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Abstract
In this note, we consider dynamic assortment optimization with incomplete information under the capacitated
multinomial logit choice model. Recently, it has been shown that the regret (the cumulative expected revenue loss
caused by offering suboptimal assortments) that any decision policy endures is bounded from below by a constant
times

√
𝑁𝑇 , where 𝑁 denotes the number of products and 𝑇 denotes the time horizon. This result is shown under

the assumption that the product revenues are constant, and thus leaves the question open whether a lower regret rate
can be achieved for nonconstant revenue parameters. In this note, we show that this is not the case: we show that,
for any vector of product revenues there is a positive constant such that the regret of any policy is bounded from
below by this constant times

√
𝑁𝑇 . Our result implies that policies that achieve O(√𝑁𝑇) regret are asymptotically

optimal for all product revenue parameters.

1. Introduction

In this note, we consider the problem of assortment optimization under the multinomial logit (MNL)
choice model with a capacity constraint on the size of the assortment and incomplete information about
the model parameters. This problem has recently received considerable attention in the literature (see,
e.g., [1–7,9,10]).

Two notable recent contributions are from Agrawal et al. [1,2], who construct decision policies based
on Thompson Sampling and Upper Confidence Bounds, respectively, and show that the regret of these
policies—the cumulative expected revenue loss compared with the benchmark of always offering an
optimal assortment—is, up to logarithmic terms, bounded by a constant times

√
𝑁𝑇 , where 𝑁 denotes

the number of products and 𝑇 � 𝑁 denotes the length of the time horizon. These upper bounds are
complemented by the recent work from Chen and Wang [3], who show that the regret of any policy is
bounded from below by a positive constant times

√
𝑁𝑇 , implying that the policies by Agrawal et al.

[1,2] are (up to logarithmic terms) asymptotically optimal.
The lower bound by Chen and Wang [3] is proven under the assumption that the product revenues are

constant—that is, each product generates the same amount of revenue when sold. In practice, it often
happens that different products have different marginal revenues, and it is a priori not completely clear
whether the policies by Agrawal et al. [1,2] are still asymptotically optimal or that a lower regret can be
achieved. In addition, Chen and Wang [3] assume that 𝐾 , the maximum number of products allowed in
an assortment, is bounded by 1

4 · 𝑁 , but point out that this constant 1
4 can probably be increased.

In this note, we settle this open question by proving a
√
𝑁𝑇 regret lower bound for any given vector of

product revenues. This implies that policies with O(√𝑁𝑇) regret are asymptotically optimal regardless
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of the product revenue parameters. Furthermore, our result is valid for all 𝐾 < 1
2𝑁 , thereby confirming

the intuition of Chen and Wang [3] that the constraint 𝐾 � 1
4𝑁 is not tight.

2. Model and main result

We consider the problem of dynamic assortment optimization under the MNL choice model. In this
model, the number of products is 𝑁 ∈ N. Henceforth, we abbreviate the set of products {1 . . . , 𝑁} as
[𝑁]. Each product 𝑖 ∈ [𝑁] yields a known marginal revenue to the seller of 𝑤𝑖 > 0. Without loss of
generality due to scaling, we can assume that 𝑤𝑖 � 1 for all 𝑖 ∈ [𝑁]. Each product 𝑖 ∈ [𝑁] is associated
with a preference parameter 𝑣𝑖 � 0, unknown to the seller. Each offered assortment 𝑆 ⊆ [𝑁] must
satisfy a capacity constraint, that is, |𝑆 | � 𝐾 for capacity constraint 𝐾 ∈ N, 𝐾 � 𝑁 . For notational
convenience, we write

A𝐾 := {𝑆 ⊆ [𝑁] : |𝑆 | � 𝐾}

for the collection of all assortments of size at most 𝐾 , and

S𝐾 := {𝑆 ⊆ [𝑁] : |𝑆 | = 𝐾}

for the collection of all assortments of exact size 𝐾 . Let 𝑇 ∈ N denote a finite time horizon. Then, at
each time 𝑡 ∈ [𝑇], the seller selects an assortment 𝑆𝑡 ∈ A𝐾 based on the purchase information available
up to and including time 𝑡 − 1. Thereafter, the seller observes a single purchase 𝑌𝑡 ∈ 𝑆𝑡 ∪ {0}, where
product 0 indicates a no-purchase. The purchase probabilities within the MNL model are given by

