?0fc) = ^ , A?(*) = * ^ ± Z . A ; ( , 4 ) = 2LL£.

By direct computations, from (6.11) and (6.13), we see that div^1 = 0. This is a
contradiction with (6.10) and n ^ 0.

The second case, n = 0, leads directly to the contradiction with the initial assump-
tions. Now we apply the relations (6.9) to obtain

a-x = (b + x+ y)/(-s) = (c - y)/t,

and consequently a = b = c = 0. This is a contradiction with the assumption that
a, b and c are all different. •
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COROLLARY 6.2.

(a) If a s= b ^ c, then a>\ + co\ = 0 and to\ — co* = 0.
(b) Ifa = c^ b, then CO\-CJ\-0 and (a\-a>\ = 0.
(c) Ifb = c£ a, then co\-co\ = 0 and <*>\ + <o\ = 0.

PROOF, (a) follows directly from the first two equations of (6.3). (b) and (c) can be
obtained in a similar way. •

REMARK. Let us mention, that for example if a = b, then c = 4b = 4a, and
similarly, if b = c, then a = 4b = 4c.

LEMMA 6.3. M is a locally symmetric space, that is, VR = 0.

PROOF. We combine the components of curvature tensor and the symmetries of the
connection one-forms and the curvature two-forms to see that

(6.14) Rukl.h = 0 if /, j,k,l are different,

(6.15) R0Ji-j,=0,

(6.16) J2 Ri'V••"e" = - J 2 R«Vrf ~ E RJ'"rf ~ yHw* - y > i < -
h s ^- s

One can use (6.15) and the Bianchi identity as well as Theorem 5.1 (a) to check

= (c - a)(co\ + a>\),(6.17)

Let a = b ^ c. Then Corollary 6.2 (a) and the relations (6.17) imply
#2i3i;/, = #2132;* = #i24i;* = #3i23:* = #i34i;* = 0. These relations together with
(6.7) and (6.9) give VR = 0.

Similarly we can prove that V/? = 0 if a = c ^ b and b = c ^ a. If a = b = c,
then (6.16) imply R^ij, = #2i3i;* = #2132;* = #1241;* = #3123;* = #B4i;* = 0. These
relations together with (6.6) imply VR = 0. •

6.2. An existence and the integrability of an almost complex and a para-complex
structure. In this subsection we construct an almost complex structure and a para-
complex structure on a contractable neighbourhood Up of arbitrary point p of a
manifold M satisfying respectively the condition a = b ^ c or a = c ^ b and
b = c y£ a. Since a = b ^ c and a = c ^ b are equivalent conditions we study only
the first one. We prove also that these structures are integrable.
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Case I. We consider a = b ̂  c. We notice that the line bundle over the timelike
unit sphere S~ Up is trivial. We will use this fact for the line bundle obtained by
the eigenspaces of Jt^ at the corresponding points. Using the fixed global section
of this bundle for arbitrary £, we define F(Ei) = E4 as the value of the section at
the corresponding point. We complete now the definition of the endomorphism F by
using a fixed basis £, , £2, £3, E4 such that

(6.18) F(£,) = £4, F(E2) = -E3, F(E4) = £ „ F(E3) = -E2.

One can check that F2 = id, (F-, F-) = — (•, •>, and consequently F is a para-complex
structure on M. For more details about a para-complex structure see for example [14].
We note that the basis Elt E2, E3, E4 depends on the choice of the vector £1. So it is
interesting that endomorphism F does not depend on the choice of E\.

LEMMA 6.4. If E\, E2, E3, E4 and Eu E2, E3, E4 are bases ofTpM such that their
curvature tensors are both given as in Theorem 5.1 (a) for a — b ̂  c, then they define
the same para-complex structure.

PROOF. Let F be given by (6.18) and let F be the corresponding endomorphism
with respect to the base E\, E2, £3, E4. It is enough to check that

(6.19) X^FEt) = aFEh ^(FE,) = aFE4,

for i = 2, 3. If we put Ej = a, Ej, using the known components of the curvature
tensor we directly verify formula (6.19). •

Case II. If b = c ^ a, we define similarly a field of endomorphisms J on TUP

such that

(6.20) J(El) = E2l J{E2) = -EU J(E3) = -E4, J(E4) = £3.

One can check that J satisfies, J2 = —id, {J-, J-) = (•, •), and consequently J is
an almost complex structure. We also have that the almost complex structure J is
independent of the choice of Et (similar to Lemma 6.4).

LEMMA 6.5. The almost complex structure J and the para-complex structure F are
integrable.

