
Received 31 August 2019
Revised 17 March 2020
Accepted 30 March 2020

Corresponding author
C. S. Tucker
conradt@andrew.cmu.edu

Published by Cambridge
University Press
c© The Author(s), 2020.

This is an Open Access article,
distributed under the terms of the
Creative Commons Attribution
licence (http://creativecommons.
org/licenses/by/4.0/), which permits
unrestricted re-use, distribution,
and reproduction in any medium,
provided the original work is
properly cited.

Des. Sci., vol. 6, e11
journals.cambridge.org/dsj
DOI: 10.1017/dsj.2020.9

A sparsity preserving genetic
algorithm for extracting diverse
functional 3D designs from deep
generative neural networks
James D. Cunningham1, Dule Shu1, Timothy W. Simpson2
and Conrad S. Tucker 1,3

1Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
2Mechanical Engineering, Industrial and Manufacturing Engineering,
Penn State University, University Park, PA, 16802, USA

3Machine Learning, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

Abstract
Generative neural networks (GNNs) have successfully used human-created designs to
generate novel 3D models that combine concepts from disparate known solutions, which
is an important aspect of design exploration. GNNs automatically learn a parameterization
(or latent space) of a design space, as opposed to alternative methods that manually define
a parameterization. However, GNNs are typically not evaluated using an explicit notion of
physical performance, which is a critical capability needed for design. This work bridges
this gap by proposing a method to extract a set of functional designs from the latent space
of a point cloud generating GNN, without sacrificing the aforementioned aspects of a GNN
that are appealing for design exploration. We introduce a sparsity preserving cost function
and initialization strategy for a genetic algorithm (GA) to optimize over the latent space
of a point cloud generating autoencoder GNN. We examine two test cases, an example
of generating ellipsoid point clouds subject to a simple performance criterion and a more
complex example of extracting 3D designs with a low coefficient of drag. Our experiments
show that the modified GA results in a diverse set of functionally superior designs while
maintaining similarity to human-generated designs in the training data set.

Key words: deep learning, computer-aided design, design space exploration, genetic
algorithms

1. Introduction
The design decisions that have the highest impact on the final design’s
performance and cost are made during the early conceptual phase of the
design process in which design criteria are not fully formulated and multiple
design alternatives are explored (Krish 2011; Østergård et al. 2016). However,
even though most computer-aided design (CAD) software provide capability
to support the latter stages of design, with functionality such as fine-tuning
parameters and analysis of performance, many designers still rely on these tools
during the conceptual design phase. This introduces the pitfall of committing
to one design concept very early on in the design process, which can impede

1/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

mailto:conradt@andrew.cmu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-5365-0240
https://doi.org/10.1017/dsj.2020.9


a designer’s ability to creatively solve engineering problems (Robertson and
Radcliffe 2009).

CAD focusing on the conceptual stage of design has been a topic of research
in academia and is predicted to be an integral part of CAD in the future
(Goel et al. 2012). Two key requirements that must be met for CAD to support
conceptual design are (i) the CAD tool should not infringe on a designer’s
natural work flow and (ii) it should support the emergence of new designs
that are inspired by and are reactions to previous generations of designs (Krish
2011). Popular existing generative design techniques include shape grammars
(Tapia 1999; Cui and Tang 2013; Tang and Cui 2014) and parametric modeling
(Wong and Chan 2009; Krish 2011; Turrin et al. 2011; Zboinska 2015). These
techniques require the design space to be manually parameterized either through
the construction of rules and vocabulary for a grammar or through the creation
of a descriptive representation of designs through design variables. Thus, these
techniques either require parameterization to have been performed by another
designer for the specific application a priori or require designers to parameterize
the design space themselves, which requires a high degree of domain expertise.
Developing parameterizations for specific applications is a subject of ongoing
research (Hardee et al. 1999; Shahrokhi and Jahangirian 2007; Sripawadkul et al.
2010). Thus, the ability of these methods to capture the breadth of the existing
design space heavily relies on the expertise of the person who designed the
parameterization.

In contrast, generative neural networks (GNNs) use a large data set of previous
designsX to estimate a statistical distribution over the designs and their associated
attributes p(X). This distribution is then sampled to generate new designs that
are both similar to designs in the data set overall, yet unique to any particular
design in the data set. GNNs learn this distribution automatically through a
training process, and thus, automatically parameterize the design space.Moreover,
because GNNs learn from a data set of previous designs, they naturally combine
features from different designs in novel ways, which supports the emergence
of new designs from previous generations (Krish 2011). The viability of this
approach stems from recent advances in deep neural networks to automatically
learn features fromdense data representationswith thousands of parameters, such
as images and 3D models. Figure 1 shows an example from Goodfellow et al.
(2014) of generated face images to illustrate the ability to maintain similarity
to the training set overall without being identical to any image in the training
set. The ability to use these ‘raw’ data formats enables the circumvention of the
aforementioned manual parameterization task. For these reasons, GNNs offer a
unique approach to conceptual CAD.

While GNN research initially focused on image or caption generation
problems (Goodfellow et al. 2014; Radford et al. 2015; Dosovitskiy and Brox
2016; Sønderby et al. 2016; Sbai et al. 2018), more recently GNN methods for
3D shapes have been developed (Maturana and Scherer 2015; Burnap et al.
2016; Qi et al. 2017; Groueix et al. 2018; Liu et al. 2018), coinciding with the
availability of large-scale 3D model repositories such as ShapeNet (Chang et al.
2015) and ModelNet40 (Wu et al. 2015). There are multiple ways to represent a
3D shape, including voxels, point clouds, polygonal meshes, and throughmultiple
2D views of the shape. While polygonal meshes tend to be ideal for physics-based
simulation, the output of GNNs has been mostly limited to either a voxel-based

2/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 1. Example of GNN output from Goodfellow et al. (2014). The rightmost
column shows the nearest training sample to the neighboring generated sample
column. These results demonstrate the two aspects of GNNs desirable for conceptual
CAD, diversity of output while maintaining similarity to the training set overall to
capture its embedded information.

representation (Maturana and Scherer 2015; Liu et al. 2018) or a point cloud (Qi
et al. 2017; Groueix et al. 2018; Li et al. 2018), which can then be transformed
into a polygonal mesh via a post-processing step. Point cloud models avoid the
memory problem that voxel-based representations suffer fromat finer resolutions,
as the number of voxels scales cubically with the resolution (Groueix et al. 2018).
In contrast, the number of surface points in a point cloud model scales closer
to quadratically, as only the surface area of the model is captured by the points.
Moreover, sensors that can acquire point cloud data are becomingmore accessible
such as Lidar on self-driving cars, Microsoft’s Kinect, and face identification
sensors on phones (Li et al. 2018), allowing large data sets to be easily created.

