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Abstract

The Spelling Theorem of B. B. Newman states that for a one-relator group {a\, . . . | W"), any nontrivial
word which represents the identity must contain a (cyclic) subword of W±n longer than W~l. We
provide a new proof of the Spelling Theorem using towers of 2-complexes. We also give a geometric
classification of reduced disc diagrams in one-relator groups with torsion. Either the disc diagram has
three 2-cells which lie almost entirely along the boundary, or the disc diagram looks like a ladder. We use
this ladder theorem to prove that a large class of one-relator groups with torsion are locally quasiconvex.
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1. Introduction

As explained by Howie in [3], some of the main results about one-relator groups can

be proven using towers, a method first made explicit in the theory of 3-manifolds, in

Papakyriakopolous's proof of Dehn's Lemma [12]. In fact, the tower method is implicit

in Magnus's original solution of the word-problem and Freiheitssatz for one-relator

groups, [7, 8]. The advantage of the tower method over the other methods of proof is

that the arguments are more geometric and conceptual, rather than combinatorial.

The first main result of this paper is a tower proof in Section 4 of the following

theorem (see [6, IV.5.5]).

THEOREM 1.1 (B. B. Newman Spelling Theorem). Let U be a freely reduced word

which represents the identity in (at,... , ar \ W"), where W is freely and cyclically
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reduced. Then U contains a subword V such that V is a subword of the cyclic word

The statement of the B. B. Newman spelling theorem was first announced in [11].
We refer to [4] for a substantial generalization as well as for references to various
other proofs of the theorem given by Gurevich, and others.

As usual for theorems about certain one-relator groups, the same proof works for
the fundamental groups of certain staggered 2-complexes—in this case the staggered
2-complexes whose 2-cells are attached by proper powers. Theorem 1.1 is a special
case of Theorem 4.6 which treats the general staggered case.

The second main result of the paper is Theorem 5.2 which provides a geometric
classification of reduced disc diagrams in one-relator groups with torsion. Roughly
speaking, we show that either the disc diagram has three 2-cells which lie almost
entirely along the boundary, or the disc diagram looks like a ladder (see Figure 3). We
use this to give the following application:

THEOREM 1.2. Let G = {a{,... , ar | W), where n > | W\. Then G is locally
quasiconvex.

In Section 6, we provide a tower proof of a Freiheitssatz for the fundamental
groups of staggered 2-complexes. We also provide a tower proof of the combinatorial
reducibility of staggered 2-complexes.

2. Towers and staggered 2-complexes

A map X —*• Y between C W-complexes is said to be combinatorial provided that
its restriction to each cell of X is a homeomorphism onto a cell of Y. (Throughout this
paper, the term cell will always mean open cell.) A CW-complex is combinatorial
provided that the attaching map of each of its cells is a combinatorial map (after a
suitable subdivision). All the spaces in this paper will be 2-dimensional combinatorial
complexes, and all the maps between spaces will be combinatorial.

We now collect some background on towers which is due to Howie [2].

DEFINITION 2.1 (Tower). A map A —*• B of connected C W-complexes is a tower
provided that it can be expressed as a composition

A = Bn ^ J3n_, ->• Bn-y <-• • • • ^ - B2 -»• B2 ^ B{ -> Bi ^ B,

where the maps are alternately inclusions of subcomplexes and infinite cyclic cover-
ings. In other words, the covers are regular and connected with infinite cyclic covering
transformation group.
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Let / : C -> B be a map of connected CW-compIexes. A m a p / ' : C -> /\ is a
rower /(# of/ provided that there is tower g: A -» B such that the following diagram
commutes:

A
f

«

C - B
/

The tower l i f t / ' is maximal if, for any tower lift C -* D of / ' , the map £> - • A is
an isomorphism.

LEMMA 2.2 ([2, Lemma 3.1]). Let S be a compact CW-complex and f : S -* AT
be a combinatorial map. Then f has a maximal tower lifting.

DEFINITION 2.3 (Staggered). Let AT be a 2-complex such that the attaching map of
each 2-cell is locally injective. We say that K is staggered if there are linear orderings
on the 2-cells and a subset O of the 1-cells (called the ordered 1-cells) such that

(1) for each 2-cell a, at least one ordered 1 -cell is in the image of the attaching map
of a, and
(2) for 2-cells a and B, if a < /J then (mina) < (min/i) and (max a ) < (max/3),

where (mina) and (max a ) are respectively the least and greatest ordered 1-cells in
the attaching map of a.

