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Continuous hydraulic jumps in laminar channel
flow
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On the basis of the generalized Saint-Venant equations, hydraulic jumps in laminar open
channel flow are obtained as continuous shock structures. They arise as stable stationary
solutions of the governing equations and are particularly well suited for a dynamical
systems analysis, where they manifest themselves as near-parabolic trajectories in phase
space. We derive an analytic approximate expression for the jump length as a function of
the Froude and effective Reynolds numbers, reflecting the fact that – along with inertia
– gravity and viscous diffusion both contribute to the balance of forces that shape the
jump. The stability of the jumps is confirmed by means of a numerical experiment and an
analysis of the propagation and attenuation of small perturbations.
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1. Introduction

Hydraulic jumps are among the most iconic phenomena in fluid dynamics, found in
a variety of situations ranging from thin films and kitchen sinks to large-scale open
channels. They mark the sudden transition from a fast, relatively thin supercritical flow
to a slower and thicker subcritical one (see figure 1). The systematic study of hydraulic
jumps was initiated in the first half of the 19th century by the experiments of Bidone
and the theoretical investigations of Bélanger (Bakhmeteff 1932; Chanson 2009). The
latter established the textbook explanation of the phenomenon, based on conservation of
mass and momentum, ignoring any additional effects such as the slope of the channel,
the friction with the bottom (arising from shear stresses in the flow), diffusive effects
(due to in-plane stresses) or surface tension. Only during the past few decades have these
effects begun to be incorporated, often via approaches that depart from that of Bélanger
(Bowles & Smith 1992; Bohr, Dimon & Putkaradze 1993; Higuera 1994; Bohr, Putkaradze
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Figure 1. Schematic view of a stationary hydraulic jump in a tilted channel, i.e. the transition zone of length
L from a shallow supercritical flow (Froude number F > 1) to a thicker subcritical one (F < 1), where
F = ū(x)/

√
gh(x) cos ζ . The flow is described in terms of the height h(x) and the depth-averaged velocity

ū(x), governed by the generalized Saint-Venant equations (2.2) and (2.3). The depicted jump corresponds to
the profile M̃3 → M̃2 of figure 2(a), which is one of the four qualitatively different types of laminar jumps
predicted by our analysis, cf. figure 3.

& Watanabe 1997; Ruschak & Weinstein 2001; Watanabe, Putkaradze & Bohr 2003; Bonn,
Andersen & Bohr 2009; Rojas et al. 2010; De Vita et al. 2020).

Without the inclusion of higher-order effects such as the in-plane stresses or surface
tension, the supercritical and subcritical flow regimes do not connect continuously but
have to be linked to each other via vertical segments obeying the Rankine–Hugoniot shock
relations (Rayleigh 1914; Whitham 1974; Landau & Lifschitz 1987; Mejean, Faug & Einav
2017; Castro-Orgaz & Hager 2019; Dhar, Das & Das 2019). A drawback of this approach is
that the internal structure of the jump remains unaccounted for. Pioneering studies to reveal
this structure have used either a boundary layer analysis to the governing Navier–Stokes
equations (Bohr et al. 1997; Ruschak & Weinstein 2001; Watanabe et al. 2003; Bonn
et al. 2009) or a perturbation expansion of those equations leading to the lubrication
approximation for the circular jump (Rojas et al. 2010). Here we deal with this problem
from the standpoint of hydraulics, by analysing the generalized Saint-Venant equations
(Needham & Merkin 1984; Merkin & Needham 1986; Kranenburg 1992; Castro-Orgaz &
Hager 2019) which are tailor-made for laminar channel flow and enable us to derive an
approximate analytic expression for the jump length L.

The forces governing the shape of the hydraulic jump are gravity, surface tension
and viscous forces. Just as for usual surface waves, gravity is dominant at large scales
while surface tension becomes important at small scales. Surface tension and viscosity
(especially the in-plane stresses) are instrumental in preventing the development of
discontinuities, by keeping the slope of the fluid profile always finite. These effects come
into play in the flow regions where the height and velocity change rapidly.

The familiar jump in the kitchen sink is on the relatively small scale where gravity,
surface tension and viscosity all contribute, and is therefore, despite its everyday
occurrence, a surprisingly intricate case (Bhagat et al. 2018; Duchesne, Andersen & Bohr
2019). On the largest scale, one finds the fully developed turbulent jumps of spillways and
rapids, where gravity takes the undisputed lead. The present paper deals with jumps on
the intermediate scale where surface tension becomes insignificant, leaving gravitational
and viscous effects as the two main factors. Such jumps may be encountered in irrigation
ditches or tilted channels on the laboratory scale under laminar or moderately turbulent
flow conditions. The fluid in question may be taken to be water, but the description will
become increasingly accurate if one uses a Newtonian fluid with a higher viscosity and
lower surface tension, e.g. silicon oil or castor oil. The Reynolds number can then be
kept effortlessly at the moderate levels of laminar or just-turbulent flow, while the surface
tension – already very minor at this scale – can safely be ignored. As for the Froude number
F of the incoming flow, this must naturally exceed 1 yet it should remain bounded within
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the realm of what is traditionally known as a ‘weak jump’ (Chow 1973). For 1 < F � 1.7
the rise in surface level is limited and the energy dissipation is less than 5 %. Around
F ∼ 1.7, small rollers develop on the surface of the jump, yet farther downstream the
profile remains smooth and the velocity fairly uniform, with relatively small energy losses
(5–15 %). This state of affairs persists up to F ∼ 2.5, and this value marks the border of the
regime where the jump may be called weak. For F > 2.5 one finds fiercer jumps, which
fall outside the scope of the present study (Çengel & Cimbala 2006; Munson et al. 2009).

The paper is organized as follows. In § 2 we present the generalized Saint-Venant
equations for shallow channel flow, including a diffusive term accounting for the in-plane
stresses, and from these we derive a second-order ordinary differential equation (ODE)
governing the stationary wave profiles that are possible within this framework. This
constitutes an extension of the classical first-order ‘backwater equation’ used to describe
gradually varied flow (Rouse 1946). In § 3 we cast the aforementioned second-order ODE
in the form of a dynamical system consisting of two coupled first-order ODEs, and
analyse its phase space. Here the hydraulic jumps appear as conspicuous quasi-parabolic
orbits linking the nullclines of the dynamical system. The steep excursion in phase space
corresponds to the pronounced rise in the slope of the fluid profile locally across the
jump, whereas the nullclines represent the diffusive counterparts of the classical gradually
varied profiles at either side of the jump. In § 4 we concentrate on the jump region and
derive an analytic approximation for its spatial extent along the channel, i.e. the jump
length L. In § 5 we return to the generalized Saint-Venant equations and study the temporal
evolution of small perturbations imposed upon the jump profiles. The observed decay of
these perturbations confirms the stability of the jump. Finally, § 6 summarizes the main
findings of this study.