While 3D object GNNs have achieved impressive reconstruction results,
they are implemented outside of a design context the vast majority of the
time. Consequently, generated shapes are typically validated according to
their resemblance to objects in the data set, with no physics-based evaluation
(Dosovitskiy et al. 2015; Wu et al. 2016). In typical contexts in which GNNs are
used, the evaluation phase ismeant to explore the scope of the learned latent space,
and thus sampling the latent space using Gaussian noise or interpolating between
different objects in the training data achieves this goal. However, in a design
context, in order to effectively transition into the detailed design phase, the latent
space must be narrowed down to functionally superior designs (Ulrich 2003).
There is currently a knowledge gap in what optimization strategy would be most
effective for improving the functionality of generated designs from state-of-the-art
GNNs, without sacrificing the aspects of GNNs that make them appealing in the
first place.

GNNs are a group of artificial neural networkmodels that are used to estimate
the underlying probability distribution of a data space. Training of GNNs requires

3/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 2. Simplified illustration of the architecture of a deep autoencoder. In reality,
there are additional hidden layers, and the hidden layers are themselves often
constructed as blocks containing more complex neural network architectures such
as ResNet (He et al. 2016).

a set of samples from a training data set. In practice, the number of samples in
the training data set is finite. With a well-trained GNN model as an estimator
of the data probability distribution, new samples can be generated from the data
space. An example of a data space is the group of all images of a vehicle. In this
case, the finite training data set is a finite set of vehicle images. By training a GNN
model with such a data set, the user can obtain new images of a vehicle that do
not exist in the training data set. Various GNN models have been proposed such
as generative adversarial networks (GANs) (Goodfellow et al. 2014), variational
autoencoder (VAE) (Kingma and Welling 2013), flow-based generative models
(Dinh et al. 2014) and autoregressive generative models (Van den Oord et al.
2016). Among the various GNNmodels, an autoencoder is chosen by the authors
as the generative model for generating 3D designs due to its convenient structure
for bijection between the data space of 3D designs and the latent space that is used
to specify design parameters. Unlike the popular GANmodel, which only takes a
latent variable as the input and outputs a 3D design, an autoencoder model uses
both an encoder model to convert a 3D design to a latent variable and a decoder
model to convert the latent variable back to a 3D design.

The basic design of a deep autoencoder is illustrated in Figure 2. The latent
space in this GNN formulation is more amiable to parametric optimization due to
the fact that it does not require latent vectors to be normally distributed to produce
meaningful results, and latent vectors of designs in the training set can be easily
identified using the encoder. The latter aspect allows training data to be used to
initialize parametric optimization techniques, which is not suitable in the GAN
formulation.

4/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


In our previous work (Cunningham et al. 2019), we used a pre-trained
implementation of the state-of-the-art point cloud generating autoencoder
AtlasNet (Groueix et al. 2018) that used a 1024-dimensional latent vector. We
noted that when passing a point cloud from the training set through the encoder of
this network, the resulting latent vector was on average 64% zeros. This empirical
result aligns with Qi et al.’s description of the closely related PointNet (Qi et al.
2017) as a deep autoencoder that learns a ‘sparse set of keypoints’ to describe
the geometry of a point cloud. Thus, the authors hypothesize that optimization
methods that encourage sparsity would result in objects that are more similar
to the training data and, as a result, preserve the training set’s embedded design
knowledge.

This work proposes a method to generate a diverse set of 3D designs from a
point cloud generating autoencoder that will outperform the training data set with
respect to some performancemetric. A naïve approach would be to use a standard
genetic algorithm (GA) to optimize the performance metric over the latent space
of a GNN, with the initial population of latent vectors initialized randomly. We
refer to this approach as naïve latent space optimization (LSO). However, we
hypothesize that this naïve approachwould tend to result in a lower-diversity set of
designs than a method that specifically exploits the structure of the latent vectors,
even when a GA that is well-suited to discovering multiple solutions is used, such
as differential evolution (DE) (Li et al. 2016).

This work introduces an `0 norm penalty to the loss function of the GA,
which we refer to in this work as sparsity preserving latent space optimization
(SP-LSO). We hypothesize that this modification will encourage sparsity in the
output, as well as reduce the likelihood of the GA converging to a single design.
We also hypothesize that sparsity is further encouraged by replacing the random
initialization of latent vectors in the naïve approach with initialization to the
latent vectors of objects from the training set, which we will refer to as training
data set initialization (TDI-LSO). The proposed method combines both of these
approaches, and thus we refer to it as training data initialized sparsity preserving
latent space optimization (TDI-SP-LSO). To highlight the impact of each of these
modifications on the LSO task, we compare the proposed method to TDI-LSO
and naïve LSO.

We formulate four hypotheses about the performance of the proposedmethod.
The first is that the proposed method will produce designs that are on average
functionally superior to designs in the training data set, as quantified by some
performance metric.

The second and third hypotheses are that the proposed method will increase
the average diversity of point clouds in the output population compared to the
naïve approach and the TDI approach, respectively. This can be quantified using
a standard similarity metric for point sets such as the Hausdorff distance (Taha
andHanbury 2015; Zhanga et al. 2016; Zhang et al. 2017). The Hausdorff distance
between point sets A and B is defined as

H(A, B) = max
a∈A

{
min
b∈B
{d(a, b)}

}
, (1)

where d(·, ·) is the Euclidean distance between points a and b. Intuitively, it
defines the distance between two point sets as the maximum distance of a set to
the nearest point in the other set. We would then say that two point clouds with
a large Hausdorff distance are dissimilar. Extending this notion to a population

5/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


of point clouds, we can say that a population is diverse if the average Hausdorff
distance between all unique pairs of point clouds in the population is large. This
is the method by which the second and third hypotheses are quantified.

The fourth and final hypothesis is that the proposed method will result in a
population of designs that is more similar to the training data set than the naïve
approach. Once again, similarity is quantified in terms of the Hausdorff distance.
Stating each of these hypotheses formally, we have:

H1.
∑N

i=0 L(pTDI-SPi
) <

∑N
i=0 L(p0i

)

H2.
∑N

i 6= j H(pTDI-SPi
, pTDI-SP j

) >
∑N

i 6= j H(pnaïvei
, pnaïve j

)

H3.
∑N

i 6= j H(pTDI-SPi
, pTDI-SP j

) >
∑N

i 6= j H(pTDIi, pTDI j
)

H4.
∑

p∈PTDI-SP,t∈T H(pTDI-SP, t) <
∑

p∈Pnaïve,t∈T H(pnaïve, t)

where

• N is the number of point clouds p in a population of designs P

• t is a particular point cloud from the training data set T; these point clouds
have the same dimensionality as those in P

• L(·) is the loss function tied to some performance metric

• The subscript 0 inH1 refers to the initial population for the TDI-SPmethod,
which consists of sample designs from the training set

• H(p1, p2) is the Hausdorff distance, a standard method for measuring the
similarity between two point sets

• The subscripts TDI-SP, TDI, and naïve refer to the final population of each
of these methods.