A group presentation is staggered if its standard 2-complex is staggered.

The notion of staggered defined above appears in [6, page 152] and was implicit
in Magnus' original proof of the Freiheitssatz [7]. Howie used a slightly less general
definition in [3] to prove Lemma 2.6 and Lemma 2.4 below. His proofs work for the
more general version of staggered that we use here, but we provide the details for the
benefit of the reader.

LEMMA 2.4 ([3, Lemma 2]). (/" K -> X is a tower, and X is a staggered 2-complex,

then Y is staggered.

PROOF. It is clear that a subcomplex of a staggered 2-complex is also staggered.
Let <p: S -*• S be an infinite cyclic cover of a staggered 2-complex. We will show that
5 is staggered. Let y be a generator of the covering transformation group. Let the
set O of ordered 1-cells be the cells which project to ordered 1-cells in 5. Linearly
order O and the 2-cells of S by the rule that a < f3 provided that either 0 (a) < <j>(fl)
or p = yn(a) for some n e 1 with n > 0. Now let a < B be 2-cells of S. If
4>{a) < 4>(B), then obviously (mina) < (min/8). Otherwise B = y"(a) for some
n > 0, and so (min/5) = y"(mina). An identical argument holds for maxa. •
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CONVENTION 2.5. In general, if X is staggered and Y -*• X is a tower, then Y
may be staggered in several ways. However, the arguments of this paper will always
employ the staggering of Y given in the proof of Lemma 2.4.

LEMMA 2.6 (Howie's Collapsing Lemma). Let Y be a finite staggered 2-complex
with at least one 2-cell and with H'(T) = 0. If the greatest 2-cell a of Y is not
attached along a proper power in ii\ (Y(1)), then Y collapses across a with free edge
max a.

The following proof is identical to Howie's original proof which appeared as [3,
Lemma 3].

PROOF. Note that, if some 2-cell y of Y is attached along a proper power sm say,
then replacing y by a 2-cell attached along 5 will not change H'(^)- Nor will this
procedure affect the staggering of Y.

We argue by induction on the number of 2-cells in Y, which by hypothesis is at
least one. If there is only one 2-cell, then the first Betti number of the 1-skeleton Ym

is at most 1, since H'(T) = 0. On the other hand, since the attaching map P of the
2-cell is a cyclically reduced path of positive length, and not a proper power, it follows
that y(l ) cannot be a tree, and P is the unique simple closed path in K(1), whence the
result.

For the inductive step, consider the Mayer-Vietoris sequence

• H\Y) —> H ' ( F - a ) e H ' ( D 2 ) — • H\Sl) —> •••

associated to the adjunction of a. From this we see that H'( K - a ) is at most cyclic.
If the subcomplex Y' = Y - {a, max a} is connected, then H ' (y - a ) = Hl(Y') © T,
so H'(}") = 0. Otherwise, Y' has two components Y{ and Y2 say, and Hl(Y - a) —
H'(Fi) © H'(y2)- Without loss of generality we may assume W(Y\) = 0. Also, in this
case Yi cannot be a tree, since a is attached by a cyclically reduced closed path which
meets Yt.

Now apply the inductive hypothesis either to Y' or to Yt, but with the staggering
opposite to that inherited from Y (that is, the orderings of cells is opposite). Then the
complex in question collapses across its least 2-cell fi say (in the original ordering),
with free edge min fi. But a does not involve min fi since /S < a, so Y also collapses
across fi with free edge min p. Let Z = Y — {/S, min ft] be the result of this collapse.

Then the inductive hypothesis applies to Z, so Z collapses across a with free edge
maxa. But /S does not involve maxa since fi < a. Hence Y = Z U {/3, min/}} also
collapses across a with free edge max a. •

LEMMA 2.7. Let Y be a finite staggered 2-complex which has no infinite cyclic
cover. Then the greatest 2-cell of Y is attached along a path U", where U is a closed
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path in Y that passes through max a exactly once. Furthermore, no other 2-cell is
attached along max a.

PROOF. Form a new 2-complex Y' from Y by replacing the greatest 2-cell a, which
is attached along a path U" (where U is not periodic), by a 2-cell a' which is attached
along the word U. The obvious map Y —> F is a 7rrsurjection, and so H'(T') = 0.
Now by Lemma 2.6, we see that U passes through max a' exactly once, and so the
attaching path U" of a passes through max a exactly once as well. •

We make one final observation.