2. The governing equations

2.1. The generalized Saint-Venant equations
For the description of the fluid sheet we adopt the one-dimensional framework of the
so-called shallow-water flow. This one-dimensional description does not account for the
velocity component in the vertical direction (which obviously must exist in the jump
region, since the fluid has to rise to a larger height here), nor does it capture any motion in
the crosswise direction (so secondary flow patterns induced by the interaction of the fluid
with the sidewalls are ignored). In the shallow-water approach, the flow in the channel
is described solely by the height h(x, t) of the fluid sheet and its depth-averaged velocity
ū(x, t), defined as follows:

ū(x, t) = 1
h(x, t)

∫ h(x,t)

0
u(x, z, t) dz, (2.1)

where u(x, z, t) is the detailed velocity profile. For laminar flows, as in the present study,
for which the velocity profile does not vary significantly in the bulk of the sheet (outside
a narrow boundary layer near the bottom), the above averaging may be expected to give
physically plausible results. Our analysis should be considered as a mean field theory,
giving the height profile h(x, t) without any special effects – such as undulations, surface
rolls or eddies – arising from the internal dynamics in the fluid sheet. As such, it is suitable
for describing ‘type I’ jumps, i.e. jumps without separation rollers (containing regions of
back-flow) along the surface of the flow (Chow 1973; Ellegaard et al. 1996).

The two quantities h(x, t) and ū(x, t) are governed by a generalized version of the
Saint-Venant equations (Kranenburg 1992), i.e. the two coupled partial differential
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equations (PDEs) expressing, respectively, the mass balance

ht + (hū)x = 0 (2.2)

and the momentum balance

(hū)t + (hū2)x = gh sin ζ −
(

1
2 gh2 cos ζ

)
x
− Cf ū2 + ν(hūx)x. (2.3)

The terms on the right-hand side of (2.3) represent the various forces acting on the water
sheet. In order of appearance they are the following.

(i) The gravity component in the x-direction, where g = 9.81 m s−2 is the gravitational
acceleration and ζ the inclination angle of the channel.

(ii) The gradient of the depth-averaged pressure, arising from the variations in h(x, t),
where the pressure within the fluid layer is in leading order taken to be hydrostatic.

(iii) The friction with the bottom of the channel arising from the viscous shear stresses,
known as Chézy’s formula (Needham & Merkin 1984; Balmforth & Mandre 2004;
Fowler 2011). The dimensionless friction factor Cf depends on the Reynolds number
and the roughness of the bottom (Rouse 1946; Kranenburg 1992). It is determined by
the shear stresses arising from the sharp velocity gradient in the boundary layer at the
bottom of the channel, where the velocity drops to zero to comply with the no-slip
condition. For laminar flow over a smooth plate – comparable to the channel bed
– it is given by the expression Cf = 0.664 Re−1/2 (Rouse 1946), with the Reynolds
number Re being typically of the order 102–105. For our purposes, therefore, Cf
will be a small parameter of the order 0.002–0.07. Incidentally, the related interval
for turbulent flows over relatively rough channel beds (0.002 < Cf < 0.006) lies
entirely within this range (Kranenburg 1992).

(iv) The force due to the viscous normal stresses, where ν denotes an empirical positive
coefficient with the dimensions of a kinematic viscosity. The latter diffusive term
was absent from the classical Saint-Venant equations. Several forms, suitable for
different flow regimes, have been proposed over the years (see for example Needham
& Merkin (1984)). The one adopted here was derived by Kranenburg (1992) for
laminar and moderately turbulent flows. Typically, since the flow is shallow, the
bottom friction is the primary source of dissipation. So we take ν to be small,
and consequently our results do not depend substantially on the precise form of the
diffusive term. Finally, as discussed in the introduction, the jumps we are interested
in are too large to be noticeably affected by surface tension – therefore, any capillary
force terms have been left out of (2.3).

2.2. Stationary wave solutions
The above set of equations has been used successfully to reproduce travelling waveforms
in open channel flow, such as roll waves (Needham & Merkin 1984; Merkin & Needham
1986; Kranenburg 1992; Balmforth & Mandre 2004). Here we employ the same equations
to describe a stationary waveform, namely the standing hydraulic jump. In order to capture
this type of wave, we seek solutions of the form h = h(x) and ū = ū(x). This implies that
the derivatives with respect to t in (2.2) and (2.3) vanish identically.

The time-independent version of the mass balance (2.2) can readily be integrated,
yielding hū = Q, where Q is the constant flux of water (per unit width) in the channel.
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Continuous hydraulic jumps in laminar channel flow

Inserting the relation ū(x) = Qh(x)−1 into the time-independent version of (2.3), we obtain
a second-order ODE for h(x) as follows:

ν

Q
hh′′ = ν

Q
(h′)2 +

(
1 − h3

h3
c

)
h′ − Cf

(
1 − h3

h3
n

)
, (2.4)

where the prime stands for differentiation with respect to x, the combination Q/ν ≡ R
is an effective Reynolds number of the flow (since ν is an empirical coefficient with the
dimensions of viscosity), while the heights hc and hn are given by

hc =
(

Q2

g cos ζ

)1/3

, hn =
(

Cf Q2

g sin ζ

)1/3

. (2.5a,b)

In the context of gradually varied flow, these are known as the critical and natural
height, respectively (Bakhmeteff 1932; Rouse 1946). At h = hc the Froude number
F = ū/

√
gh cos ζ = Q/

√
gh3 cos ζ = (hc/h)3/2 equals 1, marking the border between

supercritical flow (F > 1, h < hc) and subcritical flow (F < 1, h > hc). The height hn is
the water thickness under uniform flow conditions, i.e. with h and ū constant, such as may
be found in the fully ripened flow far from the inlet and outlet of the chute. The expression
for hn follows from (2.3) by setting all derivatives equal to zero, leaving only the forces of
gravity and friction to balance each other.

The quotient (hc/hn)
3 = tan ζ/Cf forms the basis for the standard classification of

channels into two categories (Bakhmeteff 1932; Rouse 1946; Chow 1973; LeMéhauté
1976): (1) those that are hydraulically mild for hc < hn; and (2) those that are hydraulically
steep for hc > hn. Equivalently, one might talk about hydraulically ‘rough’ and ‘smooth’
channels, respectively.