A realization of the proposed method in a CAD tool would be able to generate
3D models of hundreds of unique candidate conceptual design solutions that
are validated with respect to a specific performance criterion. Moreover, these
candidate designs would be familiar to the human designer by virtue of their
similarity to human-created designs in the training set. The human designer could
cycle through these many design candidates until a design is found that sparks
inspiration as a creative solution to the problem. The advantage of this method
over GNN approaches that do not generate 3D models is that the candidate
design is already in a form that is amiable to transition into the detailed design
phase, and has been validated with respect to the target performance criteria. This
approach is adaptable depending on the needs of the designer in the sense that
if a specialized data set for the target application is available, the GNN can be
retrained specifically to this data set. Otherwise, a GNN that has been pre-trained
on publicly available data sets containing a variety of shapes can be used. Each of
these approaches is examined in the experiments conducted in this work.

The key contribution of this paper is the introduction of an `0 norm penalty
that exploits the fact that deep point cloud generating autoencoders represent 3D
objects as a sparse latent vector. Preserving this sparsity improves the diversity
of designs generated from LSO, as well as prevent LSO from deviating wildly
from objects in the training data set. While this method is proposed with sparse

6/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Table 1. Comparison of features of this proposed method to most closely related
literature

GNN latent spaces in mind, it is applicable to any parametric space where sparsity
that exists in the initial population should be preserved. The rest of this paper
is organized as follows. Section 2 reviews related literature, Section 3 provides the
details of themethod, and Section 4 then applies this method to two case studies, a
toy example and a practical example. Section 5 discusses results of the experiments
and Section 6 provides conclusions of our findings.

7/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


2. Related works
In this section, we discuss existing non-GNN-based and GNN-based approaches
to conceptual design support, as well as GAs for parametric optimization. Table 1
outlines the features of previous contributions compared to our method.

2.1. Non-GNN approaches to conceptual design support
Shape grammars, first introduced by Stiny and Gips (1971) in 1971, are a broad
category of methods for design exploration and optimization. Shape grammar
methods construct a formal language using a vocabulary of shapes, a set of rules,
a set of labels, and an initial shape. The rules are applied recursively to the initial
shape until they reach an end point at which no further rule can be applied, and
this constitutes a unique shape. Shape grammars were initially popular in the field
of architecture, with early incarnations such as the Palladian Grammar (Stiny and
Mitchell 1978), the PrairieHouseGrammar (Koning and Eizenberg 1981), and the
QueenAnneHouseGrammar (Flemming 1987). Shape grammars have been used
to generate designs that adhere to a certain ‘brand identity’ (Pugliese and Cagan
2002; McCormack et al. 2004) as well as interpolate between different classes
of designs (Orsborn et al. 2006). Shape grammar methods provide users with a
flexible method to explore a design space grounded in design constraints as long
as a shape grammar has already been constructed for that design space. Creating
a shape grammar for a new application is non-trivial, which is a drawback when
compared to other methods including the one presented in this work (Gips 1999).

Another category of conceptual design support aims to simulate a work flow
that involves sketching by hand. Bae et al. (2008) propose ILoveSketch, which
is a system to translate virtual 2D sketches into 3D models. Users draw designs
frommultiple perspectives, and computer vision techniques are used to construct
a 3D model out of these perspectives. Kazi et al. (2017) propose a method
called DreamSketch, which is a 3D design interface that incorporates free-form
sketching with generative design algorithms. The user coarsely defines the design
problem via a sketch, and then uses topology optimization to generate several 3D
objects that satisfy the sketched design constraints. Zoran and Paradiso (Zoran
and Paradiso 2013) introduce a 3D Freehand digital sculpting tool. A virtual
model of a 3D object is used in conjunction with a custom sculpting device. This
device is made to sculpt a block of foam and provide haptic feedback to the user so
that the user is able to precisely sculpt the desired object. Thesemethodsmaximize
the designers’ ability to explore their mental representations of designs in a virtual
environment, but unfortunately they have not been efficiently implemented such
that they can be used in real time to satisfy design constraints (Zboinska 2015;
Kazi et al. 2017).

Parametric modeling entails reducing the design space into a parameterized
form, and then searching over that design space via these parameters. Krish
(2011) proposes a framework for conceptual generative designs that starts with
using genetic strategies to search over a parameterized design space (which
he calls genotypes). Krish acknowledges that many representations should be
experimented with, as the choice of representations will impact the quality of
the final designs. Practical considerations for integrating this method into CAD
software is also discussed. Turrin et al. (2011) propose the use of a GA to
incorporate performance driven designs into the early exploration of architectural

8/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


geometry. Bayrak et al. (2016) create a parameterization for hybrid powertrain
architectures using a modified bond graph representation, which can then be
solved for the optimal powertrain design. These techniques suffer from the
drawback that the best parameterization of the design space is not obvious, takes
an extensive amount of work to develop, and has a substantial impact on the final
result. Our method overcomes this drawback by leveraging the ability of GNNs to
automatically learn an effective parameterization of the design space.

2.2. Genetic algorithms for parametric optimization
While manual parameterizations of the design space have their drawbacks, the
optimization strategy over the latent space of an autoencoder is not fundamentally
different from parametric optimization techniques, and thus literature on this
topic is reviewed here. Renner and Ekárt (2003) gives an overview of GAs in CAD
with respect to both parametric design and creative design problems. He states
that GAs facilitate the combination of components in a novel and creative way,
making them a good tool for creative design problemswhile also having the ability
to optimize a parameterized shape with respect to performance criteria. Rasheed
and Gelsey (1996) discuss modifications to the simple classical implementation of
the GA based on binary bit mutation and crossover that are more conducive to
solving complex design problems. These modified GAs included parametric GA,
selection by rank, line crossover, shrinking window mutation, machine learning
screening, and guided crossover. These works motivate the use of GA in a design
context, and provide the inspiration for usingGA to optimize the latent space of an
autoencoder. However, the proposed method improves on these methods further
by specifically exploiting the structure of latent vectors in the training set.

Yannou et al. (2008) propose an interactive GA system that uses a designer’s
subjective impression of each generation as a basis for the fitness function of
the algorithm. Poirson et al. (2013) propose another interactive GA technique
eliciting user’s perceptions about the shape of a product to stimulate creativity
and identify design trends. While the proposed method is agnostic to the fitness
function outside of the addition of an `0 normpenalty, and thus could in theory be
compatible with these methods, there have been other works with GNNs that are
specifically geared for this type of subjective evaluation problem (discussed in the
following subsection). For these reasons, the proposed method is better suited for
fitness functions tied to an objective performance criterion, an area where existing
GNN CAD approaches are lacking.

