
Cite this article: Beernaert, T., Etman, P., De Bock, M., Classen, I., De Baar, M. (2021) ‘Tracing the Emergence of
Design Problems and Their Impacts on the Complexity of Engineering Solutions’, in Proceedings of the International
Conference on Engineering Design (ICED21), Gothenburg, Sweden, 16-20 August 2021. DOI:10.1017/pds.2021.584

ICED21 3229

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED21
16-20 AUGUST 2021, GOTHENBURG, SWEDEN

ICED21 1

TRACING THE EMERGENCE OF DESIGN PROBLEMS AND
THEIR IMPACTS ON THE COMPLEXITY OF ENGINEERING
SOLUTIONS

Beernaert, Torben (1);
Etman, Pascal (2);
De Bock, Maarten (3);
Classen, Ivo (1);
De Baar, Marco (1)

1: Dutch Institute For Fundamental Energy Research (DIFFER), The Netherlands;
2: Eindhoven University of Technology, The Netherlands;
3: ITER Organization, France

ABSTRACT
The design of ITER, a large-scale nuclear fusion reactor, is intertwined with profound research and
development efforts. Tough problems call for novel solutions, but the low maturity of those solutions
can lead to unexpected problems. If designers keep solving such emergent problems in iterative design
cycles, the complexity of the resulting design is bound to increase. Instead, we want to show designers
the sources of emergent design problems, so they may be dealt with more effectively. We propose to
model the interplay between multiple problems and solutions in a problem network. Each problem and
solution is then connected to a dynamically changing engineering model, a graph of physical
components. By analysing the problem network and the engineering model, we can (1) derive which
problem has emerged from which solution and (2) compute the contribution of each design effort to
the complexity of the evolving engineering model. The method is demonstrated for a sequence of
problems and solutions that characterized the early design stage of an optical subsystem of ITER.

Keywords: Large-scale engineering systems, Complexity, Problem solving, Functional modelling

Contact:
Beernaert, Torben
DIFFER
PEPD
Netherlands, The
t.f.beernaert@differ.nl

https://doi.org/10.1017/pds.2021.584 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.584

1 INTRODUCTION
Climate change is expected to dramatically impact our lives. If we want to avoid an ecological break-
down, we urgently need clean and sustainable energy sources. Nuclear fusion is a candidate technology
that could provide virtually unlimited energy. The technology is in the research and development (R&D)
stage and it is unclear how large-scale energy production through nuclear fusion can be made techno-
logically or economically viable. A global team of scientists and engineers is currently designing ITER,
the next experimental nuclear fusion reactor (ITER, n.d.).
ITER’s success depends on its designers’ capabilities to solve problems that have never been addressed
before. Critical subsystems of ITER are burdened with the challenges of measuring detailed plasma
properties under extreme conditions. As there are no standard solutions, ITER highly depends on new
materials and technologies through research and development.
Many of the solutions that are generated by an R&D process are still on a conceptual level; They are
not reliable and functional enough to be directly employed in an industrial setting. There are often open
problems or risks that still need attention. Some of these problems emerge as a direct consequence of the
designed solution. R&D usually addresses such emergent problems with more R&D. Hence the notion
of an R&D cycle. But the design evolves with every iteration in this cycle of problems and solutions. It
drifts further away from the original problem and is likely to grow in complexity. This is exactly where
R&D clashes with project management. Repetitive design cycles are a nightmare for budget limitations
and project deadlines. The complexity of the resulting design can also be a source of integration risks.
So the question is: How can designers create a mature solution with minimum complexity in as few
design iterations as possible? One elegant approach would be to reduce the amount of emergent prob-
lems by reconsidering earlier solutions. But therefore it is necessary to make designers aware of the
impact of their design solutions. As a first step, we present a method that aims to support designers in
effectively solving problems throughout iterative design cycles.
We propose to track the dynamic design development in a directed network of problems and solutions.
This network shows which problem is solved by which solution, and which solution has given which
problem. An important assumption is that problems and solutions can be related to engineering elements
of the design, such as functions, components or variables. This assumption allows us to do two things:
we can logically determine dependencies between problems and solutions that may have otherwise been
overlooked, and we can compute the contribution of each solution to the complexity of the design.
Figure 1 explains the method, considering the simplified design of an optical diagnostic system during
two consecutive iterations. Each iteration incrementally evolves the design, represented by a graph of
physical components. The initial design problem p1 is related to three components. In the first iteration,
a solution s1 is proposed to solve p1, introducing new components to the design. But at the end of this
iteration, a new problem p2 is identified. Because p2 is related to a component that was introduced by s1,
we say that p2 has emerged from s1! If s1 would change or be removed, then so would p2. In the second
iteration, the emergent p2 is solved by s2, which involves the addition of yet another component. The
complexity of the design, computed from the graph structure, increases throughout the design iterations.