2.3. Connection to the classical ‘backwater equation’
Equation (2.4) shows precisely what the inclusion of the diffusive term modelling the
in-plane stresses has added to the description of the hydraulic jump, namely, the terms with
hh′′ and (h′)2. Indeed, in the non-diffusive limit ν → 0, (2.4) reduces to the relation that
is traditionally used to describe gradually varied flow, known as the ‘backwater equation’
(Chanson 2009),

h′ = Cf
1 − (h/hn)

3

1 − (h/hc)3 = tan ζ
h3 − h3

n

h3 − h3
c
. (2.6)

The classical procedure is to derive from this non-diffusive relation the separate flow
profiles upstream and downstream of the jump, and to link these together via shock
conditions. For mild channels, there are three distinct profiles: M1 (for h > hn); M2
(hc < h < hn); and M3 (for h < hc) (see figure 2a for their diffusive counterparts). Of
these three, the profile M3 is the only supercritical one, so the jump connects M3 either
to M2 or to M1. Also, for steep channels there are three distinct profiles: S1 (for h > hc);
S2 (hn < h < hc); and S3 (for h < hn) (cf. figure 2b). In this case, both S2 and S3 are
supercritical, hence the jump connects either of these profiles to S1. Any of these jumps
links a region of supercritical flow to a subcritical one, and hence occurs when the level
of the water passes through the critical height hc. In the non-diffusive expression (2.6),
the slope h′ becomes infinite for h = hc, so the jump appears as a discontinuity in the
profile h(x), i.e. as a vertical segment connecting the supercritical and subcritical regimes.
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Figure 2. Phase portraits of the dynamical system (3.1a) and (3.1b) for mild (a) and steep (b) channels, which
are seen to be each other’s mirror image. The solid red and blue curves represent the two types of hydraulic
jumps occurring in each channel. The jump region manifests itself as a near-parabolic orbit. The dashed violet
curves are the branches of the nullcline s̃±(h̃), (3.2), forming the guiding lines for the gradually varied profiles
at either side of the jump. (a) Mild: the curves travel together in the supercritical regime, follow the stable
manifold (dashed black curve) of the saddle point (h̃n, 0) and afterwards, in the subcritical regime go their
separate ways; the associated profiles h̃(x̃) (insets) are the jumps M̃3 → M̃1 and M̃3 → M̃2. (b) Steep: the
curves start out separately in the supercritical regime, follow the unstable manifold of the saddle (black dashed
curve) and come together in the subcritical regime; the profiles h̃(x̃) (insets) are the jumps S̃3 → S̃1 and
S̃2 → S̃1. The dotted lines indicate the critical height h̃ = 1 and the natural height h̃n. The grey arrows in the
background show the direction field. Parameters: inclination angle ζ = 2◦, effective Reynolds number R = 20,
with Cf = 0.07, Fn = 0.7 (mild) and Cf = 0.02, Fn = 1.4 (steep).
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Continuous hydraulic jumps in laminar channel flow

This unphysical feature is remedied, as we will demonstrate, by the inclusion of the
second-order term ν(hūx)x. The crux of the matter is that the solutions of the diffusive
equation (2.4) cross the height hc with a finite slope.

At this point we choose to turn to non-dimensional variables, which will be denoted by
tildes. We take hc as our unit length, so x̃ = x/hc and h̃ = h/hc. Equation (2.4) then takes
the non-dimensional form

1
R

h̃
d2h̃
dx̃2 = 1

R

(
dh̃
dx̃

)2

+
(

1 − h̃3
) dh̃

dx̃
− Cf

(
1 − F2

nh̃3
)

, (2.7)

where R ≡ Q/ν is the effective Reynolds number introduced earlier. The Froude number
Fn is taken at the natural height hn, or equivalently, at h̃n = hn/hc = F−2/3

n .

3. Dynamical systems approach

3.1. The dynamical system and its fixed point
The second-order ODE equation (2.7) can be cast in the form of a dynamical system
consisting of two first-order ODEs, as follows:

dh̃
dx̃

= s̃ ≡ f1(s̃), (3.1a)

ds̃
dx̃

= 1

h̃

(
s̃2 + R

(
1 − h̃3

)
s̃ − Cf R

(
1 − F2

nh̃3
))

≡ f2(h̃, s̃). (3.1b)

We have chosen to denote dh̃/dx̃ by the letter s̃ since this quantity represents the slope
of the fluid sheet. Note that s̃ is the actual slope, since s̃ = dh̃/dx̃ = dh/dx. The division
by h̃ in (3.1b) poses no problem, since h̃ always has to remain finite to comply with the
notion of a shallow fluid sheet for which the Saint-Venant framework applies. Also, from
a mathematical point of view the flow thickness is not allowed to drop to zero, or else the
velocity ū would have to become infinite to maintain the constant flux Q.

It is interesting to note that Bohr and coworkers already, in 1997, used a dynamical
systems approach in their study of stationary hydraulic jumps (Bohr et al. 1997; Watanabe
et al. 2003). These authors perform a boundary layer analysis on the fluid sheet and employ
the fact that the thickening of the height across the jump is accompanied by a decrease
in velocity, which in turn induces an increase in the pressure field. This rise in pressure
acts as an adverse wind to the flow, enabling it to separate into regions of upstream and
downstream velocities. They arrive at a system of two first-order ODEs for the height
h(x) and the velocity shape factor λ(x). Their analysis does not take into account in-plane
stresses, hence no diffusive term involving hxx appears. Instead, their governing PDEs
contain a term with a third-order derivative hxxx arising from the surface tension, yet they
suppress this term in the corresponding dynamical system.

The fixed points of the system (3.1a) and (3.1b) are found by setting dh̃/dx̃ = 0 and
ds̃/dx̃ = 0 simultaneously. From (3.1a) we see that every fixed point must necessarily have
s̃ = 0, corresponding to a flat fluid sheet, and substituting this in (3.1b) one obtains h̃3 =
F−2

n (= h̃3
n). Therefore, the system has one real fixed point (h̃, s̃) = (h̃n, 0); the other two

roots of h̃3 = h̃3
n are complex conjugate and as such they can be left aside. The linear

stability analysis around (h̃n, 0) reveals that the fixed point is always a saddle, with two
real eigenvalues of opposite sign. The physical significance of this will become clear in
the course of this section.
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3.2. Nullclines
A key role in the dynamics of the system is played by the nullclines given by f1(s̃) = 0 and
f2(h̃, s̃) = 0, respectively. The first of these is simply the horizontal axis s̃ = 0. The second
one has a more intricate form,

s̃±(h̃) = R
2

{
h̃3 − 1 ±

√(
h̃3 − 1

)2 + 4Cf

R

(
1 − F2

nh̃3
)}

, (3.2)

shown in figure 2(a,b) as a dashed line. Evidently, the fixed point (h̃n, 0) lies at the
intersection of the two nullclines s̃ = 0 and s̃±(h̃).

The latter nullcline s̃±(h̃) consists of two branches. For mild channels, these branches
intersect the vertical line associated with the critical level h = hc, i.e. h̃ = 1. In the case of
a steep channel on the other hand, the expression under the square root in (3.2) becomes
negative for h̃ = 1 and its immediate neighbourhood (since F2

n ≡ (hc/hn)
3 > 1 for a steep

channel); as a result, the two branches of s̃±(h̃) leave a gap around h̃ = 1, as seen in
figure 2(b).