Part of the motivation for introducing an `0 norm penalty into the GA cost
function is to promote diversity in the output designs. Approaches that focus
on finding multiple optimal or near-optimal solutions in a single simulation
run are known as niching methods or multi-modal optimization methods. In
Li et al.’s survey of niching methods (Li et al. 2016), a variety of modified GAs
for niching are discussed. One popular GA variant for niching is fitness sharing,
in which the fitness function penalizes the fitness of an individual based on the
presence of neighboring individuals. Another technique, crowding, relies instead
on a competition mechanism between an offspring and its close parents to allow
adjusted selection pressure that favors individuals that are far apart and fit.
Differential evolution creates offspring using scaled differences between randomly
sampled pairs of individuals in the population. This property makes DE’s search
behavior self-adaptive to the fitness landscape of the search space and has been

9/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


shown in other work (Epitropakis et al. 2011, 2012) to cluster around either
global or local optima as the algorithm iterates. Niching methods can be used in
conjunctionwith the proposedmethod to further promote the discovery of diverse
solutions, and for this reason, DE is chosen as the particular GA for LSO in the
experiments in this work. Moreover, the `0 norm penalty introduced in this work
also serves to ensure that output designs do not stray too far from human designs,
which niching methods alone do not attempt to enforce.

2.3. GNNs for conceptual design support
Before robust GNNs for generating 3D models existed, early work in using
GNNs for design leveraged 2D image generating GNNs. Burnap et al. (2016)
incorporated a VAE into a design context by generating 3D automobile designs.
The VAE showed the ability to generate novel models of automobiles that
represented specific brands, as well as interpolation between the different brands.
However, the authors used crowdsourcing as a functional validation tool as
opposed to an objective function evaluation software. A later work by Burnap et al.
(2019) builds on the previous work by using a GNN approach to augment images
of human designs to bemore aesthetically appealing. However, this approach only
generates 2D images and leaves a human designer to determine how to realize
the full 3D design in a functionally feasible way. Dering et al. (2018) propose a
method that leverages a VAE model called sketch-RNN to generate 2D designs
that are then evaluated in a 2D simulation software. Instead of directly optimizing
over the latent space, the authors continually replace designs in the data set
with high performing designs from the evaluation software. Chen et al. (2019)
propose a generative model for parameterizing airfoil curves in two dimensions,
which are also evaluated in a 2D software. Oh et al. (2018) combine GNNs
and topology optimization to optimize the shape of generated images of wheels
according to their compliance. Raina et al. (2019) propose a deep learningmethod
to learn to sequentially draw 2D truss designs from a data set of human pen
strokes. This approach allows the learning agent to dynamically participate in
the design process with a human designer, and is not mutually exclusive with the
proposed method that is aimed at providing a human designer with a population
of conceptual candidate designs as potential starting points. While these works
offer the ability to aid human designers by synthesizing 2D images, extension to
3D models is necessary for GNNs to be feasible in many design applications, and
better facilitate a transition into the detailed design phase.

Zhang et al. (2019) developed aGA-LSOmethod to improve the gliding height
of 3D glider designs using a voxel-based VAE that is modified to generate a lattice
of signed distance fields (SDFs). Modifying the voxel output to SDFs allows for
the generation of smooth surfaces. Their approach most closely resembles the
TDI-LSO approach discussed in Section 1. However, their method also applies
two significant restrictions to achieve diversity in the output and similarity to
the training set, which are relaxed in this work. Specifically, the authors use a
variant of the GA that employs a line crossover restriction; that is, it restricts
the combination of parent latent vectors to linear interpolations. This offsets the
problem of the naïve GA deviating heavily from the training set by restricting
it to linear combinations of objects in the training set, but also limits the GA
to discovering a small subset of the total latent space. Second, they use a binary
pass/fail performance metric to overcome the challenge of the GA converging to

10/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


a single-optimal design concept. However, this limits the information provided
in the final population of designs, as gliders that surpass the threshold by a wide
margin are seen as functionally equivalent to those that narrowly achieve it. Our
method is able to overcome the same challenges without applying either of these
restrictions through the addition of the `0 norm penalty function to the loss
function of the GA.

Non-GNN approaches rely on manual parameterization of design spaces,
which is not always practical. The use of GNNs in a design context to this point
has relied on heavy restrictions such as 2D output or binary performance metrics.
Our work overcomes these limitations by proposing a method to enable the use of
GNNs in a 3D design context without these restrictions.

3. Method
In this section, we detail our proposed method to sample functionally superior
designs from a point cloud generating autoencoder with respect to some
performance metric, while maintaining diversity and similarity to the training
set in the output.

3.1. Sparsity preserving latent space optimization
We consider the following loss function for the GA:

L(z) = F(D(z))+ λ
‖z‖0

M
, (2)

where

• L(·) is the loss function that is to be minimized

• z is the latent representation of the design

• F(·) is the function implied by the evaluation method, which quantifies
design performance

• D(·) represents the decoder of the AE, as well as the subsequent mesh
reconstruction procedure

• ‖·‖0 is the `0 norm, which is the number of non-zero elements in the vector

• λ is the scalar weight of the norm penalty

• M is the length of the latent vector z.

Figure 3 illustrates how this loss function is calculated. The hyperparameter
λ that is most effective is highly application dependant, and will vary based on
the range of F(·) and the average sparsity ratio of latent vectors in the training
set being utilized. A hyperparameter search over a range such that neither the
sparsity penalty nor the evaluation function is completely dominated by the other
is recommended.

A GA is used to search the latent variable space Z in order to minimize L(z).
GAs refer to a family of computational models that have been used in a wide
variety of applications to optimize black-box functions (Whitley 1994). For the
purposes of this approach, we will refer to any algorithm that applies crossover,

11/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 3. Flow diagram of how the loss function is calculated from a latent variable
z, as detailed in Equation (2).

mutation, and selection as a GA, and show through an examination of the DE
implementation applied in this method that the expected natural loss of sparsity
can be mitigated using an `0 norm penalty.

3.2. Differential evolution
The details of the DE implementation used in this work are given in Algorithm 1.

We are interested in examining how the average sparsity of vectors in the
population is expected to change from one generation to the next. Let the sparsity
ratio of a vector z be defined as r = 1 − (‖z‖0/M). The quantity we are then
interested in is the expected value of the sparsity ratio of z′ inAlgorithm1. First, we
can say that the expected value of the sparsity in any given vector from generation
g is the average sparsity ratio of all vectors in the population Pg , which we denote
by rg .