REMARK 2.8. Let <f>: Y -+ X be a tower map. For any 2-cell a of Y, if <p(a) is
attached along a path U" then a is attached along a path V". This is true for arbitrary
towers because it holds for subcomplexes and infinite cyclic covers.

3. Background on disc diagrams and spherical diagrams

In this section we briefly review some background on disc diagrams and spherical
diagrams. A more detailed account of this material can be found in [6].

A disc diagram D is a planar, simply connected 2-complex. Given a 2-complex
X we will often study a map D —> X and refer to this map as the disc diagram. Let
P -»• X be a closed path which factors as P -> D —*• X. We say that the disc
diagram D —> X is a disc diagram for P —• X provided that P maps onto 3D, and
furthermore for each 1-cell e of 3D, the preimage of e in P must consist of one or
two 1-cells according as to whether or not e lies on the boundary of a 2-cell of D. The
path P is said to be a boundary path for D.

If the words U and V represent the same element of (A \ R), then by a disc diagram
for U — V we will mean a disc diagram mapping to the standard 2-complex of {A | R)
for the path corresponding to the word U~l V.

We will occasionally employ the similar notion of a spherical diagram D —>• X
which is a combinatorial map from a 2-sphere to X.

A pair of (not necessarily distinct) 2-cells C,, C2 in a diagram D which meet along
a 1-cell e of D, is a cancelable pair provided that the boundary cycles of C\ and
C2 beginning with e (in the same direction) are sent to identical paths in A" after
composing with D —> X.

The disc [sphericalj diagram D —• X is said to be reduced provided that it has no
cancelable pairs. It is a theorem of van Kampen, that a reduced disc diagram exists
for any null-homotopic closed path (See [6, V.2.1]).

Aspur'm a disc diagram is the union of a valence one 0-cell together with the 1-cell
incident with it.

We conclude this section with an easy lemma whose proof we leave to the reader.
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LEMMA 3.1. Let D —> Y be a tower lift of a reduced disc [spherical] diagram
D —• X. Then D —• Y is itself a reduced disc [spherical] diagram.

4. Tower proof of the B. B. Newman Spelling Theorem

In this section we prove Theorem 4.6 and Theorem 4.8 which are the first main
results of the paper. The crucial geometric tool employed in the proof of these
theorems is Lemma 4.5 which will also play a key role later in Section 5.

We begin the section by applying Lemma 2.7 to a maximal tower lift of a re-
duced disc [spherical] diagram. In this situation, the diagram has a useful geometric
decomposition into smaller subdiagrams.

LEMMA 4.1 (On the Boundary). Let D —> Y be a maximal tower lift of a reduced
disc [spherical] diagram D -*• X with X a staggered 2-complex. Let A be a 2-cell
of D which maps to the greatest 2-cell a of Y. Let n be the positive number such that
a is attached along a path U", where U is not homotopic to a periodic path in Y<1>.
Then dA contains exactly n 1 -cells £ , , . . . , £„ which map to max a, and each £, lies
in dD.

Note that in the spherical case, 3 D is empty, and so the lemma asserts that no such
reduced spherical diagram exists.

PROOF. Observe that Y has no infinite cyclic cover and D —*• Y is surjective, so Y
is finite. By Lemma 2.7, the path U passes through max a exactly once. Furthermore,
no other 2-cell is attached along max a.

To see that each E, is contained in 3D note that if E, were an interior 1-cell, then
it would appear in two different ways in the boundary of a 2-cell. Since each such
2-cell would map to a, this would form a cancelable pair. This is impossible because
D —y X is reduced and therefore by Lemma 3.1 D —>• Y is reduced. It follows that
each £, is contained in 3D. Since 9A passes n times through maximal 1-cells, and
dA passes through each exactly once, we see that there are n distinct maximal 1-cells
on dA as claimed. •

DEFINITION 4.2 (Branches). Let A, D, Y, and { £ , , . . . , £ „ } be as in Lemma 4.1
then the subcomplex D — [A, Et, . . . , £ „ } consists of n path components. These
components are the branches at A with respect to D -> Y. A branch is trivial if it is
contained in dA and nontrivial otherwise.

Figure 1 illustrates a disc diagram with a dark 2-cell A and four 1-cells mapping to
e. There are four branches at A and exactly one of these branches is trivial.

https://doi.org/10.1017/S1446788700002718 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002718


[7] Towers, ladders and the B. B. Newman Spelling Theorem 59

FIGURE 1.