Figure 1. Four snapshots at times i of an early design effort. The top row shows causal
relations between encountered problems and designed solutions in a problem network GP.
The bottom row shows how a corresponding engineering model GE grows in complexity.

3230 ICED21
https://doi.org/10.1017/pds.2021.584 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.584

The outline of the paper is as follows. Section 2 contains relevant literature regarding nuclear fusion
engineering and engineering design. In Section 3, we introduce the concept of a problem network (the
top half of Figure 1) to trace how design problems emerge from solutions. In Section 4, problems and
solutions are related to an engineering model (the bottom half of Figure 1). Finally, Section 5 describes
a demonstration of the method, considering the early design of the Visible Spectroscopy Reference
System (VSRS), an optical diagnostic subsystem of ITER. We identify dependencies between tracked
problems and solutions, and observe the growing complexity of the associated engineering model.

2 DEFINITIONS AND RELEVANT LITERATURE
Summers & Shah (2010) recognize three main concepts in engineering design: the design problem,
the design process and the design product. The design problem is a statement of requirements, needs,
functions or objectives. It is the input of a design process, the search for a solution. The output of the
design process is the design product, but we use the term ’solution’ to denote this output.
Although Summers & Shah (2010) define the design problem as a structured representation of a spe-
cific question or situation, in practice design problems are ill-defined and ill-structured (Jonassen et al.,
2006). Often they are even interpreted, structured and formulated by the designers themselves (Daly
et al., 2012). This is most notably the case in design processes that rely heavily on R&D.
The design of ITER is a perfect example. The hostile environment inside the reactor poses huge prob-
lems to the diagnostic subsystems (Feder et al., 2015). A ubiquitous problem for optical diagnostics is
the decrease in performance of plasma-facing mirrors suffering from this environment (Litnovsky et al.,
2019). Hopes are that an active cleaning system, which is currently in development (Ushakov et al.,
2020), can effectively mitigate this problem. But given the low maturity of this technology, it is likely
that new problems emerge during its development. These would have to be addressed in subsequent
iterations, extending the chain of problems and solutions. In order to converge on a final solution, the
amount of emerging problems has to be lower than the amount of problems that are being solved.
Are emergent problems always bad? No, not at all! In fact, they may be helpful milestones in a complex
problem solving process. Systematic approaches often consider some form of subsequent problem-
solution pairs (Pahl et al., 2007). See for example function-means analysis (Burge, 2006) or multi-stage
decision making (Høyland & Wallace, 2001). Even the systems engineering V-model may be regarded
as a translation from a complex design problem to multiple simpler ones (Forsberg et al., 2005).
However, we focus on the case where problems are undesired and emerge unintentionally. New product
development typically involves learning during the design process (Simpson et al., 1998). Therefore,
new problems could emerge because an existing problem is better understood or because of new insights
about a designed solution. Any emergent problem is likely to lead to another design iteration and another
solution, increasing the complexity of the overall design process and the overall solution.
Engineering design revolves around various elements, such as requirements, functions, components and
variables (Pahl et al., 2007). Model-Based Systems Engineering (MBSE) is an engineering methodology
where these elements and their interdependencies are captured in models (Wymore, 2018). In the context
of MBSE, a solution is a model of the physical realisation of a design. We consider it as an arrangement
of interconnected physical components. Such a solution can be interpreted as a graph G = (V,E), where
vertices V are components and edges E are dependencies between them. Figure 1 displays an example.
During subsequent design iterations, the graph evolves as components are added or removed.
Complexity is an attribute of a solution that is commonly approached via its graph representation. The
graph of a complex solution features many components that are tightly coupled. Such a solution is
generally assumed to be a significant source for unexpected costs, time delays and technical risk. To
gain insight into the complexity of a solution, one could simply plot it as a network or block diagram
(e.g. the bottom row in Figure 1). However larger graphs are better depicted in a matrix form, such
as an adjacency matrix, N 2-chart or a Design Structure Matrix (DSM) (Eppinger & Browning, 2012).
Alternatively, complexity can be computed from the mathematical properties of the graph. Sinha & de
Weck (2013) propose the following formula to determine complexity C of graph G:

C(G) = C(G;α,β) =
N∑

i=1

αi +

 N∑
i=1

N∑
j=1

βij Aij

 E(A)
N

(1)

ICED21 3231
https://doi.org/10.1017/pds.2021.584 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.584

where N is the number of vertices, αi is the internal complexity of vertex i, βij is the complexity of
edge (vi,vj), A is the binary adjacency matrix of the graph, and E(A) is the matrix energy, which can
be obtained through singular value decomposition. Sinha & de Weck (2013) posit that development
costs increase super-linearly with C. Raja et al. (2019) used Equation 1 to determine the complexity of
integrated load-carrying structures in an aerospace application. For a recent overview of network-based
metrics for engineering systems, we refer to Giota et al. (2017).
In conclusion, there seems to be much knowledge about solving constant design problems and for-
malizing the complexity of static engineering models. But in R&D and new product development, the
design problem and the design solution are typically uncertain. Overlooking the dynamics of problem
that emerge from this uncertainty will lead to a long design process resulting in a complex solution. In
order to reconcile the exploratory nature of such design processes with the need to implement a timely
and cost-effective solution, we set out to investigate the emergence of new design problems and how
they affect the continuously evolving design solution.

3 THE EMERGENCE OF NEW DESIGN PROBLEMS
We need a way to interpret the relations between design problems and solutions through iterative cycles.
We picture problems and solutions in a problem network, showing a snapshot of the design at a moment
in time. New solutions and problems are added as the design evolves, creating an extended network.
Figure 2 displays a problem network, the accumulated design problems and the accumulated design
solutions. This figure will serve as an example for the following clarifications.
The problem network is a directed graph GP({P,S}, {Dd,De,Dp ,Ds}), where vertices represent a set of
problems P = {p1,p2, ...} and solutions S = {s1,s2, ...}. Edges represent four possible kinds of relations
between them. We distinguish design dependencies Dd (p → s), emergence dependencies De (s→ p),
problem dependencies Dp (p · · ·p) and solution dependencies Ds (s · · ·s). The descendants D(v) of vertex
v are defined as the collection of all vertices that can be reached by following directed edges starting
from v. In the shown network, we find D(s1) = {p2,p4,s3} and D(p3) = {p4,s3,s4}.

Figure 2. Problems p and solutions s are connected in a problem network. Problems p2, p3
and p4 have emerged from solutions that were designed to solve p1.

Design and emergence dependencies signify cause-effect relationships: The vertex at an arrow’s head
exists as a consequence of the vertex at its tail. For example, problem p1 has led to solution s1 by
design, and solution s1 has led to problem p2 by emergence. A problem can emerge from a combination
of multiple solutions, such as problems p2 and p4. Similarly, a solution can contribute to solving multiple
problems, such as s3. A problem may be solved by multiple solutions at the same time. If they could
not exist independently, they should be regarded as a single solution. For example, we could reduce
contamination on an optical mirror by adding both a protective shutter and an active cleaning system.
Problem and solution dependencies signify general overlaps between the scopes of problems or solu-
tions. These overlaps could be beneficial or troublesome, but designers should definitely take them into
account. Two problems are dependent if they are contradicting, where any solution that mitigates one of
the problems is likely to worsen the other. A problem dependency may also indicate alignment between
problems when they are potentially solved with a single solution. Two solutions are dependent if they
could or need to be integrated together. In some cases it may be less costly to develop two solutions
together rather than independently, but in other cases this leads to new challenges.
Figure 2 shows that a designer has attempted to solve problem p1 via two solutions s1 and s2. However, it
has become clear that problems p2, p3 and p4 have emerged from these solutions. So s3 and s4 have been
implemented to deal with the emerged problems. Let it be clear that s3 and s4 do not contribute to the

3232 ICED21
https://doi.org/10.1017/pds.2021.584 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.584

original problem p1 directly. They merely solve the problems that emerged from s1 and s2. No solution
has yet been designed for problem p4, so the design in Figure 2 may need another design iteration.
The designer could now solve p4 with a new design effort. But the graph shows that it may be worth
reconsidering to change the design of s1 or s4 in such a way that p4 is suppressed or simplified. If it would
even be possible to remove s1 completely, all its descendants would disappear too. Then the remaining
problems would reduce to P = {p1,p3} and the necessary solution would reduce to S = {s2,s3,s4}.