P(𝑌𝑡 = 𝑖 | 𝑆𝑡 = 𝑆) = 𝑣𝑖
1 + ∑

𝑗∈𝑆 𝑣 𝑗
,

for all 𝑡 ∈ [𝑇] and 𝑖 ∈ 𝑆 ∪ {0}, where we write 𝑣0 := 1. The assortment decisions of the seller are
described by his/her policy: a collection of probability distributions 𝜋 = (𝜋( · | ℎ) : ℎ ∈ 𝐻) on A𝐾 ,
where

𝐻 :=
⋃
𝑡 ∈[𝑇 ]

{(𝑆,𝑌 ) : 𝑌 ∈ 𝑆 ∪ {0}, 𝑆 ∈ A𝐾 }𝑡−1

is the set of possible histories. Then, conditionally on ℎ = (𝑆1, 𝑌1, . . . , 𝑆𝑡−1, 𝑌𝑡−1), assortment 𝑆𝑡 has
distribution 𝜋( · | ℎ), for all ℎ ∈ 𝐻 and all 𝑡 ∈ [𝑇]. Let E𝜋𝑣 be the expectation operator under policy 𝜋 and
preference vector 𝑣 ∈ V := [0,∞)𝑁 . The objective for the seller is to find a policy 𝜋 that maximizes
the total accumulated revenue or, equivalently, minimizes the accumulated regret:

Δ𝜋 (𝑇, 𝑣) := 𝑇 · max
𝑆∈A𝐾

𝑟 (𝑆, 𝑣) −
𝑇∑
𝑡=1
E𝜋𝑣 [𝑟 (𝑆𝑡 , 𝑣)],

where 𝑟 (𝑆, 𝑣) is the expected revenue of assortment 𝑆 ⊆ [𝑁] under preference vector 𝑣 ∈ V:

𝑟 (𝑆, 𝑣) :=
∑
𝑖∈𝑆 𝑣𝑖𝑤𝑖

1 + ∑
𝑖∈𝑆 𝑣𝑖

.

In addition, we define the worst-case regret:

Δ𝜋 (𝑇) := sup
𝑣∈V

Δ𝜋 (𝑇, 𝑣).

The main result, presented below, states that the regret of any policy can uniformly be bounded from
below by a constant times

√
𝑁𝑇 .
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Theorem 1. Suppose that 𝐾 < 𝑁/2. Then, there exists a constant 𝑐1 > 0 such that, for all 𝑇 � 𝑁 and
for all policies 𝜋,

Δ𝜋 (𝑇) � 𝑐1
√
𝑁𝑇.

3. Proof of Theorem 1

3.1. Proof outline

The proof of Theorem 1 can be broken up into four steps. First, we define a baseline preference vector
𝑣0 ∈ V and we show that under 𝑣0 any assortment 𝑆 ∈ S𝐾 is optimal. Second, for each 𝑆 ∈ A𝐾 , we
define a preference vector 𝑣𝑆 ∈ V by

𝑣𝑆𝑖 :=
{
𝑣0
𝑖 (1 + 𝜖), if 𝑖 ∈ 𝑆,
𝑣0
𝑖 , otherwise, (3.1)

for some 𝜖 ∈ (0, 1]. For each such 𝑣𝑆 , we show that the instantaneous regret from offering a suboptimal
assortment 𝑆𝑡 is bounded from below by a constant times the number of products |𝑆 \ 𝑆𝑡 | not in 𝑆; cf.
Lemma 1 below. This lower bound takes into account how much the assortments 𝑆1, . . . , 𝑆𝑇 overlap
with 𝑆 when the preference vector is 𝑣𝑆 . Third, let 𝑁𝑖 denote the number of times product 𝑖 ∈ [𝑁] is
contained 𝑆1, . . . , 𝑆𝑇 , that is,

𝑁𝑖 :=
𝑇∑
𝑡=1

1{𝑖 ∈ 𝑆𝑡 }.

Then, we use the Kullback–Leibler (KL) divergence and Pinsker’s inequality to upper bound the
difference between the expected value of 𝑁𝑖 under 𝑣𝑆 and 𝑣𝑆\{𝑖 }, see Lemma 2. Fourth, we apply a
randomization argument over {𝑣𝑆 : 𝑆 ∈ S𝐾 }, we combine the previous steps, and we set 𝜖 accordingly
to conclude the proof.