PEFINrnON 4.3 (A-external). The 2-cell R of D is k-external provided that there is
a subpath Q of the attaching path of R such that:

(1) Q is a subpath of the boundary path of D.
(2) \Q\>k\dR\.

We will sometimes refer to R as an external 2-cell when the value of k is clear from
the context.

LEMMA 4.4. Let D and A be as in Lemma 4.1, let P be a branch at A, and let D'
be the subdiagram PDA. Suppose B ^ A is a 2-cell ofD'. IfB is k-external for the
diagram D', then B is also k-external for the diagram D.

PROOF. By the definition of branch, the 2-cell B does not share any 1-cells with
any 2-cell of D - D'. If a 1-cell E in dB lies in 3D', then it also lies in dD. •

LEMMA 4.5 (Two external 2-cells). LetXbeastaggeredl-complexandletD —*• X
be a reduced disc diagram. Suppose that D has no spurs, and D contains at least two
2-cells. Then D contains two distinct 2-cells C\ and C2 such that

(1) Cj maps to a 2-cell yt in X whose attaching map is U"', where U is not homotopic
to a periodic path inXm;
(2) C, is an ((«, — 1) /«,-) -external 2-cell ofD.

PROOF. We prove the statement by induction on the number of 2-cells in D. Lift
D -*• X to a maximal tower:

D—~X

Suppose first that Y has a unique 2-cell a. Then every 2-cell of D maps to a,
which is trivially the greatest 2-cell of Y. Let A\ and A2 be any two distinct 2-cells
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of D. If they each have only one nontrivial branch, then they are external 2-cells
of D and we are done. On the other hand, if one of these 2-cells (say Ai) has two
nontrivial branches Si and B2, then we can subdivide D into two strictly smaller disc
diagrams D{ and D2 with D, = B,UAi. By induction, each of these subdiagrams
has two external 2-cells, at least one of which is distinct from A. Thus there are two
distinct 2-cells (different from A) Q C £>i and C2 C D2 that are each external for
the corresponding subdiagram. But then Lemma 4.4 implies that Q and C2 are each
external 2-cells for the original diagram D as well.

Now suppose that Y has more than one 2-cell. Let a and K be respectively the
greatest and least 2-cells of Y. Choose 2-cells A and K in D mapping to a and K.
We can define branches of K by reversing the ordering of the cells of Y. We now
proceed as above, noting that A and K are distinct 2-cells. As before, if each of A
and K has only one nontrivial branch, then we are done. Otherwise one of them splits
the diagram into two strictly smaller subdiagrams, and the result follows from the
inductive hypothesis. •

At this point, we can easily prove the following form of the B. B. Newman Spelling
Theorem.

THEOREM 4.6. Let G = (xu ... \ R"',...) be a staggered presentation. Let U be
a freely and cyclically reduced word representing the identity of G. Then U contains
a subword S such that S is a subword of the cyclic word Rj"' for some j and

\S\ > I/?;'"1!.

PROOF. Let X be the standard 2-complex for the presentation, and let D -> X
be a reduced disc diagram for U. It will be convenient to think of 1-cells of X as
being oriented and labeled by their corresponding generators. This pulls back to an
orientation and label for each 1-cell of D. Thus a path in D corresponds to a certain
word in the generators and their inverses. To prove the theorem, we will find a certain
2-cell C of D mapping to an R"' 2-cell of X. The boundary of C will have a subpath
5 corresponding to a subword of U satisfying \S\ > \R"' \.

Either D has only one 2-cell C, in which case the result follows immediately, or
we may apply Lemma 4.5 to D and conclude that D has two external 2-cells, C\ and
C2. Notice that the path U may begin at a point in the interior of at most one of these
external 2-cells, say C{. Then C2 maps to an R"' 2-cell of X, and the external path of
C2 corresponds to a subword 5 of U with \S\ > \Rj'~ \ as required. •

DEFINITION 4.7 (Intervals). Let G = (x{,... \ R"1,...) be a staggered presentation,
and let W be a freely reduced word. The interval spanned by W, denoted Iw, is the
convex closure of the set of ordered letters of W in the set of all ordered letters. In
other words, Iw is the smallest interval containing all the ordered generators in W.
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FIGURE 2. The diagram on the left corresponds to the case where xt is the greatest 1-cell in X. The
diagram on the right corresponds to the case where there is a greater 1-cell xe which is necessarily not on
the boundary of any 2-cell. In both diagrams, the paths U and V begin and end at the bold 0-cells. Note
that the path U wanders around quite a bit and contains the subpath 5. Also note that on the left, B2 is
actually the union of the regions labeled by B2 and C in the figure, while on the right, D' is actually the
union of the regions labeled D\ C\, and C2 in the figure.