Continuing with Algorithm 1, the expected sparsity ratio of zdiff must be
calculated next. Given that the elements of z are continuous, zdiff(i) = 0with non-
zero probability only when both z2(i) and z3(i) are 0. Furthermore, throughout
this analysis, we will treat the values of vector elements as independent from
other vectors in the population, and assume that all elements of a given vector
are equally likely to be zero (which is equivalent to saying that each element is 0
with probability r). For the expected sparsity ratio of zdiff, we have

E[rdiff] =
1
M

M∑
i=0

P[z3(i) = 0]P[z2(i) = 0] =
1
M

M∑
i=0

r2
g = r2

g . (3)

Continuing through Algorithm 1, the expected sparsity ratio of zdonor must be
determined. It can be easily shown by the same method as Equation (3) that the
resulting expected sparsity ratio is rdonor = r3

g .
Now the expected sparsity ratio of z′ after recombination can be calculated as

E[r ′] =
1
M

M∑
i=0

cP[zdonor(i) = 0]+ (1− c)P[z(i) = 0] = cr3
g + (1− c)rg. (4)

12/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Algorithm 1: Differential Evolution.
With initial population P0 of N vectors z, recombination rate 0 < c < 1
and mutation rate 0 < µ < 1
for g = 0,1, . . . , G do

P′ = Pg
for z ∈ Pg do

Randomly sample z1, z2, z3 6= z from P
zdiff = z2 − z3
zdonor = µzdiff + z1
for i = 0,1, . . . , M do

Randomly sample v from continuous interval [0,1]
if v > c then

z′(i) = zdonor(i)
else

z′(i) = z(i)
end

end
Append z′ to P′

end
Sort vectors in P′ according to fitness function F(z)
Pg+1 = P′(0 : N − 1)

end

This result tells us how the sparsity of vectors in the population degrades when
the fitness function F(z)has no dependence on the sparsity of z. For example, with
a recombination rate of c = 0.75 and a sparsity ratio in the current generation of
rg = 0.6, we will have E[r ′] = 0.312. Therefore, any newly created vectors that
are introduced into the population will be expected to have approximately half the
sparsity of vectors from the previous generation.

However, when an `0 norm penalty is introduced into the fitness function, the
more the sparsity lost by a particular vector z′, the less likely that the vector is to be
included in the next generation’s population, proportional to the penalty weight λ.

A critical feature to note with this method is that it does not produce a
population of vectorswith higher sparsity than the previous generation. In the case
where the fitness function is nothing but the `0 norm penalty, the sparsity will stay
the same as no new vectors will be introduced into the population. This method
preserves sparsity by slowing its natural decay in evolutionary optimization.

In our proposed method, the sparsity in the initial population comes from the
encoded latent vectors in the training set. However, a naïve implementationwould
typically sample the initial population randomly, and thus lack this sparsity in the
initial population. For this reason, there is no benefit to applying the `0 norm
penalty in conjunction with the naïve approach.

4. Application and evaluation
In this section, we investigate the effectiveness of TDI-SP-LSO compared to
benchmark test cases that do not use components of our method. We implement
two test cases: a toy problem of generating ellipsoid point clouds subject
to an evaluation function based on their shape and a practical test case of

13/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 4. Performance function of the ellipsoid design space.

generating watercraft models where F(·) is the coefficient of drag. To promote
reproducibility, the source codes for the experiments in this work have been
published online.1

4.1. Ellipsoid case study
This simple test case is included in order to gain an intuition about the proposed
method and easily visualize the benefits in design performance anddiversity that it
offers. Consider a design space of ellipsoids with x and y radii in the range [0, 10]
and a fixed z radius of 10. Additionally, consider that the performance metric
for each ellipsoid is dictated by its x and y radii as shown in Figure 4, where a
higher score is better. Note that there are four separate regions that achieve optimal
performance.

Figure 5 shows the performance distribution of the training data set
constructed for this case study. There are 25 Gaussian distributed clusters
corresponding to each region of the design space. Each cluster was sampled 250
times for a total of 6250 designs in the data set.

Once this data set was constructed, AtlasNet was trained to learn a
1024-dimensional latent space representation from which it could accurately
reconstruct ellipsoids from the training data set. Reconstruction results from
AtlasNet after 120 epochs of training on the ellipsoid data set are shown in
Figure 6. The reconstructed ellipsoid is accurate with respect to the overall shape
1 https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization

14/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://github.com/AiPEX-Lab-CMU/LatentSpaceOptimization
https://doi.org/10.1017/dsj.2020.9


Figure 5. Distribution of training data.

Figure 6. (a) Sample ellipsoid point cloud from the training data set. (b) AtlasNet’s
reconstruction of this ellipsoid after 120 epochs of training on the ellipsoid data set.

of the original, but the finer structures of the point arrangements are lost. This is
consistent with state-of-the-art point cloud reconstruction results (Qi et al. 2017;
Groueix et al. 2018).

Once AtlasNet has been retrained on the ellipsoid data set, the decoder can
be used to generate ellipsoid point clouds from 1024-element latent vectors. The

15/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 7. Sample of mesh (left) and corresponding point cloud (right) models from
the watercraft data set.

performance of these ellipsoids can then be determined by finding the minimum
bounding ellipsoid of the generated point cloud, and taking its x and y radii. In
order to frame this as a minimization problem, the loss function for this problem
is defined as

min
z

L(z) = min
z

(
1
Pz
+ λ
‖z‖0

M

)
, (5)

where Pz is the performance function defined in Figure 4 for the reconstructed
point cloud decoded from latent vector z.

This toy problem is useful for validating the proposed method because the
performance landscape over the design space is very simple and the optimal
solutions are known a priori.

4.2. Watercraft case study
First, the data set of watercraft on which the GNNs were trained is described, then
the simulation environment for calculating the drag force is detailed, and finally
the experiments discussed in this work are described.

4.2.1. 3D model data set
The data set used for this experiment was derived from the ShapeNet data
set (Chang et al. 2015). Specifically, 3879 models from the watercraft category
were sampled to create our data set. This category of ShapeNet includes both
submarine watercrafts and watercrafts that operate at the interface (e.g. boats),
and within those categories the designs vary widely in their intended function. In
our experiments, this data set is sampled indiscriminately in order to demonstrate
the ability of the proposed method to extract functional designs without the need
for careful pruning of an existing data set. Figure 7 shows an example of an object
from the data set in both point cloud and mesh format. A pre-trained AtlasNet
encoder made publicly available by Groueix et al. (2018) was used to convert the
3D models into latent vectors of size 1024.

4.2.2. Objective function
The equation for the drag coefficient of a 3D object is as follows:

CD =
2FD

ρµ2 A
, (6)

where

16/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


• CD is the drag coefficient

• FD is the drag force generated by fluid flow

• ρ is the density of the fluid

• µ is the flow speed of the fluid

• A is the 2D-projected area of the object, which is perpendicular to the fluid
flow.