The novelty of this work is concentrated in the first two steps. The third and fourth step closely
follow the work of Chen and Wang [3]. These last steps are included (1) because of slight deviations in
our setup, (2) for the sake of completeness, and (3) since the proof techniques are extended to the case
where 𝐾/𝑁 < 1/2. In the work of Chen and Wang [3], the lower bound is shown for 𝐾/𝑁 � 1/4, but
the authors already mention that this constraint can probably be relaxed. Our proof confirms that this is
indeed the case.

3.2. Step 1: Construction of the baseline preference vector

Let 𝑤 := min𝑖∈[𝑁 ] 𝑤𝑖 > 0 and define the constant

𝑠 :=
𝑤2

3 + 2𝑤
.

Note that 𝑠 < 𝑤. The baseline preference vector is formally defined as

𝑣0
𝑖 :=

𝑠

𝐾 (𝑤𝑖 − 𝑠)
, for all 𝑖 ∈ [𝑁] .

Now, the expected revenue for any 𝑆 ∈ A𝐾 under 𝑣0 can be rewritten as

𝑟 (𝑆, 𝑣0) =
∑
𝑖∈𝑆 𝑣

0
𝑖𝑤𝑖

1 + ∑
𝑖∈𝑆 𝑣

0
𝑖

=
𝑠
∑
𝑖∈𝑆

𝑤𝑖
𝑤𝑖−𝑠

𝐾 + ∑
𝑖∈𝑆

𝑠
𝑤𝑖−𝑠

=
𝑠
∑
𝑖∈𝑆

𝑤𝑖
𝑤𝑖−𝑠

𝐾 − |𝑆 | + ∑
𝑖∈𝑆

𝑤𝑖
𝑤𝑖−𝑠

.
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The expression on the right-hand side is only maximized by assortments 𝑆 with maximal size |𝑆 | = 𝐾 ,
in which case

𝑟 (𝑆, 𝑣0) = max
𝑆′ ∈A𝐾

𝑟 (𝑆′, 𝑣0) = 𝑠.

It follows that all assortments 𝑆 with size 𝐾 are optimal.

3.3. Step 2: Lower bound on the instantaneous regret of 𝑣𝑆

For the second step, we bound the instantaneous regret under 𝑣𝑆 .

Lemma 1. Let 𝑆 ∈ S𝐾 . Then, there exists a constant 𝑐2 > 0, only depending on 𝑤 and 𝑠, such that, for
all 𝑡 ∈ [𝑇] and 𝑆𝑡 ∈ A𝐾 ,

max
𝑆′ ∈A𝐾

𝑟 (𝑆′, 𝑣𝑆) − 𝑟 (𝑆𝑡 , 𝑣𝑆) � 𝑐2
𝜖 |𝑆\𝑆𝑡 |
𝐾

.

As a consequence,

𝑇 · max
𝑆′ ∈A𝐾

𝑟 (𝑆′, 𝑣𝑆) −
𝑇∑
𝑡=1
𝑟 (𝑆𝑡 , 𝑣𝑆) � 𝑐2 𝜖

(
𝑇 − 1

𝐾

∑
𝑖∈𝑆

𝑁𝑖

)
. (3.2)

Proof. Fix 𝑆 ∈ S𝐾 . First, note that since 𝜖 � 1, for any 𝑆′ ∈ A𝐾 , it holds that

∑
𝑖∈𝑆′

𝑣𝑆𝑖 �
2𝑠
𝑤 − 𝑠 . (3.3)

Second, let 𝑆∗ ∈ arg max𝑆′ ∈A𝐾
𝑟 (𝑆′, 𝑣𝑆) and 𝜚∗ = 𝑟 (𝑆∗, 𝑣𝑆). By rewriting the inequality 𝜚∗ � 𝑟 (𝑆′, 𝑣𝑆)

for all 𝑆′ ∈ A𝐾 , we find that for all 𝑆′ ∈ A𝐾

𝜚∗ �
∑
𝑖∈𝑆′

𝑣𝑆𝑖 (𝑤𝑖 − 𝜚∗). (3.4)

