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Geometrical Proof of tan A+tan B+tan C=tan A
tan B tan C.—Let ABC be the A, AD and BE | s to BC and
AC, CK and BM 1s to ED.

M

Then - CED=B, and . CDE=A4. Let E=radius of circum-
circle of AABC.

EK =CE cos B=1BC cosCcos B=2Rsin 4 cos C cos B.
KD=CDcosA=A4C cos Ccos 4 =2Rsin Beos C cos 4.
DM=BDcos 4 =ABcos Bcos A=2Rsin C cos Beos 4.
EM = BE sin B= ABsin 4 sin B=2R sin C sin 4 sin B.

Now EM=EK+ KD+ DM.

2R sin 4 sin Bsin C =

2R sin 4 cos Bcos C + 2R sin Bcos 4 cos € + 2B sin (' cos 4 cos B,
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MATHEMATICAL NOTES,
Divide throughout by 2R cos 4 cos Bcos C,

tan 4 +tan B +tan C'=tan 4 tan Btan C,

A. G. BURGESs.

To draw a circle which cuts three circles at the
ends of the diameters of these circles.—Let the three circles
have centres, 4, B, C, and let their radical centre be 7, and the

circumecentre of AABC be 0. Join 70 and produce it to 7', so
that 7,0 =T0. 7, is the centre of the required circle. Join 74
and 7'C, and draw diameters 4,44,, and C,CC, perpendicular to
T'4 and T0C. (& with centre 7, and radius 74, passes through
4,
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