Inside the jump region, the nullcline s̃±(h̃) intersects the phase-space trajectories exactly
at their maxima, corresponding to the inflection point of the jump (which lies close to the
critical level h̃ = 1). Outside the jump region, on either side, the trajectories can be shown
to converge to this nullcline, which thereby governs the system’s asymptotic behaviour (cf.
figure 2a,b). Specifically, for h̃ � 1 the slope of h̃(x̃) is

lim
h̃→0

s̃ = R
2

(√
1 + 4

Cf

R
− 1

)
= Cf −

C2
f ν

Q
+ O(ν2), (3.3)

which is the correction to the classical result s̃ → Cf (in the limit for small h̃) for the slopes
of the profiles M3 and S3. Note that, physically, the limit h̃ → 0 must be interpreted in
such a way that h̃ always remains above a certain small but finite threshold value in order
to comply with the concept of a flowing continuous medium. More specifically, in the
present description all relevant lengths are supposed to remain larger than the scale at
which the capillary forces would become important.

At the other end of the spectrum, for h̃ 	 1, we find s̃ = tan ζ , corresponding to a
horizontal water profile with respect to the laboratory (Rouse 1946). As one can see
in figure 2(a,b), this large-h̃ limit is already reached at h̃ ≈ 2. Indeed, the situation
of a horizontal profile is very commonly observed in experiment, being the typical
configuration encountered before a sluice gate (see figure 3).

3.3. Phase portraits of the hydraulic jumps
Figure 2(a) gives a detailed view of the continuous hydraulic jump in a mild channel
(ζ = 2◦ and Fn = 0.7), with an effective Reynolds number R = 20. For small values
of h̃, where the flow is supercritical, the trajectories run close to the nullcline s̃+(h̃) of
(3.2). Then they depart from it, along a nearly parabolic path that follows the stable
manifold of the saddle point. They cross the critical value h̃ = 1 close to the top of the
trajectory – where the flow becomes subcritical – and descend to the close neighbourhood
of the saddle (h̃n, 0). Here the trajectories either go to the right, to the left or (in the
borderline case) hit exactly upon the saddle. The red trajectory in figure 2(a) reconnects
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Basin Sluice

Mild

Steep

M̃3

S̃3

S̃2
S̃1

S̃1

S̃3

M̃3

M̃1

M̃2

M̃1

Sluice Fall

hn

hc

hc

hn

(a)

(b)

Figure 3. Overview of the four types of hydraulic jumps that are encountered in laminar or moderately
turbulent open channel flow, arising as stationary solutions of the generalized Saint-Venant equations (2.2)
and (2.3). (a) The jumps M̃3 → M̃1 and M̃3 → M̃2 (figure 2a) occur in a channel with mild slope with the aid
of two sluice gates. (b) In a steep channel, the jumps S̃2 → S̃1 and S̃3 → S̃1 (figure 2b) are materialized in a
similar manner.

to the rightmost branch s̃−(h̃) of the nullcline, forming the profile M̃1, which eventually
attains the constant slope s̃ = tan ζ . The tilde in M̃1 is used to distinguish this gradually
varying profile from its non-diffusive counterpart obtained from the classic theory (Rouse
1946).

The blue trajectory, on the other hand, bends off to the left of the saddle, i.e. to smaller
values of h̃ with negative slope s̃. It decreases towards the critical level h̃ = 1 and can
even drop below it, thereby rendering the flow supercritical again, thus permitting the
flow to discharge at supercritical conditions as observed in real channels (Chow 1973).
This resolves a problematic point of the classical theory, according to which M2 (i.e.
the non-diffusive counterpart of the present profile) always remained purely subcritical,
meaning that the supercritical discharge, while perfectly feasible in practice, was not
accounted for within the non-diffusive framework of (2.6).

However, the supercriticality of M̃2 cannot be pushed too far, because at some point
the height starts falling sharply towards zero (and hence the velocity ū = Q/h diverges),
meaning that our analysis breaks down. So, the blue trajectory in figure 2(a) loses its
physical significance at some certain level below h̃ = 1. For the present study this does
not matter though, since the jump (M̃3 → M̃2) is already described by the preceding parts
of the trajectory.

The jump trajectories and profiles for a steep channel are depicted in figure 2(b). The red
and blue trajectories now start out from different regions of phase space, but both approach
the vicinity of the saddle point (h̃n, 0), from which they escape along near-parabolic
orbits that are organized around the saddle’s unstable manifold. As before, they cross
the critical level h̃ = 1 close to their maximum and when they come down again, both
trajectories converge to the rightmost branch of the nullcline s̃−(h̃), which represents the
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familiar profile with slope s̃ = tan ζ . In analogy with the terminology from the classic
non-diffusive theory, we call this the S̃1 profile.

It is apparent from the phase-space trajectories in figure 2(a,b) that the jumps for
steep channels are mirror images of those for mild ones, illustrating the profound relation
between these two classes of hydraulic jumps. This mirror symmetry is also reflected in
the nullclines: in the mild case, the saddle point lies at the intersection of s̃ = 0 and the
branch s̃−(h̃); whereas for a steep channel the saddle lies at the intersection of s̃ = 0 and
s̃+(h̃).

3.4. Overview of the four different jump types
The above findings are recapitulated in figure 3, presenting an overview of all four jump
types in a set-up where they can be observed experimentally, involving channels with two
sluice gates and an outlet (or ‘fall’). The figure is an extended and updated version of
a famous textbook picture (Rouse 1946, p. 228). Thanks to the inclusion of a second
sluice gate we can accommodate all four jump types, instead of the two types in the
aforementioned picture. More importantly, owing to the diffusive term, all jump solutions
are now continuous while in the classic picture they were merely vertical segments.

The symmetry between the jumps on the mild and steep channels here manifests itself
as follows. The mild jump M̃3 → M̃1 is the mirror image of the steep jump S̃3 → S̃1; to
see this, one should view this latter jump upside down and trace it in reverse order, i.e.
from S̃1 to S̃3. Likewise, the jump M̃3 → M̃2 is the mirror image of S̃2 → S̃1.

At this point, we note that the question of which jump will be realized in practice is
dictated by the boundary conditions. In the case of a hydraulically mild channel, the
downstream conditions decide the issue: confronted with a sluice gate, M̃3 will necessarily
jump to the M̃1 branch; whereas before a fall it has to follow the M̃2 branch. For a
hydraulically steep channel, by contrast, the flow is controlled by the upstream conditions:
any jump now has to end in S̃1, since this is the only subcritical branch, and whether it will
do so from S̃2 or S̃3 depends on whether the height from which the flow starts is above or
below h̃n, respectively.

This difference between downstream and upstream control beautifully corroborates the
aforementioned mirror symmetry between the jumps in mild and steep channels. The
physical reason for this can be traced back to the fact that information in the supercritical
regime (F > 1) can travel only downstream, because the fluid travels faster than any
surface wave; hence the choice between S̃2 or S̃3 must necessarily be decided at the
upstream end of the flow sector in question. In the subcritical regime (F < 1) information
travels in both directions, which means that the choice between M̃1 and M̃2 can now be
made at the downstream end of the flow sector (Rouse 1946). In § 5 we will come back to
the propagation of information along the jump profile.