Let 𝑡 ∈ [𝑇] and 𝑆𝑡 ∈ A𝐾 . Then, it holds that

𝑟 (𝑆∗, 𝑣𝑆) − 𝑟 (𝑆𝑡 , 𝑣𝑆) = 𝜚∗ −
∑
𝑖∈𝑆𝑡 𝑣

𝑆
𝑖 𝑤𝑖

1 + ∑
𝑖∈𝑆𝑡 𝑣

𝑆
𝑖

=
1

1 + ∑
𝑖∈𝑆𝑡 𝑣

𝑆
𝑖

(
𝜚∗ +

∑
𝑖∈𝑆𝑡

𝑣𝑆𝑖 𝜚
∗ −

∑
𝑖∈𝑆𝑡

𝑣𝑆𝑖 𝑤𝑖

)

�
𝑤 − 𝑠
𝑤 + 𝑠

(
𝜚∗ −

∑
𝑖∈𝑆𝑡

𝑣𝑆𝑖 (𝑤𝑖 − 𝜚∗)
)

�
𝑤 − 𝑠
𝑤 + 𝑠

(∑
𝑖∈𝑆

𝑣𝑆𝑖 (𝑤𝑖 − 𝜚∗) −
∑
𝑖∈𝑆𝑡

𝑣𝑆𝑖 (𝑤𝑖 − 𝜚∗)
)
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=
𝑤 − 𝑠
𝑤 + 𝑠

( ∑
𝑖∈𝑆

𝑣𝑆𝑖 (𝑤𝑖 − 𝑠) −
∑
𝑖∈𝑆𝑡

𝑣𝑆𝑖 (𝑤𝑖 − 𝑠)
︸������������������������������������︷︷������������������������������������︸

(𝑎)

− (𝜚∗ − 𝑠)
(∑
𝑖∈𝑆

𝑣𝑆𝑖 −
∑
𝑖∈𝑆𝑡

𝑣𝑆𝑖

)
︸����������������������������︷︷����������������������������︸

(𝑏)

)
.

Here, the first inequality is due to (3.3) and the second inequality follows from (3.4) with 𝑆′ = 𝑆. Next,
note that since |𝑆𝑡 | � 𝐾 and |𝑆 | = 𝐾 , we find that

|𝑆𝑡\𝑆 | � |𝑆\𝑆𝑡 |. (3.5)

Now, term (𝑎) can be bounded from below as

(𝑎) =
∑
𝑖∈𝑆\𝑆𝑡

𝑣𝑆𝑖 (𝑤𝑖 − 𝑠) −
∑
𝑖∈𝑆𝑡\𝑆

𝑣𝑆𝑖 (𝑤𝑖 − 𝑠)

=
𝑠

𝐾
((1 + 𝜖) |𝑆\𝑆𝑡 | − |𝑆𝑡\𝑆 |)

� 𝑠
𝜖 |𝑆\𝑆𝑡 |
𝐾

. (3.6)

Here, at the final inequality, we used (3.5). Next, term (𝑏) can be bounded from above as

(𝑏) � |𝜚∗ − 𝑠 |︸��︷︷��︸
(𝑐)

�����
∑
𝑖∈𝑆

𝑣𝑆𝑖 −
∑
𝑖∈𝑆𝑡

𝑣𝑆𝑖

�����︸��������������︷︷��������������︸
(𝑑)

.

Now, for term (𝑐), we note that 𝑣𝑆𝑖 � 𝑣
0
𝑖 for all 𝑖 ∈ [𝑁]. In addition, since 𝑟 (𝑆∗, 𝑣0) � 𝑠,

𝜚∗ − 𝑠 �
∑
𝑖∈𝑆∗ 𝑣

𝑆
𝑖 𝑤𝑖

1 + ∑
𝑖∈𝑆∗ 𝑣

𝑆
𝑖

−
∑
𝑖∈𝑆∗ 𝑣

0
𝑖𝑤𝑖

1 + ∑
𝑖∈𝑆∗ 𝑣

0
𝑖

�
1

1 + ∑
𝑖∈𝑆∗ 𝑣

0
𝑖

∑
𝑖∈𝑆∗

(𝑣𝑆𝑖 − 𝑣0
𝑖 )𝑤𝑖

�
𝑁∑
𝑖=1

(𝑣𝑆𝑖 − 𝑣0
𝑖 ) = 𝜖

∑
𝑖∈𝑆

𝑣0
𝑖 �

𝑠

𝑤 − 𝑠 𝜖 .