3.1 Problem severity and solution effectiveness
The definition of the problem network as a graph allows us to introduce weights to its vertices and edges.
Problems and solutions are attributed a ’severity’-weight and an ’effectiveness’-weight, respectively.
The severity of problem p is denoted as |p| and can be defined upon its identification. It should be the
objective of any connected solution to minimize |p|. The effectiveness of solution s is denoted as |s| and
is defined by how well it reduces the severity of connected problems.
Consider the optical mirror that is contaminated by isotopes emitted from a fusion plasma —problem p2
in Figure 1. The severity of this problem may be defined as the build-up of the contamination layer over
the lifetime of the mirror. An initial estimate could give |p2| = 50 nm. If s2 is an active cleaning system
that can remove 30 nm of build-up, then |s2| = 30 nm and |p2| = 20 nm. If we would add a protective
shutter s3 that can prevent 10 nm of build-up, |p2| will further reduce to 10 nm.
Problem p2 is solved for 60% by s2 and for 20% by s3. These percentages can be interpreted as weights
of the design dependencies, indicating how heavily a problem relies on a specific solution. In this case,
w(p2,s2) = 0.6 and w(p2,s3) = 0.2. The designer now has to decide whether to make the existing solutions
more effective, to introduce new solutions or to accept the remaining problem severity |p2| = 10 nm.
For now we consider only linear problems with a scalar severity, meaning that the effectiveness of
a solution is independent of any other solution. However in practice, problems and solutions can be
coupled in a more complex manner. Consider the situation where it becomes progressively more difficult
to remove material from the mirror surface. Then it matters in which order solutions are applied and it
becomes difficult to isolate each contribution. We advise to normalize the severity of problems in any
situation, so that solutions can be easily compared.
Finally, a solution may also contribute to the mitigation of multiple problems. In this case, we sum the
contribution to each problem, acquiring solution effectiveness as:

|s| =
∑

w(pi,s)|pi| ∀ pi | (pi,s) ∈ Dd (2)

where w(pi,s) is the weight of a design dependency between s to pi.

4 THE PROBLEM NETWORK AND THE ENGINEERING MODEL
In the previous sections we have introduced a way to visualize problem emergence. Now we are in
need of a mechanism that explains which problem has emerged from which solution. In this section we
propose such a mechanism via the interplay between two dynamically evolving graphs: the problem
network and the engineering model, depicted in the top and bottom half of Figure 1 respectively. This
interplay is exploited to identify dependencies in the problem network and to compute the impact of
each solution on the complexity of the engineering model.
Problems and solutions are identified and implemented at discrete steps i in time, corresponding to
columns in Figure 1. Hence, we denote the time-dependent graphs of the problem network and the
engineering model as GP

i and GE
i , respectively. At time i, problems Pi = {pi1,pi2,pi3, . . . } are identified

and solutions Si = {si1,si2,si3, . . . } are implemented.
We assume that problems and solutions can be represented by a set of physical components and interac-
tions. That is, each problem pij and solution sij is related to a subgraph of GE

i , denoted by Gpij and Gsij .
For example, the contaminated mirror problem p2 relates to Gp2 = ({v1,v2},(v1,v2)), where v1 is the
plasma, v2 is the mirror and (v1,v2) is the particle flux between them. The cleaning solution s2 relates
to Gs2 = ({v2,v3},(v2,v3)), where v3 is the cleaning system and (v2,v3) is the electrical power between
cleaning system and mirror.

ICED21 3233
https://doi.org/10.1017/pds.2021.584 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.584

Problems can only relate to components of the engineering model graph that already existed at the
previous time step, but solutions can introduce new components to the engineering model. We denote
the subset of Gsij that is new in the model as G+sij

. In our example G+s2
= ({v3},(v2,v3)).

