THE NONABELIAN TENSOR SQUARE OF A FINITE SPLIT METACYCLIC GROUP

by D. L. JOHNSON*
(Received 10th August 1985)

Given any group G, its tensor square $G \otimes G$ is defined by the following presentation (see [3]):

$$
\begin{align*}
& \text { generators: } g \otimes h, \\
& \qquad g g^{\prime} \otimes h=\left({ }^{g} g^{\prime} \otimes{ }^{g} h\right)(g \otimes h), \tag{1}\\
& \text { relations: } g \otimes h h^{\prime}=(g \otimes h)\left({ }^{h} g \otimes{ }^{h} h^{\prime}\right)
\end{align*}
$$

where $g, g^{\prime}, h, h^{\prime}$ range independently over G, and ${ }^{g} h=g h g^{-1}$. In what follows, ${ }^{g} g^{\prime} \otimes^{g} h$ is often written in the abbreviated form ${ }^{g}\left(g^{\prime} \otimes h\right)$.

Among the groups G for which $G \otimes G$ is computed in [2] is the metacyclic group

$$
\begin{equation*}
G=\left\langle x, y \mid y^{n}=e, x^{m}=e, x y x^{-1}=y^{l}\right\rangle, l^{m} \equiv 1(\bmod n) \tag{2}
\end{equation*}
$$

in the favourable special case when n is odd. It is the direct product of four cyclic groups, of orders $m,(n, l-1),\left(n, l-1,1+l+\cdots+l^{m-1}\right)$, and $\left(n, 1+l+\cdots+l^{m-1}\right)$, respectively. Our purpose here is to remedy this deficiency by evaluating $G \otimes G$ for even n. The following preliminary results, valid for all G, are stated in [3] and some proofs are given in [2].

The mapping

$$
\begin{align*}
& \kappa: G \otimes G \rightarrow G^{\prime} \\
& \tag{3}\\
& g \otimes h \mapsto[g, h]=g h g^{-1} h^{-1}
\end{align*}
$$

is an epimorphism. Its kernel is denoted by $J_{2}(G) ; J_{2}(G)$ is G-trivial and lies in the centre of $G \otimes G$.

It follows from (1) that, for all $g ; g^{\prime}, h, h^{\prime} \in G$,

$$
\begin{equation*}
\left[g \otimes h, g^{\prime} \otimes h^{\prime}\right]=[g, h] \otimes\left[g^{\prime}, h^{\prime}\right] \tag{4}
\end{equation*}
$$

[^0]The mapping

$$
\begin{gather*}
\tau: G \otimes G \rightarrow G \otimes G \\
g \otimes h \mapsto(h \otimes g)^{-1} \tag{5}
\end{gather*}
$$

is an automorphism.
There is an exact sequence

$$
\begin{equation*}
H_{3}(G) \rightarrow \Gamma G^{a b} \xrightarrow{\psi} J_{2}(G) \rightarrow H_{2}(G) \rightarrow 0, \tag{6}
\end{equation*}
$$

where Γ is Whitehead's quadratic functor (see [4]), and $\operatorname{Im} \psi$ is generated by the elements $g \otimes g, g \in G$.

We assume henceforth that G is the metacyclic group given by (2). The calculation now proceeds in a number of steps.
(7). We first note two consequences of (3). Being an extension of (the central) $J_{2}(G)$ by (the cyclic) $G^{\prime}, G \otimes G$ is abelian. Secondly, x and y fix each of $x \otimes x, y \otimes y$, $(x \otimes y)(y \otimes x)$. It is clear from (1) that these three elements, together with $x \otimes y$, generate $G \otimes G$ qua G-module. Our first main aim is to show that they generate $G \otimes G$ as a group.

$$
\begin{equation*}
(y \otimes y)^{n}=e=a^{2}, \text { where } a=(y \otimes y)^{i-1} . \tag{8}
\end{equation*}
$$

First, it follows from (4) and (1) that

$$
(y \otimes y)^{(t-1)^{2}}=y^{l-1} \otimes y^{l-1}=[x, y] \otimes[x, y]=[x \otimes y, x \otimes y]=e .
$$

Next, „by (7) and (2),

$$
y \otimes y={ }^{x}(y \otimes y)=y^{l} \otimes y^{l}=(y \otimes y)^{l^{2}} .
$$

Finally, (1) implies that

$$
(y \otimes y)^{n}=y \otimes y^{n}=y \otimes e=e .
$$

These three equations together yield (8). Substitution of e for a in what follows gives a replica of the calculation in [2] for n odd.