PROOF. TO prove the integrability of the para-complex structure F we need to prove
that VF = 0. We have, for example,

(6.21) VF(£,) - F(V£.) = V£4 - F(o;j£,) = a;;£, - a>\(FEd

= {o)\ - col)Et + (col + ^ i ) £ 2 + (w? + col)E3 = 0.
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Similarly, one can check

(6.22) VF(£,) - F(V£,) = 0, i = 2, 3,4.

We use now (6.21) to prove that VF = 0. The integrability of the almost complex
structure J in Case II can be proved similarly. •

Note that if the manifold M is orientable we can define respectively para-Kahler
and Kahler structures F and J, globally on M.

REMARK. The results of this section show that Osserman conjecture holds when
the Jacobi operator is diagonalizable. Under the given assumption that J%x is diag-
onalizable in this section it was shown that (Af, g) is in one of the described in the
Main Theorem (c), (l)-(3). If a = b = c, then M has constant sectional curvature.

7. The case when J(fx has a complex eigenvalue

The main purpose of this section is to prove that there does not exist a timelike or
spacelike Osserman manifold of type (Ib), that is, the characteristic polynomial of Jfx

has no complex zero. Because of Theorem 5.1 (b) it is enough to consider formulae
with e = 1. First we compute the curvature 2-forms ty using (2.4) and Theorem 5.1
(b)

Cll
2 = -Q] = -aGx A 92 + y9l A93 + y92 A 6>4 +x63 A G4,

ft' = Q\ = ye
l
 A62 + b6l A 0 3 + (JC + y)92 A64 + y03

 A 64,

$2j = fif = c0' A64 + y92 Ad\

S22
3 = tt3

2 = ydl A64 + C92 A0\

Q,24 = Q4 = Yex A92 + (x+y)6l A63 + bG2 A 94 + y9* A 94,

tf4 = -£l4 = -x6l A 92 - y9l
 A 63 - y92

 A94 + a93 A 94.

Let us mention that the curvature 2-forms f̂  for J^X with a double real zero of its
minimal polynomial are also given by these formulae.

We use the same notations A, B, C for the corresponding 1-forms as in Subsec-
tion 6.1. Then we use the analogous procedure for curvature 2-forms Q\, Q, Ql

4 as
in Subsection 6.1. We introduce now 1-forms A, C, B as follows

A = (c - a)B + yA = 2y(-C39
l - C49

2 - C,03 - C29
4) = 2y<p3,

(7.2) C=Ci9l + C29
2 + Q93 + C49

4 = (p2,

B = yB + {a-c)A= 2y(C29
l - Q62 - C49

3 + C39
4) = 2y<p4.
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Using the second Bianchi identity one can check

dC = (l/p)A AB + n^-Sll,

(7.3) dA = sC A B + tC A A + (c - a)(Si] + S24
2) + y(Q] - £2*),

dB = sCAA-tCAB + y(Sl] + S24
2) + (a - ?

where

(7.4)^0, P=y> + (a-c)^0, s = P - 2 ^ -
P P

Let us introduce the following notations

(7.5) n - -C\ - C\ + C\ + C4
2,

(7.6) Z = -C, ; , - C2;2 + C3;3 + C4;4,

(7.7) P = -C3a + C 4 ; i - C M + C23.

LEMMA 7.1. (a) E = 0.

(b) n w a nonzero constant.
(c) a, c, y satisfy the following equation

1 8 / - 3(c - a)(7c + 2a)y2 + (c - a)(c - 4a) = 0.

PROOF. If we express the differentials dC, dA and dB using the covariant differ-
entiation we get

(7.8) p = -(4y2/p)U + 2(c-y),

(7.9) p = -sTl + a-2c + x,

(7.10) p = -sYl+a-2c-x -y,

(7.11) T=

(7.12) E =

(7.13) 0 =

(7.14) O=

where ̂  = (c - a)/3, y = 2(a - c)/3.
(a) If we add (7.11) to (7.12), we get E = 0.
(b) Now, if we assume n = 0 then (7.8) gives p = 2(c-y) = 2/3(5c-2a). From

this relation and (7.9) we get c = 2/5a. Now, if we use (7.11) and E = 0, n = 0 we
find 2y = (c — a)/y(a — x), and therefore 2y2 — —18/25a2. This is a contradiction
with y £ 0. We use (7.9) and (7.10) to get

(7.15) n = ? . ( 5 c - 2 a ) .
P + 2y2

(c) One can combine (7.8) and (7.11) to finish the proof. •
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From now on, we assume n ^ 0. We now introduce a new orthogonal basis
[<p', i = 1, 2, 3, 4} of T*M, where <p2, <p3, <p4 are given by (7.2). Then we have

LEMMA 7.2.