This entails an upper bound for (𝑐). Term (𝑑) is bounded from above as

(𝑑) �
∑
𝑖∈𝑆\𝑆𝑡

𝑣𝑆𝑖 +
∑
𝑖∈𝑆𝑡\𝑆

𝑣𝑆𝑖

� (1 + 𝜖)
∑
𝑖∈𝑆\𝑆𝑡

𝑣0
𝑖 +

∑
𝑖∈𝑆𝑡\𝑆

𝑣0
𝑖

� (1 + 𝜖) 𝑠

𝐾 (𝑤 − 𝑠) |𝑆\𝑆𝑡 | +
𝑠

𝐾 (𝑤 − 𝑠) |𝑆𝑡\𝑆 |

�
3𝑠
𝑤 − 𝑠

|𝑆\𝑆𝑡 |
𝐾

.
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Here, at the final inequality, we used (3.5) and the fact that 𝜖 � 1. Now, we combine the upper bounds
of (𝑐) and (𝑑) to find that

(𝑏) � 3𝑠2

(𝑤 − 𝑠)2 · 𝜖 |𝑆\𝑆𝑡 |
𝐾

. (3.7)

It follows from (3.6) and (3.7) that

𝑟 (𝑆∗, 𝑣𝑆) − 𝑟 (𝑆𝑡 , 𝑣𝑆) �
𝑤 − 𝑠
𝑤 + 𝑠

(
𝑠 − 3𝑠2

(𝑤 − 𝑠)2

)
𝜖 |𝑆\𝑆𝑡 |
𝐾

� 𝑐2
𝜖 |𝑆\𝑆𝑡 |
𝐾

,

where

𝑐2 :=
𝑤 − 𝑠
𝑤 + 𝑠

(
𝑠 − 3𝑠2

(𝑤 − 𝑠)2

)
.

Note that the constant 𝑐2 is positive if (𝑤 − 𝑠)2 > 3𝑠. This follows from 𝑠 = 𝑤2/(3 + 2𝑤) since

(𝑤 − 𝑠)2 − 3𝑠 > 𝑤2 − 𝑠(3 + 2𝑤).

Statement (3.2) follows from the additional observation

𝑇∑
𝑡=1

|𝑆\𝑆𝑡 | = 𝑇𝐾 −
𝑇∑
𝑡=1

|𝑆 ∩ 𝑆𝑡 | = 𝑇𝐾 −
∑
𝑖∈𝑆

𝑁𝑖 . �

3.4. Step 3: KL divergence and Pinsker’s inequality

We denote the dependence of the expected value and the probability on the preference vector 𝑣𝑆 as
E𝑆 [ · ] and P𝑆 (·) for 𝑆 ∈ A𝐾 . In addition, we write 𝑆\𝑖 instead of 𝑆\{𝑖}. The lemma below states an
upper bound on the KL divergence of P𝑆 and P𝑆\𝑖 and uses Pinsker’s inequality to derive an upper
bound on the absolute difference between the expected value of 𝑁𝑖 under 𝑣𝑆 and 𝑣𝑆\𝑖 .

Lemma 2. Let 𝑆 ∈ S𝐾 , 𝑆′ ∈ A𝐾 , and 𝑖 ∈ 𝑆. Then, there exists a constant 𝑐3, only depending on 𝑤 and
𝑠, such that

KL(P𝑆 ( · |𝑆′) || P𝑆\𝑖 ( · |𝑆′)) � 𝑐3
𝜖2

𝐾
.

As a consequence,

|E𝑆 [𝑁𝑖] − E𝑆\𝑖 [𝑁𝑖] | �
√

2𝑐3
𝜖𝑇3/2
√
𝐾
. (3.8)

Proof. Let P and Q be arbitrary probability measures on 𝑆′ ∪ {0}. It can be shown, see, for example,
Lemma 3 from Chen and Wang [3], that

KL(P ||Q) �
∑

𝑗∈𝑆′∪{0}

(𝑝 𝑗 − 𝑞 𝑗)2

𝑞 𝑗
,

where 𝑝 𝑗 and 𝑞 𝑗 are the probabilities of outcome 𝑗 under P and Q, respectively. We apply this result for
𝑝 𝑗 and 𝑞 𝑗 defined as

𝑝 𝑗 :=
𝑣𝑆𝑗

1 + ∑
ℓ∈𝑆′ 𝑣

𝑆
ℓ

and 𝑞 𝑗 :=
𝑣𝑆\𝑖𝑗

1 + ∑
ℓ∈𝑆′ 𝑣

𝑆\𝑖
ℓ

,
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for 𝑗 ∈ 𝑆′ ∪ {0}. First, note that by (3.3), for all 𝑗 ∈ 𝑆′ ∪ {0},

𝑞 𝑗 �
𝑣0
𝑗

1 + 2 𝑠
𝑤−𝑠

=
𝑤 − 𝑠
𝑤 + 𝑠 𝑣

0
𝑗 .