$$
\begin{equation*}
y(x \otimes y)=(x \otimes y) a . \tag{9}
\end{equation*}
$$

Using (2), (1) and (8),

$$
\begin{aligned}
y(x \otimes y) & =\left({ }^{y} x\right) \otimes y=\left(y^{1-t} x\right) \otimes y=y^{y^{1-t}}(x \otimes y)\left(y^{1-t} \otimes y\right) \\
& =y^{y^{1-t}}(x \otimes y)(y \otimes y)^{1-t}=y^{y^{1-t}}(x \otimes y) a .
\end{aligned}
$$

Thus y^{l} acts on $x \otimes y$ as multiplication by a. Hence the action of $y=y^{l^{m}}=\left(y^{l}\right)^{l^{m-1}}$ multiplies $x \otimes y$ by $a^{l^{m-1}}$. Since n is even, (2) implies that l is odd, and the result follows from (8).

$$
\begin{equation*}
{ }^{x}(x \otimes y)=(x \otimes y)^{l} a^{(l-1) / 2} \tag{10}
\end{equation*}
$$

Using (9) and the second relation of (1) $l-1$ times each, together with (8) and the centrality of a (7),

$$
\begin{aligned}
{ }^{x}(x \otimes y) & =x \otimes{ }^{x} y=x \otimes y^{l} \\
& =(x \otimes y)^{y}\left(x \otimes y^{l-1}\right)=\cdots \\
& =\prod_{k=0}^{l-1} y^{k}(x \otimes y)=(x \otimes y)^{l} a^{(l-1) / 2}
\end{aligned}
$$

This achieves our first objective: $G \otimes G$ is four-generated.

$$
\begin{equation*}
x^{p} \otimes y^{q}=(x \otimes y)^{q \cdot p} a^{r}, y^{q} \otimes x^{p}=(y \otimes x)^{q \cdot p} a^{r} \tag{11}
\end{equation*}
$$

where

$$
r=(p q(q-2)+q \cdot p) / 2 \text { and } q \cdot p=q\left(1+l+\cdots+l^{p-1}\right)
$$

Repeated use of the relations (1) gives

$$
\begin{aligned}
x^{p} \otimes y^{q} & ={ }^{x}\left(x^{p-1} \otimes y^{q}\right)\left(x \otimes y^{q}\right) \\
& =\prod_{k=p-1}^{0} x^{k}\left(x \otimes y^{q}\right)
\end{aligned}
$$

and

$$
x \otimes y^{q}=\prod_{k=0}^{q-1} y^{k}(x \otimes y)=(x \otimes y)^{q} a^{q(q-1) / 2}
$$

by (7). Using (10),

$$
x^{p} \otimes y^{q}=\prod_{k=p-1}^{0} x^{k}(x \otimes y)^{q} a^{q(q-1) / 2}=(x \otimes y)^{q \cdot p} a^{r}
$$

where

$$
r=p q(q-1) / 2+\sum_{k=p-1}^{0} q\left(l^{k}-1\right) / 2=p q(q-1) / 2+(q \cdot p-p q) / 2
$$

as claimed. The second formula now follows by applying the automorphism τ of (5) to
the first.

$$
\begin{equation*}
y^{p} x^{q} \otimes y^{r} x^{s}=(x \otimes x)^{q s}(y \otimes y)^{p r}(x \otimes y)^{r \cdot q}(y \otimes x)^{p \cdot s} a^{t} \tag{12}
\end{equation*}
$$

where

$$
t=p r(q+s)+(1 / 2)(q r(r-2)+s p(p-2)+r . q+p . s) .
$$

Using (1),

$$
\begin{aligned}
y^{p} x^{q} \otimes y^{r} x^{s} & =y^{p}\left(x^{q} \otimes y^{r} x^{s}\right)\left(y^{p} \otimes y^{r} x^{s}\right) \\
& =y^{p}\left(x^{q} \otimes y^{r}\right)^{y^{p+r}}\left(x^{q} \otimes x^{s}\right)\left(y^{p} \otimes y^{r}\right)^{y^{\prime}}\left(y^{p} \otimes x^{s}\right),
\end{aligned}
$$

and the result follows from (11), (9) and $\tau(9)$, since $p(r \cdot q)+r(p \cdot s) \equiv p r(q+s)(\bmod 2)$.

$$
\begin{align*}
& (y \otimes y)^{n}=e=(x \otimes x)^{m} \\
& (y \otimes x)^{n}=e=(x \otimes y)^{n} \tag{13}\\
& (y \otimes x)^{1+l+\cdots+l^{m-1}}=\dot{a}^{(l-1) m(m-1) / 4}=(x \otimes y)^{1+l+\cdots+l^{m-1}}
\end{align*}
$$