(a) <pl = Q6l - C302 - C29
3 + CX6\

(b) div^1 = div<p2 = di\(p3 = div^>4 = 0.

PROOF, (a) It follows directly from the orthogonality conditions, (b) By a straight-
forward computation we find

<px A <p2 - <p3 A <p4 = n(6> ' A 04 - 02 A 0 3 ) ,

(7.16) v1 A <p3 - <p2 A <p4 = n(-el A e2 - e1 A 6>4),

(pl
 A (p4 - cp2

 A cp3 = n ( - 0 ' A e3 - e2
 A e4),

as well as

(7.17) -p = div^1 = A4(7j4) + Aj(ij3) +

where {;;,•} is the dual basis of [<p'}, and Aj are the corresponding connections 1-forms.
Furthermore, we combine (7.8)-(7.10) to find that 3div^' = 2Tl/p(4y2 - p). The
structural equations d<pk = — J2j A* A ^ ' , for t = 2, 3,4, imply

(7.18)

Consequently, the right side of (7.17) vanishes and hence we have

(7.19) divip1 = 0, that is, 3 / 2 = (a - c)2.

We see that c ^ a, because in the contrary, Lemma 7.1 (c) would imply y = 0. If we
now use (7.19) and (7.11) we find c = —2a. Therefore, one can use (7.4) and (7.15)
to get

(7.20) p = 12a2, s = -1 /2 , t = -y/(2a), x = -a, y = 2a and n = -8a.

To find the divergence of the forms <p2, <p3 and <p4, it suffices to calculate d<pl.
Combining (7.13) and (7.14) with the covariant differentiation, we get

(7.2i) V = (-Cw-CwHe1 AO2-e3Ae4)+(-c4-3-c2;l)(9
lAO3-e2A94)

+ ( - C M + c1;1)(0' A e4 + e2 A e3).

We then use (7.2), (7.19), (7.21), (7.13) and (7.14), to obtain that the divergence of
the forms <p\ and <p' in general, vanishes. •
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The next step is the calculations of all covariant derivatives, C,y. More precisely,
we have the following result.

LEMMA 7.3. The covariant derivatives C,y are given by the following formulae:

C,;, = C4;4 = - C . Q / 2 + (y/4a)(C2
2 + C2),

C2;2 = C3;3 = C . C / 2 + (y/4a)(C2 + C4
2),

- C 3 ; 4 = C,a = - C C 3 / 4 - 3C2C4/4 - (y/4a)(C,C2 - C3C4),

- C 4 ; 3 = C2;1 = 3C,C3/4 + C2C4/4 - (y/4a)(C,C2 - QC4),

- C2C4),
(7 22) Q ; 3 CrA

C3;I = -C 4 ; 2 = 3C,C2/4 + C3C4/4 - (y/4a)(C,C3 - C2C4),

C2;3 = - 2 a + (2C2 + C2
2 + C\ - 2C2)/4 + (y/2a)C,C4,

C3;2 = 2a + ( - 2 C 2 + Cf + C\ + 2C4
2)/4 + (y/2a)C,C4,

C1;4 = - 4 a + (2C? + C2
2 - C2 - 4C2)/4 + (}//2a)C2C3,

C4:1 = 4a + ( -4C 2 - C2 + C2 + 2C4
2)/4 + (y/2a)C2C3.

PROOF. First we have

(7.23) div^3 = A^(r,4) + A2(/j2)(

d i v / = A3(T?3) + A2(r?2) + Ajft , ) .

It is easy to see that the sum of the first two members of the each equation from
(7.23) vanishes, and then the third member also vanishes. Let

(7.24) X = C4;2 + C3;i, n = C4;3 + C2;1, S = Ci:, - C4;4.

Hence, we combine (7.21), (7.23) with Lemma 7.2 (b) to find the following homoge-
neous system

2(C,C3 + C2Q)k - 2(C,C2 + C3Q)n - (Cf - C\ + C\ - C2
4)S = 0,

(7.25) (Cf + C2 + C\ + Cl)k - 2(C, Q + C2C3)/A - 2(C,C3 - C2C4)5 = 0,

2(C2C3 - QC4)A + (C2 - C2 - C\ + C2
4)n - 2(C,C2 - QC<)8 = 0.