Because ρ and µ are constants for all models, we only need to calculate the
ratio R = FD/A to get a value that is proportional to the coefficient of drag for
each model. Therefore, the optimization problem is cast as

min
z

L(z) = min
z

(
Rz + λ

‖z‖0
M

)
, (7)

where Rz is the value R returned by the evaluation environment for a particular
latent vector z.

4.2.3. Evaluation environment
This section describes the evaluation environment that returns the R value for a
polygonal meshmodel. The environment was created using NVIDIA FLeX 1.10, a
smoothed-particle hydrodynamics fluid simulation library developed byNVIDIA
for bothUnity and unreal real-time engine platforms. It provides GPU accelerated
fluid, cloth, and soft body real-time simulation (NVIDIAGameworks 0000). FLeX
has been used in both robotics simulation (Collins and Shen 2016; Guevara et al.
2017) and medical simulations (Camara et al. 2016, 2017; Stredney et al. 2017).
However, FLeX fluid simulation is intended for real-time visual effects, and thus
is a reduced accuracy tool compared to high fidelity CFD software. However, due
to time constraints concerning the several trials and variations of the proposed
method conducted in our experiments, FLeX was chosen for its ability to run in
real time and greatly reduce the run time of our several experiments.

The Unity real-time (Juliani et al. 2018) engine has grown from an engine
focused on video game development to a flexible general-purpose physics engine,
which is used by a large community of developers for a variety of interactive
simulations, including high-budget console games and AR/VR experiences.
Because of its flexibility and ability to run in real time, Unity is being used
as a simulation environment development platform for many research studies
(Burda et al. 2018; Jang and Han 2018; Namatēvs 2018). It also includes a robust
native physics engine (NVIDIA’s PHYSX) as well as support for custom physics
supplements that can be acquired easily from the Unity asset store to which
thousands of developers contribute.

We develop a drag force evaluation environment in Unity by placing the
generated object at the center of a cube of 80 000 fluid particles, which are moving
toward the object along the negative z axis, as shown in Figure 8.

At each step of the simulation, the acceleration of the object in the z direction
is calculated. Each object’s mass is calculated according to the assumption that
every object is made of material of the same density. The average acceleration is
calculated over the course of the simulation, and this value is multiplied by the
mass of the object to return the average drag force. Next, we detail the method for
calculating the 2D-projected surface area of the object.

17/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 8. Fluid simulation environment for calculating drag coefficient.

Figure 9. Flow diagram of the mesh reconstruction process.

4.3. Mesh generation
Once point clouds have been generated, they must be converted into a polygonal
mesh to be validated with respect to many physics simulations. AtlasNet also
provides functionality formesh reconstruction. Constructing amesh from a point
cloud can be thought of as deciding how to connect a set of vertices to create a
smooth surface. AtlasNet’s generated point clouds have a fixed number of vertices
that are chosen to be the same as the number of vertices in a reference sphere
pictured in Figure 9. The generation of the point cloud can be thought of as
morphing the reference sphere by transforming the position of each of its surface
points, yet maintaining the same connectivity. Therefore, by using the generated
point cloud as the vertices and the sphere’s face connectivity information, themesh
corresponding to the generated point cloud is constructed.

4.3.1. Surface area projection
Because the fluid flow is set to arrive from the positive z axis in the fluid simulation
environment, projecting the 3D point cloud to a 2D point cloud is done by setting

18/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 10. View of 3D model prior to projection onto 2D plane. Fluid flow is from z
axis. Projection of 3D model onto 2D plane perpendicular to fluid flow.

the z coordinate of each of the points to 0. Figure 10 shows an example of this
process.

Once the 2D-projected point cloud has been created, we calculate the area of
this point cloud by using the face connectivity information in the 3Dmesh, which
lists the three vertices in each triangular face of the 3D mesh model. Using the
corresponding vertices in the 2D-projected point cloud, the areas of each triangle
are calculated and summed together. Then this sum is divided by 2 to account
for surfaces in the rear of the object relative to the fluid flow to give the projected
area of the object. Combining this quantity with the drag force calculated in the
previous section, we are able to calculate Rz in Equation (7).

This test case evaluates the proposed method with respect to a real design
scenario, and an autoencoder that has been pre-trained on a diverse shape data
set that is not specialized to the target application.

5. Results and discussion
In this section, we examine the results of the case studies outlined in Section 4,
particularly with respect to our hypotheses in Section 1. Each of the following
benchmarks is implemented in order to evaluate the proposed method against
approaches that remove some of its features.

(1) TDI-SP-LSO (proposed method): The initial population is created by
sampling the training data set, and an `0 norm penalty is applied to the
cost function.

(2) Benchmark 1 (TDI-LSO): The initial population of the GA is sampled from
the training data set, but the `0 norm penalty is applied to the cost function.

(3) Benchmark 2 (Naïve): DE is applied with random initialization and no `0
norm penalty.

First, we analyze the results of the ellipsoid case study and then the watercraft
case study, before tying the analyses of both case studies together and reexamining
the hypotheses in Section 1.

For both case studies, multiple trials for each benchmark and the proposed
method are run. The initial population of vectors is held constant for a given trial
across benchmarks for a fair comparison, but is changed from trial to trial. TheDE
algorithm is used for LSO with a recombination rate of 0.9 and a mutation rate of
0.05, and run for a total of 35 generations. For all sparsity preserving methods, a
hyperparameter search is performed for multiple λ values.

19/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 11. Performance evolution for each method averaged across all trials with
shaded 0.95 confidence interval.

5.1. Ellipsoid case study
For this case study, each population consists of 120 latent vectors. Given that the
performance landscape is known a priori to have four optimal regions with a
performance of 1/Pz = 0.2, the lambda values of 0.1, 0.2, and 0.4 were chosen for
the hyperparameter search. These values correspond to cases where the `0 norm
penalty is weighed half as much as the optimal performance, equal to the optimal
performance, and twice as much as the optimal performance, respectively.

Figure 11 shows the performance curve over the 35 DE steps for each method.
The curves shown are the averages for each method across all five trials with a
shaded 0.95 confidence interval. Figure 11 makes it clear that data initialization
has a dominant effect on the learning curve of the loss, but both methods
eventually converge to optimal or near-optimal performance. The improved initial
performance of the TDI methods is to be expected based on the assumption
that designs in the training data set perform better than a purely random set of
parameters. This finding lends support to the claim that performance knowledge
is embedded in the training data set, even for a toy problem such as this test case.