These are immediate consequences of the fact that the right-hand side of (12) must be independent of the choices of p and $r \bmod n$ and of q and $s \bmod m$.

$$
\begin{equation*}
(x \otimes y)^{l-1}(y \otimes x)^{l-1}=e, a^{m}=e . \tag{14}
\end{equation*}
$$

Because of (3),

$$
\begin{aligned}
x \otimes x & ={ }^{y}(x \otimes x)=^{y} x \otimes{ }^{y} x=y^{1-l} x \otimes y^{1-l} x \\
& =y^{y^{1-1}}\left(x \otimes y^{1-l}\right)^{y^{2(1-l}}(x \otimes x)\left(y^{1-l} \otimes y^{1-l}\right)^{y^{1-t}}\left(y^{1-l} \otimes x\right) \\
& =y^{y^{1-1}}\left(\left(x \otimes y^{1-l}\right)\left(y^{1-l} \otimes x\right)\right)(x \otimes x)(y \otimes y)^{(1-l)^{2}},
\end{aligned}
$$

so that

$$
\left(x \otimes y^{1-t}\right)\left(y^{1-t} \otimes x\right)=e
$$

using (8). The first relation now follows from (11). For the second, y fixes $(y \otimes x)^{1+l+\cdots+l^{m-1}}$ by (13), but (by $\left.\tau(9)\right)$ multiplies it by $a^{1+l+\cdots+i^{m-1}}=a^{m}$, since l is odd and $a^{2}=e$.
(15). The relations (8), (13) and (14) now define $G \otimes G$ as an abelian group on the generators $y \otimes y, x \otimes x, x \otimes y$ and $y \otimes x$. For, let $Y=y \otimes y, X=x \otimes x, T=x \otimes y$, $Z=(x \otimes y)(y \otimes x)$, and retain the abbreviation $A=a$ for convenience. Then these
relations are equivalent to the following:

$$
\begin{aligned}
& Y^{n}=e, Y^{l-1}=A, A^{2}=e=A^{m}, X^{m}=e, \\
& T^{n}=e, T^{1+l+\cdots+l^{m-1}}=A^{(l-1)(m-1) m / 4}, \\
& Z^{l-1}=Z^{n}=Z^{1+l+\cdots+l^{m-1}}=e .
\end{aligned}
$$

On the other hand, the mapping

$$
\gamma: y^{p} x^{p} \otimes y^{r} x^{s} \mapsto X^{q s} Y^{p r} Z^{p . s} T^{r . q-p . s} A^{p r(q+s)+(1 / 2)(q r(r-2)+s p(p-2)+r . q+p . s)}
$$

preserves the relations (1), by tedious and omitted checking. (Note that, since $\gamma \tau=\tau \gamma$ on the generators, we only need to check one of the two relations).
(16) Proposition. If G is the metacyclic group given by (2), then $G \otimes G$ is the abelian group with generators T, X, Y, Z, A and relations (15). Furthermore, $M(G)$ is cyclic of order $(n, l-1)\left(n, 1+l+\cdots+l^{m-1}\right) / n$, (cf. [1]).

Proof. The first assertion is proved above. For the second, note that $M(G)$ is cyclic since G has deficiency $\geqq-1$, and its order is given by (6) as

$$
\left|J_{2}(G): \operatorname{Im} \psi\right|=\frac{|G \otimes G|}{\left|G^{\prime}\right|\langle g \otimes g, g \in G\rangle}
$$

by (3). By (12), $\operatorname{Im} \psi=\langle g \otimes g, g \in G\rangle=\langle X, Y, Z\rangle$. By (15), $\langle X, Y, Z\rangle$ has index (n, $1+l+\cdots+l^{m-1}$) in $G \otimes G$, and G^{\prime} has index $m(n, l-1)$ in G from (2).

REFERENCES

1. R. Beyl, The Schur multiplicator of metacyclic groups, Proc. Amer. Math. Soc. 40 (1973), 413-418.
2. R. Brown, D. L. Johnson and E. F. Robertson, Some computations of non-abelian tensor products of groups, J. Algebra, to appear.
3. R. Brown and J.-L. Loday, Excision homotopique en basse dimension, C.R. Acad. Sci. Paris Sér. I Math. 298: 15 (1984), 353-356.
4. J. H. C. Whitehead, A certain exact sequence, Ann. of Math. 52 (1950), 51-110.

Department of Mathematics

University of Notringham
University Park
Nottingham NG7 2RD

[^0]: *This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.