But this homogeneous system has the determinant equal to n 3 5̂  0, and consequently
A. = fi = S = 0. Hence, it follows

Ci;l = Q;4i C3;i = — C 4 ; 2 , C4 ; 3 = —C 2 ; i ,
(7.26)

C2;2 = C3;3, Ci;3 = —C2;4, C3;4 = —Ci;2.

Finally, using the relations (7.26), (7.20) and the covariant differentiation of the
forms C, A and B and the relations (7.3) we get the relations (7.22). •
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Using results of the previous lemmas we can prove the main result in this section.

THEOREM 7.4. There does not exist a timelike or spacelike Osserman manifold of
type (Ib), that is, the characteristic polynomial of the Jacobi operator cannot have a
complex root.

PROOF. We use the relations (7.22) to find

dtp1 = 0, d(p2 = (vl A <p2 + <p3 A <p4)/2,

(7.27) d<p3 = -(<pl A <p3 + <p2 A <p*)/4 - {y/4a){<pi A <p* + <p2 A <p3),

d<p* = (y/4a)(<pl A cp3 + (p2 A <p4) - (<pl A <p4 + <p2 A cp3)/4,

and consequently we have

d((pl A <p4 - <p2 A «p3) = 0, d($l A 6>3 + 02 A 04) = 0,

(7.28) <%' A<p2-<p3 A<p4) =0, d(0l A04-02
 A6>3) = 0,

A<p3 -<p2A <p4) = 0, rf(^' A 02 + 6>3 A 64) = 0.

Finally, we study the Christoffel symbol9~Tjt in the basis [0'} to finish the proof.
Because c = —2a, we have

29)
2 ( C ^ ' - QO2 - C46

3 + C36
4) =

First we use the symmetry properties of the connection 1-forms cuj and (7.28) to have

(7 30) (r?1 " r33) + (r'3 ~ r » } = °' ( " r » " r^} + (r'4 ~ ̂  = °'

(-rI'3 + r i ) + (r4
2

I-r?4) = o, (-r2
2
4 - r^) + (rj2 - r̂ 3) = 0.

We combine the relations wj = J^k r ^ * w i t h (7-29) to obtain

rf, + T4
2 = (y/2a)C3 + d/2, T4

2, - r4
4
3 = (y/2a)C3 - C2/2,

(7 31) r ' ' " r ' 3 = (y/2a)C2 ~ Q/2' ^l + r4
42 = (y/2a)C2 + Q/2,

r3, + r2
4
2 = (y/2a)C4 - C,/2, r3

2, - T3
4
3 = -(y/2a)C4 - C,/2,

r2, - r4
3 = -(K/2a)c, - C4/2, r3, + r4

2 = (y/2a)Ci - c4/2.

One can use the relations (7.31) and symmetries of o>j to get that the right sides of
the equations in the system (7.30) are equal — C4, — C3, — C2 and —Q respectively.
It means that C\ = Cj = C3 = C4 = 0, and consequently FI = 0, which is a
contradiction. •
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8. The case when Jtfx is not diagonalizable and
has all real eigenvalues

This case is of special interest because in this class it was found the first example
of a nonflat Osserman manifold which is not locally rank-one symmetric. The main
result in the section is the following.

THEOREM 8.1. Let M be a manifold of type (II) or (HI). Then its Jacobi operator
has a triple root a.

Before proceeding with the proof let us mention that these manifolds satisfy some
interesting properties
(a) M is foliated by two-dimensional totally geodesic isotropic submanifolds;
(b) there exists an isotropic frame f\,fi,f-i,f* such that the components of the

curvature tensor are determined by

(8.1) /?1441 = ^2332 = ?̂1243 = ^1342 = 01 and RA334 = 2

that is,

(8.2) /?144I = ^2332 = ^1243 = ^1342 = —O and #1332 = Rni4 = V 2 ,

if M is of type (II) or (III) respectively. For details see [6] and [7]. It is important to
notice that all known examples are Ricci.flat, that is, a = 0.

The rest of the section is devoted to the proof of Theorem 8.1. First we introduce
some notions and notations which we use in this section. Let us mention that the proof
of Theorem 8.1 will be given in a sequence of lemmas and propositions.

Firstly, we consider in this section a manifold of type (II), that is, the corresponding
Jacobi operator Jtfx with a double zero of its minimal polynomial. It means that there
exist a main basis such that the matrix of J ^ is given by (4.3). Therefore we need
to study different relations between parameters a and /5. The main goal is to prove
that if p = 4a, then a = fi = 0 and the scalar curvature r vanishes. The manifolds
satisfying these conditions admit a field of null parallel planes and consequently they
can be endowed with a Walker metric (8.8).