The initial engineering model is given by the union of the root problems: GE
0 =

⋃
{Gp01 ,Gp02 ,Gp03 , ...}.

As new components are introduced by solutions, the graph of the engineering model grows according
to GE

i+1 =
⋃
{GE

i ,Gsi1 ,Gsi2 ,Gsi3 , . . . }.

4.1 Deriving dependencies
Design dependencies Dd are usually well known by designers. That is, they know which solution is
designed to mitigate which problem. But it can be more challenging to see where a specific problem
comes from (emergence dependency de(s,p)), which solutions should be designed together (solution
dependency ds(si,sj)) and which problems could contain overlaps or contradictions (problem depen-
dency dp(pi,pj)). For given sets of identified problems {P0,P1,P2, . . . } and implemented solutions
{S0,S1,S2, . . . }, we propose to logically derive De, Ds and Dp . We do this by analysing the subgraphs of
problems and solutions in the engineering model domain.
Firstly, we derive emergence dependencies by the following logic:

De =
{
(s,p) ∀ s,p | G+s ∩ Gp 6= ∅

}
(3)

A problem pij emerges from a solution sij if sij has introduced a new component that is a part of the
representation of pij . Referring to our contaminated mirror example; If we identify a new problem p3
with the cleaning system (v3 ∈ Gp3), Equation 3 will identify emergence dependency de(s2,p3) because
the cleaning system was introduced by s2 and therefore G+s2

∩ Gp3 = {v3}.
With these emergence dependencies known, it is possible to construct the causal structure of the problem
network and to define the descendants of each problem and solution. This definition is necessary to
identify problem and solution dependencies as:

Dp =

{
(p1,p2) ∀ p1,p2 6= p1

∣∣∣∣ Gp1 ∩ Gp2 6= ∅

p1 /∈ D(p2) ∧ p2 /∈ D(p1)

}
(4)

Ds =

{
(s1,s2) ∀ s1,s2 6= s1

∣∣∣∣ Gs1 ∩ Gs2 6= ∅

s1 /∈ D(s2) ∧ s2 /∈ D(s1)

}
(5)

There exists a dependency between any two solutions or problems in the problem network if (1) their
definitions overlap in the engineering model, i.e. if they share the same component or function, and if
(2) they did not indirectly cause each other. This logic only identifies the existence of a relation. Its
weight and consequences would have to be determined differently.

4.2 Complexity impact
Implemented solutions always introduce new components to an engineering model. These new compo-
nents and their new interactions contribute to the complexity of the overall design. As such, solutions
have a direct impact on the complexity of the graph representation of the engineering model. We define
the local and global impact of solution si that is implemented in GE

i :

1CL(si) = C
(⋃
{GE

i ,G+si
}

)
− C

(
GE

i
)

1CG(si) = C
(⋃
{GE

i ,Gsi , Gsj ∀ sj ∈ D(si)}
)
− C

(
GE

i
) (6)

Where C(GE) is the complexity of graph GE , see Equation 1. The local complexity impact is equal to
the difference between the complexity of the graph before and after implementation of si, and reflects
the increase due to any new components. However at a later stage, unanticipated problems that have
emerged from si will have to be solved by the additional solutions in D(si). The additional effect of these
solutions is accounted for in the global complexity impact. In Figure 1, 1CL(s1) = C(GE

1)− C(GE
0) =

9.4 and 1CG(s1) = C(GE
3)− C(GE

0) = 13.6.

3234 ICED21
https://doi.org/10.1017/pds.2021.584 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.584

5 DEMONSTRATION FOR ITER
We have introduced the concepts of a problem network and how it can be related to components in
an engineering model. Now, we demonstrate the application of the presented method on the early
architectural design of the VSRS, where a functional model is updated while design decisions are made.
The functional model is specified using the Elephant Specification Language (Wilschut et al., 2017), and
comprises a rich structure of components, functions, requirements and variables over multiple layers of
decomposition. However, in this demonstration we reduce the model to a simplified set of components
and the interfaces between them on a single layer of decomposition.
Over the course of several weeks of design, design problems were identified and preliminary solutions
were implemented. Table 1 shows these problems and solutions as they appeared over time. Column
4 shows the normalized severity of an identified problem |p| or the normalized contribution w(p ,s) of a
solution to a problem. Design dependencies, which solutions contribute to which problems, are implic-
itly specified by w(p ,s). Columns 5 and 6 contain the definition of the problem or solution in terms of
components (graph vertices) and interfaces (graph edges) of an engineering model. The name of each
component can be read from Figure 3.