To end this section, we comment upon a central and very significant point of our
dynamical systems analysis, namely the fact that the fixed point is a saddle. Keeping in
mind that the fixed point (h̃n, 0) represents the uniform flow, a fully stable version of this
point (a stable spiral or node) would mean that any initial condition would inevitably lead
to a uniform flow. This would rule out the formation of a hydraulic jump. Conversely, a
fixed point without any stable manifolds would also not do. The jump is only possible
when the fixed point in question has stable as well as unstable manifolds. The stable
manifold is necessary for attracting the trajectory out of the branch s̃+(h̃) of supercritical
flow; subsequently, the unstable manifold is needed for sending the trajectory onward to

915 A8-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

31
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.31


Continuous hydraulic jumps in laminar channel flow

the subcritical branch s̃−(h̃). It is to this delicate interplay of stability and instability that
hydraulic jumps owe their existence, with the saddle (h̃n, 0) acting as the pivotal point.

In this context, it is worth mentioning that also the existence of the hydraulic jumps
found by Bohr and coworkers (Bohr et al. 1997; Watanabe et al. 2003) depended on the
presence of a saddle point. Their dynamical system was different from ours, as mentioned
below (3.1), yet the saddle point had the same function of first pulling the trajectory from
the supercritical region of phase space and then pushing it on towards the subcritical
region.

4. Length of the jump

4.1. Derivation of the jump length

In the jump region, the derivatives of h̃ attain their maximal values and dh̃/dx̃ becomes
relatively large. This implies that the term involving Cf in (2.7) will be minor in
comparison with the term linear in dh̃/dx̃, since the Chézy parameter Cf is typically very
small, of the order of 0.002–0.07, as noted under (2.3). Thus, across the jump, (2.7) is well
approximated by

h̃
d2h̃
dx̃2 ≈

(
dh̃
dx̃

)2

+ R
(

1 − h̃3
) dh̃

dx̃
. (4.1)

Rewriting this second-order ODE as follows:

h̃−2

⎛
⎝d2h̃

dx̃2 h̃ −
(

dh̃
dx̃

)2
⎞
⎠ = R

(
h̃−2 dh̃

dx̃
− h̃

dh̃
dx̃

)
, (4.2)

it is readily integrated to yield

h̃−1 dh̃
dx̃

= −R
(

h̃−1 + 1
2

h̃2
)

+ B, (4.3)

where the integration constant B is determined by the fact that the jump trajectory
passes close by the saddle point (h̃, dh̃/dx̃) = (h̃n, 0), i.e. B = R(h̃−1

n + 1
2 h̃2

n) ≡ RF2/3
n (1 +

1
2 F−2

n ). This leaves us with the following first-order ODE (cf. figure 4):

dh̃
dx̃

= −1
2

Rh̃3 + Bh̃ − R = A(h̃n − h̃)(h̃ − h̃1)(h̃ − h̃2), (4.4)

where A = 1
2 R. In the last step we have written the cubic expression in terms of its roots,

by first extracting the root h̃ = h̃n associated with the saddle point (h̃n, 0). The other two
roots h̃1, h̃2 are not associated with any fixed points of the full dynamical system but arise
from the approximation made in (4.1). They are real-valued and of opposite sign: h̃1 is
positive (see figure 4a) and from R = −Ah̃nh̃1h̃2 it may be inferred that h̃2 = −2/(h̃nh̃1) <

0 (outside the scale of figure 4a).
Equation (4.4) is represented by the solid black curve in figure 4(a) and is seen to give a

very good approximation of the saddle’s manifold (dashed black curve) in the jump region.
Its maximum lies at h̃ = h̃∗ = (2B/3R)1/2 = [ 2

3(h̃−1
n + 1

2 h̃2
n)]

1/2, indicated by the vertical
dashed line in figure 4(a). With an eye to the analysis to follow, we note that the depicted
lobe of the cubic function can be fitted closely to a parabola.
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s̃

2

1

1.0 1.5

0
h̃1

h̃n

h̃c = 1h̃ (x̃)

x̃

h̃

h̃c h̃nh̃∗

h̃∗

–0.5 0.50

(a)

(b)

Figure 4. (a) Phase-space trajectories for jumps on a mild chute (red and blue curves, the same as in figure 2a),
together with the stable manifold (dashed curve) of the saddle point (h̃n, 0). The cubic expression (4.4), depicted
by the solid black curve, is seen to be an accurate approximation to this manifold in the jump region h̃1 < h̃ <

h̃n. The vertical dashed line h̃ = h̃∗ marks the height at which the cubic expression attains its maximum. (b)
The corresponding jump profiles h̃(x̃). The solid black curve associated with the cubic approximation coincides
– on the scale of this figure – with the tanh-profile equation (4.6) obtained from fitting the cubic by a parabola.
The parameter values are the same as in figure 2(a).

Equation (4.4) is a separable ODE. It may be cast in the form dx̃ = dh̃/[A(h̃n −
h̃)(h̃ − h̃1)(h̃ − h̃2)] and then be solved analytically by decomposing the right-hand side
into its partial fractions. The result is an elaborate expression involving logarithms. For
our purposes, however, it is sufficient to focus upon the jump region, where the cubic
expression can be replaced – without any significant loss of accuracy – by a parabola of
the form s̃(h̃) = s̃∗ − K(h̃ − h̃∗)2, with K = s̃∗/(h̃n − h̃∗)2. This parabolic approximation
is symmetric around h̃∗ and its apex s̃∗ = s̃(h̃∗) ≡ dh̃/dx̃|h̃=h̃∗ coincides with the local
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Continuous hydraulic jumps in laminar channel flow

maximum of the cubic expression (4.4). The parabola intersects the horizontal axis at the
points (h̃n, 0) and (2h̃∗ − h̃n, 0).

Thus, in the jump region equation (4.4) is well approximated by

dh̃
dx̃

= s̃∗(
h̃n − h̃∗

)2

(
h̃n − h̃

) (
h̃ − (2h̃∗ − h̃n)

)
, (4.5)

which can be integrated to yield

h̃(x̃) ≈ h̃∗ + (h̃n − h̃∗) tanh (αx̃) , where α = s̃∗
h̃n − h̃∗

. (4.6)

The integration constant here has been chosen such that the jump is centred around x̃ =
0, i.e. h̃(0) = h̃∗. The approximate profile equation (4.6) traverses the jump amplitude
2(h̃n − h̃∗) in a symmetrical fashion. The jump region of figure 4(a,b) shows that this is an
adequate description, and that especially in the upper half of the jump it is excellent. (For
steep jumps this would be the lower half, as can be seen in the insets of figure 5.)