In order to evaluate H1, we compare the performance of the 120 designs
in the initial and final populations. The values displayed in Table 2 are the
averages of these values across the five trials for each method. We can see that
in all of the benchmark methods and the proposed method, the final generation’s
average performance is significantly improved compared to the initial generation.
Therefore, these results support H1, that is, the proposed method results in
functionally superior designs on average compared to sampling the training data
set randomly.

Figure 12 shows how the sparsity ratio of the latent vectors changes as the
DE optimization process runs. The fact that the naïve method never produces
a population of latent vectors with average sparsity greater than 0 shows that
initializing with sparse latent vectors from the data set is critical to enforce sparsity

20/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 12. Sparsity evolution averaged across all trials for each TDI method with
shaded 0.95 confidence interval. The naïve method is omitted due to it having a
sparsity ratio of 0 at all times.

Table 2. (H1) Average difference between average scores of initial and final
populations for each method across all trials. Percentage improvement and
p-values are calculated between the initial and final generations for each method

Method λ Init. gen. loss Final gen. loss % Improve p-val

TDI-SP 0.4 0.3549 0.2184 32.16% 2.267× 10−7

TDI-SP 0.2 0.3751 0.2130 32.56% 1.954× 10−5

TDI-SP 0.1 0.3448 0.2098 33.09% 4.550× 10−6

TDI N/A 0.3724 0.2001 38.65% 9.042× 10−5

Naïve N/A 0.7131 0.2419 62.80% 1.57× 10−9

in the final solution set. We can also observe that the sparsity at the end of the
curve increaseswithλ although there are diminishing returns going from0.2 to 0.4
compared to 0.1 to 0.2. Also worth noting is that the sparsity ratio of latent vectors
in the training set is only 11% on average compared to 64% for the pre-trained
ShapeNet AtlasNet latent vectors. This shows the versatility of the method for
multiple application domains that may result in varying sparsity ratios for the
training set.

In order to evaluate H2 and H3, we examine the mean Hausdorff distance
across trials between point clouds in the same population for eachmethod, which,
as discussed in Section 1, is a standard similarity metric between two point sets.
H2 and H3 claim that the proposed method will lead to a set of solutions with
more diversity than the benchmarks of the naïve and TDI methods, respectively.
In terms of the Hausdorff distance, a larger distance between point clouds within
the solution set indicates more diversity. From Table 3, we can see that the

21/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Table 3. (H2 and H3) Average mean Hausdorff distance across the five trials for
different point clouds within the final set of designs P for each method. The TDI
percentage improvement and p-value are calculated with respect to the naïve
method, and the TDI-SP percentage improvement and p-values are calculated
with respect to both the naïve method and the TDI method.

Method λ
∑N

i 6= j H(pi, pj) % Imprv. (p) naïve % Imprv. (p) TDI

TDI-SP 0.4 0.2466 238.8% (6.637× 10−4) 360.1% (3.210× 10−4)
TDI-SP 0.2 0.2659 265.3% (4.845× 10−4) 396.1% (2.488× 10−4)
TDI-SP 0.1 0.2371 225.8% (5.103× 10−5) 342.4% (2.066× 10−5)
TDI N/A 0.05359 −26.38% (3.684× 10−3) N/A
Naïve N/A 0.07279 N/A N/A

Table 4. (H4) Average mean Hausdorff distance across the five trials between
point clouds in training data set T and point clouds of final generation of each
method P. Both percentage improvement and p-values are calculated with respect
to the naïve method.
Method λ

∑N
p∈P,t∈T H(p, t) % Improve (p) (naïve)

TDI-SP 0.4 0.4318 −31.71% (1.6212× 10−3)
TDI-SP 0.2 0.4216 −28.61% (7.915× 10−3)
TDI-SP 0.1 0.3871 −18.05% (0.01228)
TDI N/A 0.4112 −25.42% (0.06193)
Naïve N/A 0.3278 N/A

proposed method significantly improves in this regard over both the TDI and
naïve approaches. This evidence strongly supports both H2 and H3.

Because of the simply defined performance space of this toy example, we can
also easily examine the diversity in the solution space visually. Figure 13 shows the
distribution of the final solution set generated by each method, compared to the
initial population for the TDI methods for the first three trials. From these plots,
we can see that non-sparsity-preserving methods converge at or near only one of
the optimal regions for each trial. By contrast, the proposed sparsity preserving
method discovers at least three of the four optimal regions in every trial for all
choices of λ. The choice of λ = 0.1 results in the highest performing solution set
as is expected, but concentrates more in a single cluster compared to the higher λ
values. At the other end, λ = 0.4 ensures a diverse population, with the sacrifice
of more sub-optimal designs in the population. This visualization confirms in an
intuitive manner the findings from the Hausdorff similarity metric, that is, the
proposed sparsity preserving method improves design diversity in the solution
set.

In order to examineH4, we observe the Hausdorff distance between generated
point clouds in the final generation for each method and point clouds in the
training data set. In this case, the proposed method was predicted by H4 to have a
greater similarity (and a correspondingly lesserHausdorffdistance) to the training
set than the benchmark methods. Table 4 shows that the naïve method has a

22/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 13. Distribution of the 120 ellipsoids in the final generation for each method.
The top row shows the initial population for each trial, which was held constant for
each method.

23/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 14. (Top) Three randomly sampled designs from naïve method. (Middle)
Three randomly sampled designs from TDI-LSOmethod. (Bottom) Three randomly
sampled designs from the proposed TDI-SP-LSO method (λ = 0.2). All samples are
taken from the first trial.

lesser distance to the training set than all other methods, including the proposed
method. This is a surprising result that contradicts the prediction of H4.

In order to gain an intuitive sense of these and other differences between
the point clouds generated with each of these methods, we show three randomly
sampled designs from the solution set of eachmethod in the first trial in Figure 14.
We can see from these samples that the proposed method shows samples from
multiple shape clusters, while the other methods only display very similar shapes
from the same cluster. Moreover, we can see a curious feature in the bottom left
and bottom middle ellipsoids that may explain the training set dissimilarity of
these methods. All ellipsoids in the training set are oriented with their z radius
exactly aligned with the z axis. However, we see in the bottom row that two of the
ellipsoids are rotated with respect to this axis, and this could explain the increased
Hausdorff distance to the training set.

5.2. Watercraft case study
For this case study, only three trials and a smaller population size of 50 were used
due to the increased complexity of the fitness function evaluation step. Two λ
values are investigated that are proportional to the range of values produced by
the fitness evaluation, 5× 10−5 and 1× 10−4.

Figure 15 shows the average evolution of the mean R value across the three
trials for each of the methods with a shaded 0.95 confidence interval. The TDI
methods are separated by the λ parameter. As in the previous case study, Figure 15
shows that the data initialization has a dominant effect on the learning curve of the
loss, but both methods eventually converge to a similar performance. We can also

24/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 15. Evolution of the drag ratio, R, for each method averaged across all trials
with shaded 0.95 confidence interval.