The following generalization of the B. B. Newman Spelling Theorem was first
proved in [4].

THEOREM 4.8. Let G = (xu... | R"\...)bea staggered presentation. Let U and
V be two freely reduced words which represent the same element of G. Suppose that
Iv omits a generator x, which occurs in Iy. Then U contains a subword S such that
S is a subword of the cyclic word Rj "' for some j and \S\ > | R"J~l \.

PROOF. Let X be the standard 2-complex for the presentation, and let D -> X be
a reduced disc diagram for U =c V. As in Theorem 4.6, we will find a certain 2-cell
C of D mapping to an R."' 2-cell of X. The boundary of C will have a subpath S
corresponding to a subword of U~l in the boundary path U~l V of D, and furthermore,
\S\ > | ^ - ' | .

Notice that we cannot directly apply Lemma 4.5 since D may have spurs, and
we could not easily conclude that either of the long boundary paths produced by the
lemma corresponds to a subword of U'1. To proceed, we must find an appropriate
subdiagram D' to which we apply Lemma 4.5.

Without loss of generality, we may assume that the generator JC, which is omitted
from Iv is greater than the generators in Iv, since otherwise we can reverse the order
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of the staggering. As before, we begin by lifting D —¥ X to a maximal tower:

Y

D—*X

Let a be the greatest 2-cell of Y, and let A be a 2-cell of D which maps to a. Suppose
that a maps to the R."' 2-cell of X. Let e be the greatest 1-cell in da and let xk be the
generator labeling the 1-cell it projects to in X. This generator xk must be the greatest
generator occurring in the boundary of a 2-cell in the image of D —> X. Indeed, if
there were a greater generator on the boundary of a 2-cell R in the image D ->• X,
then as the staggering of Y was defined in Lemma 2.4, R would be greater than the
image of a, and thus a 2-cell ft of Y which maps to R would be greater than a which
is a contradiction.

Suppose first that xk is the greatest generator in the image of D ->• X. Then 3 A
contains 1-cells Eu ..., Enj which map to xk in X, and by Lemma 4.1, these 1-cells
lie in 3D. It follows that xk occurs in the word U~x V, and since xk > *, we see that
xk must occur in U, but not in V. So the V part of the boundary path U"1 V of D
must lie inside one of the branches of A. Let Bi be the branch of A containing V. If
A has no nontrivial branches other than Bu then A is ((«; — 1)/^-external for D.
Otherwise, as illustrated on the left in Figure 2, A has a nontrivial branch B2 ^ B\.
In this case, we can apply Lemma 4.5 to the subdiagram D' = A U B2 and conclude
that D has an external 2-cell C as above.

Now suppose that xk is not the greatest generator in the image of D -^ X. Then
the greatest generator xt appearing in the 1-skeleton of D is not in the boundary of
any 2-cell of D, and so is not in the interior of D. Thus, as illustrated on the right
in Figure 2, xt appears in the boundary path U~l V of D. And again, since xt > JC*
we see that xt must occur in U but not in V. Consequently, some 1-cell of D with
label xe separates D into two components Pi and P2. The V subpath of the boundary
path of D lies entirely within one of these components (say Pi)- Since U is freely
reduced, P2 contains at least one 2-cell. More precisely, P2 is the union of a spurless
2-complex D' and a (possibly trivial) chain of 1-cells starting at a vertex v of D' and
ending at a spur. (In the diagram on the right in Figure 2, P2 is the union of D' and a
chain of two 1-cells.) Applying Lemma 4.5 to D' provides 2-cells C\ and C2 which
are external for D'. Since v can lie in the interior of at most one of the external paths
of these 2-cells say C2, we see that C\ is the desired external 2-cell for D. •

5. Ladders

The main result of this section is Theorem 5.2 which characterizes certain disc-
diagrams. An application is given in Theorem 5.7 to the local quasiconvexity of
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FIGURE 3.

certain one-relator groups with torsion. We begin with the following definition which
is slightly different from the definition first introduced in [10] where ladders were
studied in conjunction with small-cancellation theory.

DEFINITION 5.1 (Ladder). A disc diagram D is a ladder provided that it is a union

Ui<i<n Q where each C, is a 1-cell or 2-cell and:

(1) C, n Cj is nonempty if and only if i and j are consecutive.
(2) If 11 - j | = 1, then C~ n C~ is a (possibly trivial) interval.
(3) If | i - j | = 1 and Ct is a 1-cell, then Ti (1 C~ is a 0-cell.