Now, we bound |𝑝 𝑗 − 𝑞 𝑗 | from above for 𝑗 ∈ 𝑆′ ∪ {0}. Note that for 𝑗 = 0 it holds that

|𝑝0 − 𝑞0 | =
|∑ℓ∈𝑆′ 𝑣

𝑆
ℓ −

∑
ℓ∈𝑆′ 𝑣

𝑆\𝑖
ℓ |

(1 + ∑
ℓ∈𝑆′ 𝑣

𝑆
ℓ )(1 + ∑

ℓ∈𝑆′ 𝑣
𝑆\𝑖
ℓ )

� | (1 + 𝜖)𝑣0
𝑖 − 𝑣0

𝑖 | = 𝑣0
𝑖 𝜖 .

For 𝑗 ≠ 𝑖, since 𝜖 � 1, we find that

|𝑝 𝑗 − 𝑞 𝑗 | = 𝑣𝑆𝑗 |𝑝0 − 𝑞0 | � 2𝑣0
𝑗𝑣

0
𝑖 𝜖 .

For 𝑗 = 𝑖, we find that

|𝑝𝑖 − 𝑞𝑖 | = 𝑣0
𝑖 |𝑝0 − 𝑞0 + 𝜖 𝑝0 |

� 𝑣0
𝑖 (|𝑝0 − 𝑞0 | + 𝜖 𝑝0)

� 𝑣0
𝑖 (𝑣0

𝑖 + 1)𝜖 .

Therefore, we conclude that

KL(P𝑆 ( · |𝑆′) || P𝑆\𝑖 ( · |𝑆′)) �
∑

𝑗∈𝑆′∪{0}

(𝑝 𝑗 − 𝑞 𝑗 )2

𝑞 𝑗

�
(𝑝0 − 𝑞0)2

𝑞0
+

∑
𝑗∈𝑆′: 𝑗≠𝑖

(𝑝 𝑗 − 𝑞 𝑗)2

𝑞 𝑗
+ (𝑝𝑖 − 𝑞𝑖)2

𝑞𝑖

�
𝑤 + 𝑠
𝑤 − 𝑠

(
(𝑣0
𝑖 𝜖)2 + 4(𝑣0

𝑖 𝜖)2
∑

𝑗∈𝑆′: 𝑗≠𝑖
𝑣0
𝑗 + 𝑣0

𝑖 (𝑣0
𝑖 + 1)2𝜖2

)

�
𝑠(𝑤 + 𝑠)
(𝑤 − 𝑠)2

(
𝑠

𝑤 − 𝑠 +
4𝑠2

(𝑤 − 𝑠)2 +
(
𝑤

𝑤 − 𝑠

)2
)
𝜖2

𝐾

= 𝑐3
𝜖2

𝐾
,

where

𝑐3 :=
𝑠(𝑤 + 𝑠)
(𝑤 − 𝑠)2

(
𝑠

𝑤 − 𝑠 +
4𝑠2 + 𝑤2

(𝑤 − 𝑠)2

)
.

Next, note that the entire probability measures P𝑆 and P𝑆\𝑖 depend on 𝑇 . Then, as a consequence of the
chain rule of the KL divergence, we find that

KL(P𝑆 || P𝑆\𝑖) � 𝑐3
𝜖2 𝑇

𝐾
.
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Now, statement (3.8) follows from

|E𝑆 [𝑁𝑖] − E𝑆\𝑖 [𝑁𝑖] | �
𝑇∑
𝑛=0

𝑛|P𝑆 (𝑁𝑖 = 𝑛) − P𝑆\𝑖 (𝑁𝑖 = 𝑛) |

� 𝑇
𝑇∑
𝑛=0

|P𝑆 (𝑁𝑖 = 𝑛) − P𝑆\𝑖 (𝑁𝑖 = 𝑛) |

= 2𝑇 max
𝑛=0,...,𝑇

|P𝑆 (𝑁𝑖 = 𝑛) − P𝑆\𝑖 (𝑁𝑖 = 𝑛) |

� 2𝑇 sup
𝐴

|P𝑆 (𝐴) − P𝑆\𝑖 (𝐴) |

� 𝑇
√

2 KL(P𝑆 || P𝑆\𝑖), (3.9)

where the step in (3.9) follows from, for example, Proposition 4.2 from Levin et al. [8] and we used
Pinsker’s inequality at the final inequality. �

3.5. Step 4: Proving the main result

With all the established ingredients, we can finalize the proof of the lower bound on the regret.