In this section, from now on, we assume that s = +1 (see Theorem 5.1 (b)), and so

(8.3) a = a- 1/2, b =-a - 1/2, c=-0, y = 1/2.

Let 1-forms A, B and C be as in (6.4) and A and B as in (7.2) from the previous
Sections. These 1-forms are the following linear combinations of the basic forms G',

that is,

(8.4) A

(8.5)
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These coefficients are not independent. We only prove those relations which are
important for our proof of Proposition 8.6. More precisely, we prove the following
lemma.

LEMMA 8.2.

(a) A = -B.
(b) The coefficients Ait i = 1 , . . . , 4, satisfy the relations Ai = A4 and A2 = —A3.

PROOF. The proof is similar to the previous ones, where now the second Bianchi
identity is employed. D

COROLLARY 8.3. If a £ p , then 6 = 4a.

PROOF. If we substitute (8.3) in the equality A = -B, we get:

(8.6) (a - P)(A - B) = 0.

From (8.6), in the case a ^ B, we have A = B. If we differentiate this equation we
finally get

(8.7) n] + n4
2 = n] - Q\.

The component in (8.7) of 0l Ad2 leads to 1 = a — x. From (8.3) it follows that the
last equality gives ft = 4a. •

Now we will show that ^ — Aa only when a = B = 0. First we start with the
following geometric fact.

PROPOSITION 8.4. The plane generated by the vectors ex — e» and e2 + e3 is a
parallel null plane.

PROOF. One can check by straightforward computations that ex — e4 and e2 + e3

are null vectors. Moreover, the plane generated by them coincides with its orthogonal
complement and consequently this plane is a null one.

To prove that this plane is parallel it is necessary to prove Vx (e\ —e4) and V* (e2+ej)
belong also to this plane, where X is an arbitrary smooth vector field. We use the
equality A = B, where A = a>\ — co*, B = co\ + oo\ to see

+ e3) = (col
2(X) + co\(X))(ei — e4) + a)\(X)(e2 + e3). fj
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COROLLARY 8.5. If a 4-dimensional manifold admits a parallel 2-dimensional null
plane then one can endow it with a coordinate system («,) such that the metric is given
by the following matrix

(8.8)

"/ * 1 0"
s g 0 1
1 0 0 0
0 1 0 0

where f, s, g are arbitrary C°° functions.

PROOF. The proof follows from [28, Theorem 1] and Proposition 8.4. D

PROPOSITION 8.6. If a manifold M satisfies the timelike Osserman condition and
can be endowed with the Walker metric (8.8), then the scalar curvature x vanishes.

PROOF. Let (M,) be a coordinate system on a manifold M such that the metric is
given by the matrix in (8.8). Since the manifold satisfies the Osserman condition, it
follows that M is an Einstein manifold and the following Ricci curvatures are

(8.9) p14 = P23 = 0, p13 = pl4 = - r / 2 ,

or equivalently, using the notation 3 , / = 3//3«,, 3,3,/ = d2f/dujduj,

(8.10) 3434s + 3334/ = 0 ,

(8.11) 33935 + d3d4g = 0,

(8.12) 3333/ + 33345 = d4d4g + 3333/ + 2d3d4s,

(8.13) d3d4s + d4d4g = d4d4g + 3333/ + 2d3d4s.

Suppose r ? t O . The relations (8.12) and (8.13) imply 3333/ = 3434g. If we choose
X = a,3, + a3d3 + a4d4 and a3 = - ( 1 + a]f)/2au we see that {X, X) = - 1 .

Let us study now the polynomial

(8.14) ^(al,a4) = a4
ltiJ(rx

2 = a4
l

The Osserman condition implies that trJ^2 = 2a2 + f}2 = 18a2 for ^ — 4a and
consequently all coefficients for af'a4* vanish except for a\ and it is equal to 18a2.
One can check by direct computations that

(8.15) T = - ( W + d4d4g + 2d3d4s).

We now use (8.14), (8.15) and the coefficient for a\a4 to find

2g + d3d4sd3dss + d4d4sd3d3g + 2d4d4gd3d4g + = o.
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By using (8.10)—(8.13) one can check that the above relation gives 2did4f (d3d4s +
hhf) = 0. If d3d4s + d3d3f = 0, then because of (8.12), it follows that r = 0, that
is, a — /? = 0, and this is a contradiction. Consequently,

(8.16) 9 3 9 4 / = 0 .