Table 1. The input information for the demonstrated method: identified problems p and
implemented solutions s in the early architectural design of the VSRS.

i Object Description |p| or w(p ,s) Components Interfaces

0 p1 The heating beam may damage the
wall if the plasma becomes too thin.

|p1| = 3 v1, v2, v3 (v1,v2), (v2,v3)

1 s1 Measure plasma properties via vis-
ible spectroscopy. Shut down heat-
ing beam if shinethrough detected.

w(p1,s1) = 0.9 v1, v4, v5, v6,
v7, v8

(v2,v4), (v3,v6),
(v4,v5), (v5,v7),
(v6,v4), (v7,v8),
(v8,v1)

2 p2 Plasma contaminates the mirror. |p2| = 2 v4 (v2,v4)

3 s2 Protect mirror with shutter. w(p2,s2) = 0.3 v9 (v2,v9), (v9,v4)

4 p3 Optical properties of instruments
may change, reducing accuracy.

|p3| = 1 v4, v5 (v4,v5), (v5,v7)

5 s3 Use a calibrated light source to reg-
ularly determine optical properties.

w(p2,s3) = 0.1,
w(p3,s3) = 0.9

v9, v10 (v9,v4), (v4,v10),
(v4,v5), (v5,v7)

6 p4 Thermal expansion of vacuum wall
causes optical misalignment.

|p4| = 1 v3, v6, v4 (v3,v6), (v6,v4)

7 s4 Measure misalignment and move
mirror accordingly.

w(p4,s4) = 1 v11, v12, v6 (v11,v12), (v12,v4)

8 s5 Add an active cleaning system. w(p2,s5) = 0.5 v11, v13 (v11,v13), (v13,v4)

Problem p1 is the original design problem that cannot be influenced. But is this also true for problems p2,
p3 and p4? And how did each designed solution contribute to the overall complexity of the engineering
model? The information in Table 1 will be analysed according to the method in order to provide answers.
We present the dependencies between problems, solutions and the engineering model in a Multi-Domain
Matrix (MDM), Figure 3. By convention, an off-diagonal entry in the matrix indicates that row element
y depends on column element x, i.e. that there is an edge x→ y in the equivalent graph.
The top left matrix represents the engineering model as a conventional component DSM. This matrix can
be compiled from columns 5 and 6 in Table 1 without additional analysis. As five subsequent solutions
were implemented, the model has expanded from three to thirteen components. We emphasized the
sections of this DSM to show the graphs {GE

0 , ...,GE
8 } at different timesteps.

5.1 Problem severity and solution effectiveness
Column 4 in Table 1 quantifies the severity of each problem and the contribution of each solution to
mitigating a problem. From Equation 2, we can compute the effectiveness of each solution. The initial

ICED21 3235
https://doi.org/10.1017/pds.2021.584 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.584

Figure 3. A Multi-Domain Matrix displays the engineering model, the problem network and
the interactions between them. The red circle highlights the source for emergence and

problem dependencies. The green circles signify the source of two solution dependencies.

problem severity and the computed solution effectiveness are printed on the diagonal of the problem
network DSM. One can easily identify how well each problem is addressed by going through its design
dependencies in the P→ S matrix. For example, p2 is mitigated by s2, s3 and s5 for a total of 90%.

5.2 Deriving dependencies
The bottom left matrix shows the mapping between the components in the engineering model (column
5) and the problems and solutions in the problem network (column 2). Here, Equation 3 finds three
emergence dependencies. Problems p2, p3 and p4 all involve the mirror v4. Because this component was
introduced by s1, we say that p2, p3 and p4 emerged from s1. If the design of the mirror in s1 would
change, then these problems would be affected too. The emergence dependencies are indicated in the
S→ P matrix. When read per row, this matrix shows us the sources of a specific problem. When read
per column, it shows us the consequences of a specific solution.
Because p2, p3 and p4 are all related to the mirror, Equation 4 tells us that these problems are related by
an entry in the P→ P matrix. We also see that s2 and s3 both make use of the shutter, and that s4 and
s5 both depend on the controller. Equation 5 identifies the entries in the S→ S matrix.