We refer the reader to Figure 3 for a picture of two ladders.

THEOREM 5.2 (Ladder). Let X be a staggered 2-complex and suppose that there
are constants n and k such that each 2-cell ofX is attached along a path U", where
U is a non-periodic path of length k.

Let D —• X be a reduced disc diagram with no spurs. Then either:

(1) D consists of a single 0-cell.
(2) D is a ladder with an ((n — X)/n)-external 2-cell at each end.
(3) D has at least three {(n — 2)/'n)-external 2-cells.

PROOF. We induct on the number of 2-cells in D. A disc diagram D with no spurs
and a single 2-cell is a ladder. Now suppose D has at least two 2-cells. As usual, we
begin by lifting D —*• X to a maximal tower:

Let a be the maximal 2-cell of Y, and let A be a 2-cell of D which maps to a. The
argument splits into three cases corresponding to the number of branches at A.

Case > 3: Suppose A has at least three nontrivial branches B\, B2, and B3. Let £>,
be the subdiagram A U Bt. By Lemma 4.5, each D, contains two ((n — l)/n)-external
2-cells, at least one of which is distinct from A. So by Lemma 4.4, D has three 2-cells
which are ((n — l)/n)-external.

Case 2: Suppose A has exactly two nontrivial branches By and B2. Then we
have two strictly smaller diagrams Dx = Bx U A and £>2 = B2 U A. Notice that A
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FIGURE 3.
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(1) D consists of a single 0-cell.
(2) D is a ladder with an ((n — l)/n)-external 2-cell at each end.
(3) D has at least three ((n — 2)/'n)-external 2-cells.

PROOF. We induct on the number of 2-cells in D. A disc diagram D with no spurs
and a single 2-cell is a ladder. Now suppose D has at least two 2-cells. As usual, we
begin by lifting D —>• X to a maximal tower:

Let a be the maximal 2-cell of Y, and let A be a 2-cell of D which maps to a. The
argument splits into three cases corresponding to the number of branches at A.

Case > 3: Suppose A has at least three nontrivial branches Bu B2, and S3. Let D,
be the subdiagram A U Bt. By Lemma 4.5, each D, contains two ((n — l)/n)-external
2-cells, at least one of which is distinct from A. So by Lemma 4.4, D has three 2-cells
which are ((n - l)/n)-external.

Case 2: Suppose A has exactly two nontrivial branches Bt and B2. Then we
have two strictly smaller diagrams Dx = B\ U A and D2 = B2 U A. Notice that A
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is ((n — l)/n)-external for both D\ and D2. By Lemma 4.5, each D; contains two
((n — l)/n)-external 2-cells. If one of the D, (say Dt) has three ((n — 2)/n)-external
2-cells, then by Lemma 4.4, at least two of these 2-cells are ((« — 2)/n)-external
for D. But D also has an ((« — l)/«)-external 2-cell in B2, so that D has a total of at
least three 2-cells which are ((n — 2)/n)-external.

We can therefore assume that each of Di and D2 has at most two ((« — 2)/n)-
external 2-cells one of which must be A. Furthermore, since D = D] Uj D2 and D
has no spurs, we see that neither Dt nor D2 has a spur. So D\ and D2 are each spurless
reduced disc diagrams consisting of more than a single 0-cell. Thus by induction, the
only possibility is that they are each ladders. Furthermore we can assume that A is
the last cell of D{ and that A is the first cell of D2 because if A is not at the end then
there would be three ((n — 2)/n)-external 2-cells.

It is easy to check that D is a ladder because D is the union of these two ladders
along A, and thus D can be expressed as the union of a sequence of 1-cells and 2-cells
by concatenating the sequences for £>i and D2. The intersection conditions in the
definition of a ladder follow because B{ and B2 are disjoint.

Case 1: Now suppose that A has only one nontrivial branch B. Further suppose that
D does not satisfy possibility (3) of the theorem. Notice that A is ((n — l)/n)-external
for D. Let D' be the subdiagram obtained from B by repeatedly removing spurs until
no spurs remain. Since D has no spurs, D' must consist of more than a single 0-cell.
We will now show that D' does not satisfy possibility (3) of the theorem, so that D'
must be a ladder by induction.