In the same way, if we put Y = a2d2 + #383 + £4̂ 4 and a4 = —(1 + a\g2)/2ci2 we
have (Y, Y) = — 1. Similarly as before, using the coefficient for a2a\ of trJ^2 we get

(8.17) 9394g = 0.

We now use (8.10) and (8.11) to see

(8.18) d4d4s = d3d3s = 0.

One can check, using (8.14), the coefficients for a* and a6
xa\ are the following ones

(8.19) (d3d4s)2 + 2(9393/)2 + d4d4f d3d3g + 48394/ d3d3s = 144a2,

and

(8.20) 9434/ d4d4g + (d4d4s)2 + 2d4d4sd3d4f

+ (d3d4f )2 + 29494/ d3d4s + d4d4f d3d3f = 0.

We combine now the relations (8.16)-(8.18)"with (8.20) to obtain

(8.21) 9434/ (9494^ + 23394s + 3393/) = 0.

The relation (8.21) implies 9434/ = 0, as on the contrary r = 0. By the analogous
procedure for the vector Y and t r ^ 2 , the coefficient for a\a\ gives d3d3g = 0.
The solution of the corresponding partial differential equations can be written in the
following form

/ = -(/x + T / 2 ) « 2 / 2 + u3ir + u4f{ + V2,

(8.22) g = -(ji + T/2)U2J2 + u3(p + u4<px + <p2,

S = (iU3U4 + U3V + M4V1 + V2.

The functions /x, ty, xfri, \jr2, (p, <P\, <Pi, v, V\, v2, in (8.22) depend only on the variables
ux and u2. Consequently, (8.19) has a simpler form

(8.23) (d3d4s)2 + 2(9393/ )2 = 144a2.

We combine now (8.15) and(8.22) to find d3d4s = /i, d3d3f = —(fi + r/2) andhence,
having in mind r = 24a, it follows from (8.23)

(8.24) ix2 + 16[Ma + 48a2 = 0.

The solutions of (8.24) are the following functions

/x, = -12a , fi2 = - 4 a .
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Therefore, the functions / , s, g are given by (8.22), where /x is a constant set to be
\x = Ca, C £ 0.

It is easy to see that the equation pn = x/Af can be written in terms of the
derivatives of functions/, s, g as follows

(8.25) -d4f d4g + (d4s)2 - gd4d4f - d4sdif + d4f d3s

- 2sd3d4f + 2d2d4f - 2did4s + fd3d4s = 0.

We use now (8.22) and (8.25) to obtain

(8.26) - V w + (jiu3 + v,)2 - nUiu3 + W,)(-(M + T/2)ii3 + yjr)
- 23,v, +ffi) = O.

Equation (8.26) with respect to the variable «3 is of polynomial type and hence the
coefficient for u\ vanishes, that is, /x2 + /x(/z + r/2) = 0, and from here follows
that ix — 0 and consequently r = 0. This is the contradiction with the assumption
x jtO. •

COROLLARY 8.7. There does not exist an Osserman timelike manifold whose char-
acteristic polynomial of endomorphism <%x has a double real zero a, and real zero /?
such that ft — 4a ^ 0.

PROOF. Proposition 8.6 implies the scalar curvature x vanishes and consequently
a = p = 0. •

9. Examples

When the Jacobi operator of a timelike or spacelike Osserman manifold (A/, g) is
diagonalizable (type (la)), then their local characterization is of the same kind as in
the Riemannian 4-dimensional manifolds (Section 1). This section is devoted to the
examples that show that if the Jacobi operator is not diagonalizable (types (II) and
(III)) then M may not even be a locally symmetric space.

In Subsection 9.1 we use the results of Wu ([30]) to show the existence of this
'exceptional example' and the explicit construction of the metric is given by Rakic
([23]). This example admits nice geometric structures. In Subsection 9.2 we describe
timelike (spacelike) Osserman manifolds which are not even locally symmetric (but
they are Ricci flat).

9.1. The existence of a locally rank-two symmetric Osserman manifold. The
main purpose of this subsection is to study manifolds with an endomorphism Xx
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such that its matrix is given by (4.3) where the eigenvalues a and /J vanish. We
show that there exists a locally rank-two symmetric manifold M = G/H in this class.
Moreover, a manifold M = G/H can be endowed with an integrable antiquaternionic
structure and an integrable dual (neutral) structure.