5.3 Complexity impact
All solutions introduce new components to the model and increase its complexity in a sequence of
graphs GE

0 , . . . ,GE
8 . Figure 3 shows a table with the local and global complexity impact of each solution.

These values are computed from Equations 1 and 6, where α = 1 and β = 1.
The initial engineering model contains three components, leading to a complexity of C(GE

0) = 6.8.
Solution s1 has added five new components, expanding the engineering model to GE

1 with C(GE
1) =

31.4. The local complexity impact of s1 is therefore 31.4− 6.8 = 24.6.
The global complexity impact of s takes into account the impact of follow-up solutions that deal with
problems that emerged from s. Therefore, it can only be computed after emergence dependencies are
derived. From the S→ P matrix, we can see that p2, p3 and p4 have emerged from s1. These problems
have led to solutions s2 to s5. The components that are introduced by these solutions are considered in

3236 ICED21
https://doi.org/10.1017/pds.2021.584 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.584

the global complexity impact of s1. In this case, we use Equation 6 to calculate 1CG(s1) = C(GE
8)−

C(GE
0) = 46.8. So, at i = 8 it turned out that s1 is responsible for more complexity than thought initially.

Figure 4 shows the complexity of the engineering model over time, mapped to a spread out problem
network. Note that this view does not contain any new data respective to Figure 3, but merely presents
it in a different way. To some it may be easier to trace dependencies in this graph, although the MDM
is more compact and can be better scaled. We can easily see the difference between the local and global
impact on complexity due to s1. No problems have emerged from s2, and therefore1CG(s2) = 1CL(s2).

Figure 4. The complexity of the engineering model grows (top) as it is impacted by solutions
si in the problem network (bottom). At i = 8, we learn that s1 has more impact on complexity

than initially expected: 1CG(s1) > 1CL(s1).

5.4 Risk analysis
The MDM does not only show the needs and consequences for specific design solutions. It can also be
used as a risk analysis tool, as it contains paths that tell us which problems may occur when a certain
component fails during operation. If we are interested in the consequences of a motor failure, we follow
the blue arrows starting at v12. The motor is a part of the active alignment system solution s4. A failure of
this solution leads to misalignment of the VSRS p4. This means that the VSRS cannot properly monitor
the plasma s1 any more and that the wall of ITER may be damaged p1. As such, we have established a
causal chain from the motor component to the integrity of the wall.

We have demonstrated the proposed method in the context of the early design of the VSRS. Therefore,
all problems and solutions were within the scope of a single design team. But we expect that the phe-
nomenon of problem emergence plays a greater role as the scale of the design effort increases. After
all, the VSRS in itself is simply one intermediate solution in the enormous problem network of ITER,
spanning a design process of multiple decades and thousands of design and research teams.

6 CONCLUSION
Designers are problem solvers. But due to the conceptual level of solutions in research and develop-
ment processes, new problems may emerge unintentionally. Since it is difficult to track which problem
emerged from which solution, the straightforward response is to solve emergent problems in subsequent
design iterations. However, these may incur even more problems and more design features.
This way of problem solving leads to numerous design iterations. The resulting design, an arrangement
of interconnected physical components, is bound to be overly complex. We believe that a profound
understanding of the origins of emergent problems will lead to better designs in fewer design iterations.
We present a method to investigate the interplay between problems and solutions through iterative
design cycles. A network of problems and solutions shows us that instead of solving an emergent
problem, it may be suppressed by changing an earlier solution.
Problems and solutions in this network are related to the components of a growing engineering model.
This link allows us to derive which problem has emerged from which solution and to compute the
contribution of each solution to the complexity of the design.

ICED21 3237
https://doi.org/10.1017/pds.2021.584 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.584

The method is demonstrated for the early design iterations of an optical diagnostic system in plasma
fusion applications. The input for our method are problems and solutions as they were identified and
implemented over time, each described in terms of physical components. We could derive which prob-
lem has emerged from which solution and observe the evolution of an engineering model. Finally, the
method showed the contribution of each solution to the complexity of the engineering model.
We encourage designers to be aware of the problems and solutions in their design, by giving them the
tools that point at the right problems. Sometimes, avoiding a problem is better than solving it.