Now, the non-dimensional jump length L̃ may be defined as the distance in the
x̃-direction in which h̃(x̃) completes 99 % of its course from h̃1 to h̃n. Since tanh(αx̃) =
0.99 at αx̃ = 2.65, this gives L̃ = 2 × 2.65/α = 5.3(h̃n − h̃∗)/s̃∗. With s̃∗ ≡ dh̃/dx̃(h̃∗)
from (4.4), and expressing all relevant heights in terms of Fn and R, we arrive at

L̃ = 5.3
6F4/3

n

R
∣∣∣1 − 4F2

n +√
3 + 6F2

n

∣∣∣ . (4.7)

For the jumps shown in figure 2(a) (and figure 4) with Fn = 0.7 and R = 20, the above
expression predicts a length L̃ = 0.69. This is in excellent agreement with the value
obtained from numerically solving the full dynamical system (3.1a) and (3.1b).

The same expression (4.7) holds for jumps on a steep channel. In this case, the fixed
point (h̃n, 0) lies at the left-hand side of the jump region (i.e. the supercritical side) and
the associated value of Fn is larger than 1. To keep L̃ positive, the absolute value signs in
the denominator are then needed. For the jump depicted in figure 2(b), with Fn = 1.4 and
R = 20, (4.7) yields L̃ = 0.83, once again in full agreement with the length found from
solving the full dynamical system.

4.2. Discussion of the expression for the jump length

In figure 5(a), the length L̃ predicted by (4.7) is plotted as a function of Fn, for a fixed
value of the effective Reynolds number (R = 20). The left-hand part of the diagram regime
(0 < Fn < 1) corresponds to hydraulically mild channels and is denoted by the letter M.
As the inset shows, in this case the reference point – where Fn is measured – lies at the
upper, subcritical side of the jump. The right-hand part (Fn > 1) corresponds to the steep
regime denoted by the letter S. Here, in accordance with the mirror symmetry discussed
in the previous section, the reference point is located at the lower, supercritical side of
the jump. Also the form of the plot of L̃(Fn) itself, with its two hyperbolic-like branches
around Fn = 1, is again a consequence of the mirror symmetry between jumps on mild
and steep channels.
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s̃
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0.05

0
0.8 1.0 1.2
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h̃n

h̃n

h̃

h̃c = 1

h̃n = h̃c = 1

h̃c = 1

h̃ (x̃)

s̃+(h̃) s̃–(h̃)

x̃ x̃

h̃ (x̃)

M S

Fn

(a)

(b)

Figure 5. (a) The non-dimensional length L̃ predicted by (4.7) as a function of Fn (the Froude number
at the reference level h̃ = h̃n), for a fixed value of the effective Reynolds number R = 20. The regime
of hydraulically mild (M) channels corresponds to 0 < Fn < 1 and that of steep (S) channels to Fn > 1.
The intermediate grey zone around Fn = 1 indicates that the prediction (4.7) becomes unreliable here. The
insets are representative jumps for the mild and steep cases. The dashed curves depict the actual profiles,
corresponding to the stable/unstable manifold of the saddle point (h̃n, 0), whereas the solid black curves are
the approximative tanh-profiles given by (4.6). (b) Phase-space portrait for a hydraulically critical channel
(Fn = 1). The trajectories are seen to be completely symmetric around h̃n = h̃c = 1, in accordance with the fact
that (being on the borderline between mild and steep) they have to be their own mirror image. The manifolds
of the saddle point connect directly – without detours – to the nullclines at either side, so there is no backbone
here for a near-parabolic orbit. As a result, in this case the transition from supercritical to subcritical flow takes
place without any pronounced jump; note the small scale of the s̃-axis.
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Continuous hydraulic jumps in laminar channel flow

Between the mild and steep regimes lies the critical value Fn = 1, for which the
expression (4.7) diverges and the length prediction breaks down. The grey zone shrouding
Fn = 1 signifies the region in which (4.7) does not accurately represent the jump
length anymore. The reason for this breakdown lies in the fact that the approximation on
which (4.7) was based, namely that dh̃/dx̃ becomes sufficiently large compared with Cf ,
loses its validity as one comes too close to the critical channel conditions. In figure 5(b)
we show the phase portrait for the exact value Fn = 1 (and R = 20): the stable and
unstable manifolds emanating from the saddle do not make any near-parabolic detour
here, but connect directly to the nullclines. Hence, also the trajectories that represent the
transition from supercritical to subcritical flow (red solid curves) do not need to become
large. This means that the last term in (2.7) cannot be neglected in the critical case, and
hence one should not use the approximative equation (4.1), which formed the basis of the
analysis leading to the length prediction (4.7). Physically, on a critically sloped channel,
the transition from the supercritical to the subcritical flow profiles can take place either
via a slight jump (upper red curve) or via an extended flow segment where the slope is
actually smaller than in the surrounding gradually varied profiles (lower red curve). Also
a transition without any discernible change of slope is possible in this case; this would
correspond to a linearly thickening fluid profile aligned with the horizon, h̃(x̃) = x̃ tan ζ .
One should note, however, that it will require a high degree of fine-tuning to produce such
critical channel conditions in experiments.

Outside the grey zone, where (4.7) is valid, this expression reflects that the jumps
considered here result from an interplay between gravity and viscous diffusion,
represented by the Froude number Fn and the effective Reynolds number R, respectively.
With respect to the latter, we observe that L̃ is inversely proportional to R, i.e. it grows
linearly with ν, which stands to reason given the flattening effect of the diffusion. In the
non-diffusive limit ν → 0 (or equivalently, R → ∞) the length vanishes, reproducing the
infinitely steep jump of the classical analysis.

The more intricate dependence on the Froude number Fn is illustrated in figure 5(a).
Since the present study – based on the generalized Saint-Venant equations – concerns
weak jumps as are found in laminar and moderately turbulent flow, the Froude number of
the incoming flow should not exceed 2.5. This immediately puts an upper bound on the
admissible values of Fn in the steep regime, for which the reference point (h̃n) is positioned
at the supercritical side of the jump. Likewise, in the mild regime, Fn should not become
too small, since the limit Fn → 0 corresponds to a situation in which the upper flank of the
jump connects to a flow that is very thick and extremely slow. This limit must be treated
with caution, since such a thick flow is beyond the scope of the generalized Saint-Venant
equations (2.2) and (2.3), which are meant to describe shallow fluid flow.

5. Stability of the jumps

5.1. Numerical experiment
The previous sections have provided insight into the structure of the jumps from a
dynamical systems point of view. This method has given us a geometric overview of the
stationary solutions of the generalized Saint-Venant equations, yet it does not reveal the
time-dependent dynamics leading up to these solutions, nor does it give information about
their stability against perturbations. To shed light upon this issue, we must return to the
original PDEs (2.2) and (2.3).

In this section we will be concerned in particular with the stability question and we
will show that the jump profiles obtained via the dynamical systems approach are stable
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against small perturbations. In this context, we pay special attention to the direction in
which these perturbations propagate along the profile. We will see that a perturbation
on the supercritical lower branch (F > 1) can make itself be felt only in the downstream
direction, whereas a perturbation on the subcritical upper branch (where F < 1) sends
small waves in both directions. In fact, the one-way propagation of information in the
supercritical regime has given rise to an intriguing analogy between hydraulic jumps and
white holes in cosmology (Volovik 2005; Jannes et al. 2011).