We recall some basic facts from [30] to clarify our construction.
In general H is the generic symbol of holonomy groups and h, of holonomy

algebras. We denote (the identity component of) the full group of isometries of an
inner product space V by PO( V) when we are not concerned with signature, and
by SO(p, d — p) when we are. The corresponding Lie algebras are then po( V) and
so(p, d — p). PO(V) is a subgroup of the automorphism group Gl( V) of V which
is usually identified with the group of nonsingular d x d matrices in the presence of
a basis; po(V) is then a Lie subalgebra of the full matrix algebra gl(V), which is
identified via the same basis with Hom( V, V).

DEFINITION 9.1. A connected Lie subgroup H* of GL(V) is called an algebraic
holonomy group if and only if there exists curvature tensors {R\ ... , Rr] on V such
that the Lie algebra h* of H* is exactly the linear span of the R'(x, y), all x, y e V,
i — 1 , . . . r. An algebraic Riemannian holonomy group is an algebraic holonomy
group such that the [R\... , Rr] are all Rtemannian curvature tensors. Thus, if an
algebraic holonomy group is either Riemannian or Kahlerian, it is a subgroup of
PO(V).

DEFINITION 9.2. A triple {V, R, H] is called a symmetric holonomy system if and
only if R is the curvature tensor on V and H is a connected Lie subgroup of GL(V)
such that,

(9.1) h = span{#(;c,y):;t,ye V),

(9.2) R(h(x),y) + R(x,h(y)) + [R(x,y),h]=O, for all h e h and*,y e V.

It is called a Riemannian symmetric holonomy system if and only if R is furthermore
a Riemannian curvature tensor.

Wu has proved in [30] that every such H can actually be realized as the holonomy
group of an appropriate symmetric space. More precisely, he has proved the following
corollary.

COROLLARY 9.3. If{V,R,H}isa Riemannian holonomy system, then there exists
a simply connected Riemannian symmetric space whose tangent space at a point can
be identified with V, whose curvature tensor is R, and whose holonomy group is H.

The following fact is also well known.
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PROPOSITION 9.4. Let G be a simply-connected solvable Lie group and K an ar-
bitrary connected Lie subgroup of G. Then G/K is diffeomorphic to a Euclidean
space.

We prove in this section the following theorem.

THEOREM 9.5. There exists a homogeneous symmetric pseudo-Riemannian space
M with a metric of signature (2, 2) such that the matrix of the endomorphism Jfx is
given by (4.3), where a = ft = 0.

PROOF. Recall that R(X, Y) e so(2, 2). Let us take the matrix m

• 0 -1/2 1/2 0 '
1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 -1/2 0 .

(9.3) m =

and put

R(EuE4)

R(EU E2) = R(E3, £ , ) = R(E4, E2) = R(E3, £4) = m.

We denote by H the 1-dimensional connected Lie subgroup of GL(V) such that its
Lie algebra is generated by the endomorphism m. Then all conditions in Corollary 9.3
are fulfilled, that is, there exists a symmetric space M with its tangent space identified
by V = (R4, (•,•)) of signature (2, 2) and its curvature tensor R. We use Proposi-
tion 9.4 to see that this space is diffeomorphic with K4. More precisely, the proof of
Corollary 9.3 implies that the algebra g = h © V is the Lie algebra of the group G.
The Lie brackets [•, •] : g A g - • Q are defined by

[ ^ i . h2] = b r a c k e t i n h if hi, h 2 e i ) ,

(9.5) [hux] = hi(x) iffc.eh, x e V,

[x,y] = R(x,y) ifx,y € V.

This algebra g is solvable and hence Proposition 9.4 implies our homogeneous space
M is diffeomorphic with K4. •

REMARK. Since the sectional curvature of the plane E\ A E4 is vanishing, it is easy
to verify that M is a rank-two symmetric space.

This method was used by Rakic [23] to determine explicitly an Osserman metric
on R4 with the curvature prescribed by (9.3) and (9.4).
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EXAMPLE 1. Let M = R4, (uu u2, u3, u4) be the Cartesian coordinates and

6g = u\dui <g> du\ + u\du2 ® du2 — ulu2[dui ® du2 + du2

> du4 4- du4 <S> dux + du2 <g) du3 + du3 (g> du2].

Then (R4, g) is a timelike Osserman rank-two symmetric space whose curvature tensor
is given by (9.3) and (9.4) (see [23, Theorem 1.1]).

The next theorem deals with the construction of an integrable para-quaternionic
structure on a manifold M satisfying the conditions of Theorem 9.5.

THEOREM 9.6. Let M be a manifold satisfying the conditions of Theorem 9.5. Then
M can be endowed with an integrable para-quaternionic structure.