If D' contains more than one 2-cell, then by Lemma 4.5, D' has two ((« — l)/«)-
external 2-cells C\ and C2. By the hypothesis that D does not satisfy possibility (3),
only one of these, say C\, can be ((n — 2)/n)-external for D. Let y be a subpath of
the boundary path of C2 which is also a subpath of the boundary path of D' and which
has more than (n — \)k edges.

Define a subpath a of the boundary path of D' as follows. If 9A intersects 3D',
then let a be that intersection. Otherwise, A is connected to D' by a chain of isolated
1-cells. In this case, let a be the trivial path at the 0-cell where this chain meets D'.
Notice that the length of a is less than k. Further, y cannot contain a subpath with
more than (n - 2)k edges which is also a subpath of the boundary path of D, since
otherwise C2 would be ((n — 2)/«)-external for D. So a must lie in the interior of y.
Thus if E is any 2-cell of D' other than C2, then E is A-external for D' if and only if
E is X-external for D. So D' is a spurless reduced disc diagram which fails to satisfy
possibilities (1) and (3) of the theorem, and, hence, D' must be a ladder with d and C2

at the two ends. Attaching A (and possibly an intermediate chain of isolated 1-cells)
to D' along an interior subpath of y, we see that D is, in fact, also a ladder. •

REMARK 5.3. A more careful argument would provide a stronger version of Theo-
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FIGURE 4. The diagram on the left corresponds to the case where dA intersects 3D'. The diagram on the
right is the case where A is connected to D' by a chain of isolated 1-cells. Note that in each case D' is
the union of the regions labeled by D',C\, and C2 in the diagram.

rem 5.2 where we replace the third possibility in the conclusion by

3. D has at least three A-external 2-cells, where k = ((« - 2)k + l)/nk.

The following useful variation allowing spurs can be deduced immediately from
Theorem 5.2.

THEOREM 5.4. Let Xbea staggered 2-complex and suppose that there are constants
n and k such that each 2-cell of X is attached along a path U", where U is a non-
periodic path of length k.

Let D -*• X be a reduced disc diagram. Then either.

(1) D consists of a single 0-cell.
(2) D is a ladder with a spur or ((/z — 1)/' n)-external 2-cell at each end.
(3) D has at least three spurs and/or ((n — 2)/n)-external 2-cells.

EXAMPLE 5.5. We now provide an example of a staggered 2-complex X and a
reduced disc diagram D -> X such that D is not a ladder, but D does not have three
((n — l)/«)-external 2-cells.

Let X be the standard 2-complex of the one-relator presentation (a, b \ (ababa)")
and consider the word

W = ba(ababay-xa{ababa)n-xab{ababaT(n-x\

Then W is the boundary path of a reduced disc diagram D -*• X with three 2-cells,
and only two of these are ((« — l)/n)-external, but D is not a ladder. See Figure 5
for an illustration of this disc diagram in the case n = 3.

In conjunction with a result from [9], Theorem 5.2 yields a powerful result about
subgroups of certain one-relator groups with torsion. We refer the reader to [13] for
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FIGURE 5.

the notion of a quasiconvex subgroup. We refer the reader to [9] for the notions of
weighted 2-complex, perimeter, sides, and weight of a 2-cell.

We will apply the following result from [9].

THEOREM 5.6. A compact weighted 2-complex X has a locally quasiconvex funda-
mental group provided that there exists K such that the following condition holds:

Let P -> X be any locally injective path and let J -*• X denote a geodesic with
the same endpoints as P, and suppose that \P\ > K \J\. Then there exists a 2-cell
RofX attached along a path W such that W" is a concatenation QS where Q is a
subpath ofP-±X and Perimeter (S) < n Weight (R).

THEOREM 5.7. Let G = (au ..., ar | W"). Ifn > \ W\, then G is locally quasicon-
vex.

PROOF. Without loss of generality we can assume that W is cyclically reduced. We
can assume that n > 4 because otherwise G is virtually free and so the theorem is
well-known [13]. Similarly, the theorem is true if | W| = 1 and so we will assume
that at least two distinct letters occur in W. We will now apply Theorem 5.6 for an
appropriate weighting on the sides of the 2-cells of the standard 2-complex X of the
presentation for G. Let K = n\W\. Let P denote a path in X and let J denote a
geodesic with the same endpoints as P. Let D denote a disc diagram for J = P. By
Theorem 5.4, either D has at least three spurs and/or ((n — 2)//i)-external 2-cells or
D is a ladder with a spur or ((n — l)/n)-external 2-cell at each end.