For the numerical integration we use the ‘method of lines’ (Schiesser 1991; Hamdi,
Schiesser & Griffiths 2007). This method transforms the two PDEs (2.2) and (2.3) into
a system of multiple ODEs, by discretizing the spatial variable x (to a uniform grid
x0 ≤ xi ≤ xmax in steps of Δx, and using a central-difference scheme to approximate the
spatial derivatives), leaving t as the only continuous independent variable. Our standard
grid spacing is Δx = 0.001, which means, for example, for the simulation of figure 6
(which concerns 4 metres along the x-axis) that the interval is divided in 4000 steps. The
resulting system of ODEs then consists of 4001 equations per PDE, leading to a total
of 8002 coupled ODEs. The accuracy of the results has been checked by repeating the
procedure for smaller values of the grid spacing as well.

The initial conditions used in figure 6 are the perturbed jump profile h(x, 0) (dashed
black line) and the corresponding initial velocity ū(x, 0) = Q/h(x, 0), taken at the grid
points x = xi, i = 0, . . . , 4000. As for the required boundary conditions (one for h and
two for ū, since the generalized Saint-Venant equations contain only first-order spatial
derivatives of h and up to second-order spatial derivatives of ū): at the upstream boundary
x0 we impose Dirichlet conditions for h and ū; whereas at the downstream end xmax we
employ a Neumann condition for ū.

In figure 6(a,b) we show snapshots from a numerical experiment in which we follow the
time evolution of a perturbation on the supercritical and subcritical branch, respectively,
of a jump S̃3 → S̃1 on a steep channel. The initial perturbation (dashed black curve) is a
Gaussian-shaped hump superimposed on the profile obtained from the dynamical system.
This perturbation sends out wave packets that are seen to decay with time, confirming the
stability of the jump.

5.2. Linear stability analysis: propagation and attenuation of small perturbations
Another thing that is confirmed by the numerical experiment is the aforementioned
difference in propagation of the wave packets, which is indeed unidirectional on the
supercritical branch and bidirectional on the subcritical one. This phenomenon can be
understood from the governing generalized Saint-Venant equations, (2.2) and (2.3), by
linearizing them around a base flow with constant height h0 and associated depth-averaged
velocity u0.

That is, we set h(x, t) = h0 + ĥ(x, t) and ū(x, t) = u0 + û(x, t) and keep only the linear
terms with respect to the perturbations ĥ(x, t) and û(x, t). The linearized continuity
equation and momentum balance then take the form

ĥt + u0ĥx + h0ûx = 0, (5.1a)

ût + u0ûx = g sin ζ − g cos ζ ĥx − Cf
u2

0
h0

(
1 − ĥ

h0
+ 2

û
u0

)
+ νûxx, (5.1b)
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Figure 6. Stability of the hydraulic jump S̃3 → S̃1. Perturbations A0 and B0 (indicated by the black dashed
humps) are imposed on the jump’s lower and upper branch, and their subsequent evolution is computed from the
generalized Saint-Venant equations (2.2) and (2.3). Both perturbations are seen to break into two wave packets
that decay with time, evidencing the stability of the jump. (a) Supercritical branch: the two wave packets,
A+(t) and A−(t), are depicted at the consecutive moments t1 = 0.2 s (red), t2 = 0.4 s (green) and t3 = 0.6
s (blue). Both packets propagate downstream and eventually pass the critical level h = hc, where they enter
the subcritical regime; at t = t3 the wave packet A+(t) has just made this transition. (b) Subcritical branch: the
wave packets B+(t) and B−(t) are again depicted at times t1, t2 and t3. They are seen to travel in both directions.
At t = t3 the one going downstream, B+(t), has already advanced beyond the plot frame. The packet moving
upstream, B−(t), can never cross h = hc, so it gets trapped (and dies out) on the upper flank of the jump.

where the friction term featuring in (5.1b) comes about as follows:

Cf
(u0 + û)2

h0 + ĥ
= Cf u2

0
h0

(
1 + û/u0

)2
1 + ĥ/h0

≈ Cf u2
0

h0

(
1 + 2

û
u0

)(
1 − ĥ

h0

)
. (5.2)

Rearranging the linearized continuity equation (5.1a), one has

ûx = − 1
h0

(
ĥt + u0ĥx

)
, (5.3)

and from this, by successive differentiations, one finds ûxx, ûxxx and ûxt. These in turn
can be substituted into the linearized momentum balance (5.1b) after this has been
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differentiated with respect to x, to arrive at an equation in terms of ĥ only. The resulting
equation reads

ĥtt + 2u0ĥxt + u2
0ĥxx = gh0 cos ζ ĥxx − 3

Cf u2
0

h0
ĥx − 2

Cf u0

h0
ĥt + νĥxxt + νu0ĥxxx, (5.4)

which can be cast in non-dimensional form by introducing ĥ = h0h̃, x = h0x̃ and t =
(h0/u0)t̃ as follows:

h̃t̃t̃ + 2h̃x̃t̃ +
(

1 − 1
F2

)
h̃x̃x̃ + 3Cf h̃x̃ + 2Cf h̃t̃ − 1

R

(
h̃x̃x̃t̃ + h̃x̃x̃x̃

)
= 0. (5.5)

By inserting the travelling wave ansatz h̃(x̃, t̃) = A exp(i(k̃x̃ − ω̃t̃)) into (5.5), with k̃ and
ω̃ being the dimensionless wavenumber and angular frequency, respectively, we obtain the
dispersion equation

ω̃2 − 2

(
k̃ − i

(
Cf + k̃2

2R

))
ω̃ +

((
1 − 1

F2

)
k̃2 − i

(
3Cf k̃ + k̃3

R

))
= 0, (5.6)

which is a quadratic equation for ω̃. It has the following two solutions:

ω̃±(k̃) = k̃ − i

(
Cf + k̃2

2R

)
±
√

−C2
f +

(
1

F2 − Cf

R

)
k̃2 − k̃4

4R2 + iCf k̃. (5.7)

The real and imaginary parts of (5.7) are

Re[ω̃±(k̃)] = k̃ ± M1/2(k̃) cos

(
φ(k̃)

2

)
(5.8)

and

Im[ω̃±(k̃)] = −Cf − k̃2

2R
± M1/2(k̃) sin

(
φ(k̃)

2

)
, (5.9)

respectively, where M(k̃) denotes the magnitude of the (complex) quantity under the square
root of (5.7),

M(k̃) =
⎡
⎣
(

−C2
f +

(
1

F2 − Cf

R

)
k̃2 − k̃4

4R2

)2

+
(

Cf k̃
)2

⎤
⎦

1/2

(5.10)

and φ(k̃) is its principal argument,

φ(k̃) = Arg

(
−C2

f +
(

1
F2 − Cf

R

)
k̃2 − k̃4

4R2 + iCf k̃

)
. (5.11)