PROOF. We define the endomorphisms i, j , k on elements of an orthonormal basis
Ei,... , £4 as follows

i(Ei) = E4, j (Ei) = £3, *(£,) = ~E2,

-E3, j(E2) = E4,

i(E3) = -E2, j(E3) =

i(E4) = EU j (E4) = E2, HE4) = -E3.

Endomorphisms 1, j , k are well defined, and it is as in the previous cases interesting,
since they are independent of the choice of the first vector Ex. Let us remark the
endomorphisms 1, j , k satisfy the multiplication properties

(9.7) / 2 = ; 2 = -it2 = l, ij=-ji = k.

This structure is known as a para-quaternionic structure. For some details see for
example [24]. Let us denote

(9.8) p = oj4 — a)\, q = a>\ + o?A, r=co\ + (»\.

We now use Lemma 6.4 (i) to see

(9.9) Vi = q(j - k), V/ = -qi, V* = -qi,

which implies the integrability of our para-quaternionic structure. If the manifold M
is orientable, we can define this para-quaternionic structure globally. •

Let us remark that V(/ — k) = 0 and (j — k)2 = 0. It means j — k is an integrable
dual (neutral) structure (see [24]).
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9.2. Examples of nonsymmetric manifolds with the nondiagonalizable Jifx-
Manifolds satisfying Osserman condition have very interesting and rich geometry.
Let us mention the following. Among manifolds with nondiagonalizable J£* one can
find also some recurrent spaces, harmonic spaces and others.

EXAMPLE 2. Let M = K4, («i, u2, uiy u4) be the usual coordinates, and

g = (ulu2)
2[dul <g) du\ + du2 <g> du2]

+ [dux (g> du?, + dui <g> dux + du2 <g) du4 + du4 <g> du2].

The characteristic polynomial of the Jacobi operator Jfx is
XI) = A.4, for arbitrary nonnull vector X. Moreover, (M, g) satisfies the timelike and
spacelike Osserman condition on the open subset U\u2 ^ 0 (type (II)). In this subset the
manifold (M, g) is not locally symmetric. When u\U2 = 0, the minimal polynomial
m^{J^x) = k, that is, the Jacobi operator is diagonalizable but not diagonalizable
in the neighbourhood of the set U\u2 = 0. It is clear that (K4, g) is not locally
homogeneous, although the characteristic polynomial px(J?x) is constant.

EXAMPLE 3. A manifold with the metric

g = u2u->,du\ ® du\ — Uiu4du2 ® du2

+ [du\ <g> du3 + du3 <g> du\ + du2 <S> du4 + du4 (g> du2]

is simple harmonic. Moreover, this metric is neither symmetric nor recurrent (see [25,
page 211]).

Garcia-Rio, Vazquez-Abal and Vazquez-Lorenzo [16] have considered the follow-
ing family of metrics on K4 of signature (2, 2), parameterized by some functions fx

and/2.

EXAMPLE 4. As in the previous example let

g(/,,f2)= Ujf («i, u2)dui®du\ + u4f2(u\, u2)du2®du2+a[dul<g>du2+du2<8>dui]

+ b[du{ <g> du3 4- du3 <g> dux + du2 <g> du4 + du4 ® du2],

where dfi/du2 + df2/d/du, = 0. Then the characteristic polynomial of the Jacobi
operator of (M, g(/,,/2)) is pA-^x) = -̂4, that is, it is independent of the nonnull
vector X, but with different minimal polynomials mk(J^x) = ^2 or m^J^x) = -̂3-
There are examples when the minimal polynomials change degree from point to point.
Functions fx and f2 can be additionally chosen so that (M, g(/,j2)) is not locally
symmetric ([16, Theorem 3]).
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It is interesting to notice, as a consequence of these examples, that it is natural to
define the Osserman condition using the Jordan form of the Jacobi operator in the
case of pseudo-Riemannian manifold of arbitrary signature. In signature (2, 2) this is
equivalent to the independence of the minimal polynomial of the Jacobi operator on
p e M and on the unit tangent timelike vector X.

Let us state now the following problems.

QUESTION 1. Do there exist 4-dimensional timelike (spacelike) Osserman man-
ifolds of signature (2, 2) whose minimal polynomial of the Jacobi operator has a
multiple root a ^ O , and which is not Ricci flat?

Starting from the Osserman conjecture it is natural to consider the following prob-
lem.

QUESTION 2. Is a timelike (spacelike) Osserman manifold with the diagonalizable
Jacobi operator either a locally rank-one symmetric space or a flat space?

The affirmative answer was given in [9] and [16] under some additional assump-
tions.
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