Proof of Theorem 1. Since 𝑣𝑆 ∈ V for all 𝑆 ∈ S𝐾 and by Lemma 1, we know that

Δ𝜋 (𝑇) � 1
|S𝐾 |

∑
𝑆∈S𝐾

Δ𝜋 (𝑇, 𝑣𝑆)

� 𝑐2 𝜖

(
𝑇 − 1

|S𝐾 |
∑
𝑆∈S𝐾

1
𝐾

∑
𝑖∈𝑆
E𝑆 [𝑁𝑖]

︸��������������������������︷︷��������������������������︸
(𝑎)

)
. (3.10)

We decompose (𝑎) into two terms:

(𝑎) = 1
|S𝐾 |

∑
𝑆∈S𝐾

1
𝐾

∑
𝑖∈𝑆
E𝑆\𝑖 [𝑁𝑖]

︸����������������������������︷︷����������������������������︸
(𝑏)

+ 1
|S𝐾 |

∑
𝑆∈S𝐾

1
𝐾

∑
𝑖∈𝑆

(E𝑆 [𝑁𝑖] − E𝑆\𝑖 [𝑁𝑖])
︸��������������������������������������������︷︷��������������������������������������������︸

(𝑐)

.

Recall that 𝑐 = 𝐾/𝑁 ∈ (0, 1/2). By summing over 𝑆′ = 𝑆\𝑖 instead of over 𝑆, we bound (𝑏) from above
by

(𝑏) = 1
|S𝐾 |

∑
𝑆′ ∈S𝐾−1

1
𝐾

∑
𝑖∉𝑆′
E𝑆′ [𝑁𝑖] � |S𝐾−1 |

|S𝐾 |
𝑇 �

𝑐

1 − 𝑐𝑇,

where the first inequality follows from
∑
𝑖∈[𝑁 ] E𝑆′ [𝑁𝑖] � 𝑇𝐾 , and the second inequality from

|S𝐾−1 |
|S𝐾 |

=

( 𝑁
𝐾−1

)
(𝑁
𝐾

) =
𝐾

𝑁 − 𝐾 + 1
�

𝐾/𝑁
1 − 𝐾/𝑁 .

Now, (𝑐) can be bounded by applying Lemma 2:

(𝑐) �
√

2𝑐3
𝜖𝑇3/2
√
𝐾

=

√
2𝑐3√
𝑐

𝜖𝑇3/2
√
𝑁
.
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By plugging the upper bounds on (𝑏) and (𝑐) in (3.10), we obtain

Δ𝜋 (𝑇) � 𝑐2𝜖

(
𝑇 − 𝑐

1 − 𝑐𝑇 −
√

2𝑐3√
𝑐

𝜖𝑇3/2
√
𝑁

)

= 𝑐2𝜖

(
1 − 2𝑐
1 − 𝑐 𝑇 −

√
2𝑐3√
𝑐

𝜖𝑇3/2
√
𝑁

)
.

Now, we set 𝜖 as

𝜖 = min
{
1,

(1 − 2𝑐)√𝑐
2(1 − 𝑐)√2𝑐3

√
𝑁/𝑇

}
.

This yields, for all 𝑇 � 𝑁 ,

Δ𝜋 (𝑇) � min
{
𝑐2
√

2𝑐3√
𝑐

𝑇,
𝑐2 (1 − 2𝑐)2𝑐

8(1 − 𝑐)√2𝑐3

√
𝑁𝑇

}
.

Finally, note that for 𝑇 � 𝑁 it follows that 𝑇 �
√
𝑁𝑇 and therefore

Δ𝜋 (𝑇) � 𝑐1
√
𝑁𝑇,

where

𝑐1 := min
{
𝑐2
√

2𝑐3√
𝑐

,
𝑐2 (1 − 2𝑐)2𝑐

8(1 − 𝑐)√2𝑐3

}
> 0. �
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