Observe that since P and J are locally injective, the only possible spurs are at their
endpoints. Thus, if there are three spurs and/or ((n — 2)/n)-external 2-cells then at
least one of the 2-cells must lie along P in the sense that it is a 2-cell R with a path
Q in dR such that Q is a subpath of P and \Q\ > | W"~2|. This is because at most
two of the spurs and/or external 2-cells lie at the endpoints of P and J, and since
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((n — 2)/n) > 1/2, no such spur or 2-cell can lie along J because it would contradict
that J is a geodesic. If D is a ladder then either \P\ < K \J\ or for some 2-cell R at
the end of D there is a path Q in 3/? such that Q is a subpath of P and | £>| > | W1"11.

For a 1 -cell e of X that occurs in the attaching map of W", we weight the sides at
e by (l/#(e)) where #{e) is the number of times that W passes through e. It follows
that Perimeter (e) is equal to n or 0 according as to whether or not e appears in the
attaching map W of the unique 2-cell/? of X. Let 5 be the path such that QSisacyclic
conjugate of W±n and observe that \S\ < 2 | W| and therefore Perimeter (S) < 2 | W| n.
Next observe that Weight (R) > 2« because Weight (R) is equal to n times the number
of distinct letters occurring in W which we assumed to be at least 2. Finally, since by
hypothesis n > | W\, we combine these inequalities to obtain

Perimeter (S) < 2 | W\ n < Inn < n Weight (R)

and we are done. •

6. Freiheitssatz and asphericity

In this section we provide tower proofs of the Freiheitssatz and asphericity theorems
for staggered 2-complexes. We refer the reader to [6, III.9.5] for a combinatorial proof
of the Freiheitssatz for staggered presentations. Our proof follows Howie's approach
in [3] very closely.

THEOREM 6.1. Let X be a staggered 2-complex. Let Z C X be a connected
subcomplex with the property that

(1) if C is a 2-cell ofX with d C C Z then C C Z, and
(2) the ordered I-cells ofX contained in Z form an interval,

then it\Z —• 7T{X is injective.

PROOF. Consider a reduced disc diagram <p: D -> X for a closed path P —>• Z.
We will show that D maps to Z and thus P is null-homotopic in Z.

If every ordered 1-cell in 4>(D) is contained in Z, then by property 1, every 2-cell
in D would map to Z. Arguing by contradiction, suppose that some ordered 1-cell
of 4>{D) is not contained in Z. By reversing the ordering of the 1-cells if necessary,
we assume without loss of generality that (p(D) contains a greater 1-cell than Z does.
Now consider a maximal tower lift

D
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and observe that the top 1 -cell e of Y does not map to Z. But 3D maps to Z because
P Factors through 3D and P maps to Z. So no preimage of e can lie in 3D. It follows
that since e is in the image of D —> Y, e must lie on the boundary of some 2-cell
in Y. Consequently e is max a where a is the top 2-cell of Y. But this contradicts
Lemma 4.1 which asserts that each preimage of e lies in 3 D. •

The following special case of the above result is a direct generalization of the
classical Freiheitssatz for one-relator groups.

COROLLARY 6.2. Let X be a staggered 2-complex, and let Y C X consist of the
subgraph of unordered l-cells, then for any choice of basepoints, Tt\Y —> Ti\X is
injective.

DEFINITION 6.3. The 2-complex X is said to be combinatorially reducible provided
that any spherical diagram S -*• X has a cancelable pair of 2-cells.

We refer the reader to Bogley and Pride [1, V.2.1] for a detailed account of the
various asphericity notions that appear in the literature. Their account is not given in
terms of diagrams, but rather in the equivalent language of pictures. Briefly, we note
that if X is combinatorially reducible and if no 2-cell of X is attached by a proper
power, and X has no pair of 2-cells with the same attaching map, then X is aspherical
in the traditional sense that the universal cover X is contractible.

The asphericity of the standard 2-complexes of cyclically reduced one-relator pre-
sentations where the relator is not a proper power was first determined by Lyndon in
[5]. We also refer the reader to [6, III.9.7] for a combinatorial proof.

THEOREM 6.4. Every staggered 2-complex is combinatorially reducible.

PROOF. Let S ->• X be a reduced spherical diagram. Let 5 ->• Y be a maximal
tower lift of S —> X. By Lemma 3.1, 5 —> Y is reduced. To complete the proof, we
apply Lemma 4.1 to see that there is a 1-cell on dS which is ridiculous. •
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