In figure 7 we show the real and imaginary parts of ω̃±(k̃) for typical values of the
parameters R, Cf and F. The effective Reynolds number and the dimensionless friction
factor are R = 20 and Cf = 0.02, just as in figure 6, while for the Froude number we
have chosen the values F = 1.57 for ω̃+(k̃) (panel (a)) and F = 1.70 for ω̃−(k̃) (panel (b))
associated with the green wave packets at t = t2 on the supercritical branch of figure 6(a).
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Figure 7. The real and imaginary parts of ω̃±(k̃), given by (5.8) and (5.9), represented by the red and blue
curves, respectively. Also depicted (as a black dashed line) is the approximate expression (1 ± 1/F)k̃ for the
real part Re[ω̃±(k̃)]. This approximation is seen to be very accurate for small k̃, and therefore relevant for our
analysis, since the wave packets are localized entities composed of harmonic waves with small wavenumbers
k̃. Their phase speed Re[ω̃±(k̃)]/k̃ is thus in good approximation given by 1 ± 1/F. The negative value of
the imaginary part Im[ω̃±(k̃)] is responsible for the observed decay of the wave packets with time. Parameter
values: R = 20, Cf = 0.02, F = 1.57 for ω̃+(k̃) (a) and F = 1.70 for ω̃−(k̃) (b), corresponding to the green
wave packets at t = t2 on the supercritical branch of figure 6(a).

The fact that ω̃(k̃) is complex, with a real and imaginary part, means that the plane wave
components comprising the wave packet have the following form:

h̃(x̃, t̃) = A exp(Im[ω̃(k̃)]t̃) exp(i(k̃x̃ − Re[ω̃(k̃)]t̃)). (5.12)

The first exponential on the right-hand side of (5.12) shows that the amplitude of the
wave packet increases or decreases exponentially with time, as exp(Im[ω̃(k̃)]t̃). In our
system, as figure 7 shows, the imaginary part Im[ω̃(k̃)] is always negative and hence
the amplitude diminishes. More specifically, the wave packets shown in figure 6 are
composed of harmonic waves with an average dimensionless wavenumber k̃∗ = 0.7 ± 0.1
and the corresponding values Im[ω̃+(k̃∗)] = −0.016 and Im[ω̃−(k̃∗)] = −0.015 are in full
agreement with the observed exponential attenuation of the waves.
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The second exponential in (5.12) determines the (dimensionless) phase speed c̃±(k̃) of
the harmonic waves in question, which is given by

c̃±(k̃) = Re[ω̃±(k̃)]

k̃
. (5.13)

In the inviscid limit for Cf → 0 (no shear stresses) and 1/R → 0 (no in-plane stresses)
(5.7) reduces to ω̃±(k̃) = (1 ± F−1)k̃. So the angular frequency ω̃±(k̃) in the inviscid case
is purely real, implying that the waves are not attenuated; this makes sense, since the
absence of viscosity deprives the system of its source of dissipation. The phase speed
(5.13) in this limit becomes independent of the wavenumber k̃ as follows:

c̃±,inv(F) = 1 ± 1
F

. (5.14)

Moreover, in this inviscid limit also the group velocity c̃g = dω̃/dk̃ becomes identical
to the same expression (5.14), so the absence of the viscous terms also means that the
system is rendered dispersionless. The small-amplitude wave packets then behave as
non-dispersive waves.

As a matter of fact, the propagation speed given by (5.14) also provides a good
approximation for the actual situation under consideration. Not only are the parameters
Cf and 1/R quite small in our system, but importantly, the wavenumbers k̃ are small as
well. Indeed, as figure 7 shows, Re[ω̃±(k̃)] and (1 ± F−1)k̃ are practically identical in the
range k̃ � 1 we are dealing with. We thus arrive at the conclusion that the small-amplitude
perturbations (which lend themselves to the present linearized description) behave as
attenuated, yet nearly non-dispersive waves propagating at speeds c̃±(F) = (1 ± F−1)
depending solely on the Froude number F = ū0/

√
gh0 cos ζ of the base flow.

When the base flow is supercritical (F > 1), both velocities c̃±(F) are positive; so all
perturbations travel in the upstream direction. On the other hand, in the subcritical regime
with F < 1 the velocity c̃−(F) becomes negative, corresponding to upstream propagation,
whereas c̃+(F) remains positive. This explains the unidirectional and bidirectional
propagation observed in figures 6(a) and 6(b), respectively.

On the supercritical branch of figure 6(a) we measure the (dimensional) velocities c− ≈
0.73 and c+ ≈ 2.80 m s−1, corresponding to the dimensionless values c̃− = c−/u0 ≈ 0.41
and c̃+ = c+/u0 ≈ 1.65. In agreement with this, the theoretical approximation equation
(5.14) gives the propagation speeds c̃− = 0.41 and c̃+ = 1.64, respectively.

Likewise, on the subcritical branch of figure 6(b) we find from our numerical
simulations c− ≈ −0.60 and c+ ≈ 2.40 m s−1, corresponding to the dimensionless
values c̃− ≈ −0.67 and c̃+ ≈ 3.28. Equation (5.14) in this case predicts c̃− = −0.66
and c̃+ = 3.25, once again in accordance with the numerically observed values. Given
the approximation we have made by truncating the mass and momentum balance at the
linear order in ĥ and û, and given that the base flow along the jump is actually not
precisely uniform (as assumed in the above analysis), the agreement may be said to be
very satisfactory.

6. Conclusion

The hydraulic jumps in laminar or moderately turbulent open channel flow have been
captured, complete with their mean-field shock structure, as stationary solutions of
the generalized Saint-Venant equations. In phase space, the jumps manifest themselves
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as trajectories that leap from the supercritical branch of the nullcline to the opposite
subcritical branch via a pronounced near-parabolic orbit. This orbit follows the
stable/unstable manifold of the saddle point (h̃, h̃′) = (h̃n, 0), for mild/steep channels,
respectively, while the nullcline s̃±(h̃) given by (3.2) provides the form of the gradually
varied profiles before and after the jump.

The phase-space representation has yielded a very useful geometrical insight into the
structure of the jumps. Among other things, it has brought to light the mirror symmetry
that exists between the jumps in mild and steep channels. This is illustrated by figure 2 and
also the overview in figure 3, where the two jump types that can be found in mild channels
are presented along with their two counterparts for steep channels.

The dynamical systems description has also led to the derivation of the approximative
expression (4.7) for one of the most prominent features of the hydraulic jump, namely, its
length. To the best of our knowledge, this is the first analytic expression for the length
extracted directly from the governing equations. It will be very interesting to test the
accuracy of this prediction in experiment.

Finally, the important issue of the stability of the jumps has been settled by returning
to the original PDEs. The jump profiles obtained from the dynamical systems analysis are
inserted into (2.2) and (2.3), with perturbations applied to the supercritical and subcritical
branches, respectively. The perturbations are seen to decay with time, as illustrated in
figure 6 and corroborated by means of a linear stability analysis. Thus the stability of the
jumps is confirmed.
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