DISCLAIMER

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

REFERENCES

Burge, S. 2006. Function Means Analysis (FMA): Alias Morphological Analysis. In: The Systems Engineering
Tool Box.

Daly, S. R., Adams, R. S., & Bodner, G. M. 2012. What Does it Mean to Design? A Qualitative Investigation of
Design Professionals’ Experiences. Journal of Engineering Education, 101(2), 187–219.

Eppinger, S. D., & Browning, T. R. 2012. Design Structure Matrix Methods and Applications. 1 edn. MIT Press.
Feder, R., Zhai, Y., Johnson, D., Zolfaghari, A., Wood, R., Reichle, R., DeBok, M., Graves, V., Klepper, C.,

Biewer, T., Rowan, B., & Phillips, P. 2015. Engineering challenges for ITER diagnostic systems. Pages 1–7
of: 2015 IEEE 26th Symposium on Fusion Engineering (SOFE). Austin, TX, USA: IEEE.

Forsberg, K., Mooz, H., & Cotterman, H. 2005. Visualizing Project Management. 3 edn. New York, NY: John
Wiley & Sons.

Giota, P., Alex, D., Caroline, V., & Malcolm, R. 2017. System Architectures Assessment Based On Network
Metrics. 11.

Høyland, K., & Wallace, S. 2001. Generating Scenario Trees for Multistage Decision Problems. Management
Science, 47(2), 295–307.

ITER. ITER - the way to new energy. http://www.iter.org.
Jonassen, D., Strobel, J., & Lee, C. B. 2006. Everyday Problem Solving in Engineering: Lessons for Engineering

Educators. Journal of Engineering Education, 95(2), 139–151.
Litnovsky, A., Voitsenya, V.S., Reichle, R., Walsh, M., Razdobarin, A., Dmitriev, A., Babinov, N., Marot, L.,

Moser, L., Yan, R., Rubel, M., Widdowson, A., Moon, S., Oh, S.G., An, Y., Shigin, P., Orlovskiy, I.,
Vukolov, K.Yu., Andreenko, E., Krimmer, A., Kotov, V., Mertens, Ph., & Specialists Working Group on
First Mirrors of the ITPA Topical Group on Diagnostics. 2019. Diagnostic mirrors for ITER: research in the
frame of International Tokamak Physics Activity. Nuclear Fusion, 59(6), 066029.

Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. 2007. Engineering design: a systematic approach. 3 edn.
London: Springer.

Raja, V., Kokkolaras, M., & Isaksson, O. 2019. A simulation-assisted complexity metric for design optimization
of integrated architecture aero-engine structures. Structural and Multidisciplinary Optimization, 60(1),
287–300.

Simpson, T. W., Rosen, D., Allen, J. K., & Mistree, F. 1998. Metrics for Assessing Design Freedom and
Information Certainty in the Early Stages of Design. Journal of Mechanical Design, 120(4), 628-635.

Sinha, K., & de Weck, O. L. 2013. A network-based structural complexity metric for engineered complex
systems. Pages 426–430 of: 2013 IEEE International Systems Conference (SysCon). Orlando, FL: IEEE.

Summers, J. D., & Shah, J. J. 2010. Mechanical Engineering Design Complexity Metrics: Size, Coupling, and
Solvability. Journal of Mechanical Design, 132(2), 021004.

Ushakov, A., Verlaan, A., Stephan, U., Steinke, O., de Bock, M., Maniscalco, M. P., & Verhoeff, P. 2020. ITER
visible spectroscopy reference system first mirror plasma cleaning in radio-frequency gas discharge –
circuit design and plasma effects. Fusion Engineering and Design, 154(May), 111546.

Wilschut, T., Etman, L. F. P., Rooda, J. E., & Vogel, J. A. 2017. Multi-level function specification and architecture
analysis using ESL: A lock renovation pilot study. In: Proceedings of the ASME 2018 International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference.

Wymore, A. W. 2018. Model-based systems engineering. Vol. 3. CRC press.

3238 ICED21
https://doi.org/10.1017/pds.2021.584 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.584