Table 5. (H1) Average difference between average scores of initial and final
generations for each method across the three trials. Percentage improvement and
p-values are calculated between the initial and final generations for each method.

Method λ Init. gen. R Final gen. R % Improve p-val

TDI-SP 1× 10−4 2.214× 10−5 1.492× 10−5 29.8% 5.601× 10−5

TDI-SP 5× 10−5 2.252× 10−5 1.252× 10−5 49.4% 1.258× 10−4

TDI N/A 2.201× 10−5 9.714× 10−6 53.8% 5.651× 10−6

Naïve N/A 4.619× 10−5 5.812× 10−6 85.2% 2.150× 10−5

see a larger gap between the performance of TDImethods and the naïve randomly
initializedmethod. Thismakes sense given that the data set consists of objects that
are designed to have a low drag coefficient.

In order to evaluate H1, we compare the average drag ratio, R, of the 50
designs in the initial and final populations. The values displayed in Table 5 are the
averages of these values across the three trials for each method. We observe from
Table 5 that for all methods, the final performance is improved by a statistically
significantmargin, the same as in the previous test case. In the case of TDI-SP-LSO
with λ = 1 × 10−4, the p-value between the distribution of performances in the
initial and final populations is 5.601× 10−5. Therefore, these results support H1,
that is, the proposed method results in functionally superior designs compared to
sampling the GNN directly.

Figure 16 shows how the sparsity of the output changes over the GA
optimization process. Contrasting this to Figure 12, we can see that the sparsity
is significantly higher when using the AtlasNet weights that had been pre-trained
using ShapeNet. This figure also confirms the finding that the `0 norm succeeds
in preserving sparsity in the final generation.

25/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 16. Sparsity evolution averaged across all trials for each TDI method with
shaded 0.95 confidence interval. Naïve is omitted due to it having a sparsity ratio of
0 at all times.

Table 6. (H2 and H3) Average mean Hausdorff distance across the three trials
for different point clouds within the final set of designs P for each method. The
TDI percentage improvement and p-value are calculated with respect to the naïve
method, and the TDI-SP percentage improvement and p-values are calculated
with respect to both the naïve method and the TDI method.

Method λ Mean (
∑N

i 6= j H(pi, pj)) % Imprv. (p) naïve % Imprv. (p) TDI

TDI-SP 1× 10−4 0.3125 7.462% (0.7599) 258.7% (0.001695)
TDI-SP 5× 10−5 0.2006 −31.02% (0.2850) 130.2% (0.05758)
TDI N/A 0.08713 −70.04% (0.02714) N/A
Naïve N/A 0.2908 N/A N/A

Just as in the previous test case, we examine the mean Hausdorff distance
across trials between point clouds in the same population for each method.
Table 6 shows that the TDI-SP-LSO diversity is not significantly different from
the diversity of the naïve method in this case, and thus contradicts H2. However,
TDI-LSO without the `0 norm penalty is significantly less diverse both TDI-SP-
LSO and the naïvemethod, indicating that applying the `0 norm penalty improves
diversity when initializing with training data. These findings support H3, the
prediction that the `0 norm penalty resists the tendency of the GA to converge
to a set of highly similar high performing designs, while avoiding oversimplifying
the optimization task to a discrete categorization.

We examine H4 for this test case by once again observing the Hausdorff
distance between generated point clouds in the final generation for each method
and point clouds in the training data set. We observe from Table 7 that all TDI
methods have a significantly lesser distance to the training data set than random
initialization methods, which supports H4 and contradicts the results of the

26/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


Figure 17. (Top) Three randomly sampled designs from naïve method. (Middle)
Three randomly sampled designs from TDI-LSOmethod. (Bottom) Three randomly
sampled designs from the proposed TDI-SP-LSO method (λ = 1× 10−4).

Table 7. (H4) Average mean Hausdorff distance across the three trials between
point clouds in training data set T and point clouds of final generation of each
method P. Both percentage improvement and p-values are calculated with respect
to the naïve method.
Method λ Mean [

∑N
p∈P,t∈T H(p, t)] % Improve (p) (naïve)

TDI-SP 1× 10−4 0.3234 59.05% (2.327× 10−3)
TDI-SP 5× 10−5 0.2788 64.70% (2.491× 10−3)
TDI N/A 0.3145 60.17% (6.731× 10−3)
Naïve N/A 0.7898 N/A

previous test case. This suggests that in this case, TDI was able to successfully
constrain the latent space exploration to be similar to the training data set, without
requiring a heavy restriction in the formulation of theGA to adhere to the training
data.

Finally, we visualize the designs in Figure 17 to gain some intuition about
how these findings manifest. We observe that the naïve method tends to generate
flat objects that do not look like human-designed watercraft. Thus aspects
of watercraft that are not directly related to reducing the coefficient of drag
are completely lost, which is usually not the goal of early conceptual design.
Additionally, although we can see why the diversity is higher in terms of distance
as not all objects are the same geometrically, the designs are conceptually nearly
identical. In contrast, the TDI is able to successfully generate designs that resemble
a human design; however, we are able to see how it fails to generate diversity in

27/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


that all three randomly sampled designs appear to be the same. Finally, we observe
how the proposedmethod is able to both capture the training data set and generate
a diverse set of designs.

Also of note is the darker shaded regions of the meshes pictured for the
aforementioned benchmarks. This is due to the mesh being ‘unclean’ with either
surfaces with inverted normal vectors or surfaces that pierce the object. This
finding is consistent with an observation made by Zhang et al. (2019) that when
these are not constrained to interpolation between designs in the training set, they
tend to produce invalid meshes. However, the TDI-SP-LSO avoids these defects
in the meshes completely by producing designs that are not as distant from the
training data without imposing a strict linear interpolation restriction.

Comparison of case study results
Combining insights from these experiments, we found in both cases that the
proposed method was able to significantly improve the average performance of
designs in the solution set relative to the training set, and we are thus unable to
reject H1.

As for H2, we found in the ellipsoid test case that the proposed method
produced more diverse designs, both in terms of the Hausdorff distance and
visualization of designs in the 2D performance space. However, in the watercraft
test case, we found that the average Hausdorff distance between designs
produced by the naïve method was greater than that from the proposed method,
contradicting both the previous experiment and H2. For this reason, we must
rejectH2 due to its formulation in terms of theHausdorff distance.We believe this
speaks to the limitations of simple objective diversity metrics to capture complex
notions of diversity in design concepts. As Figure 17 shows, although the designs
in the top row generated by the naïve method are more diverse in terms of the
Hausdorff distance than those in the rows below it, they are not conceptually
diverse.

H3 was similar to H2, but predicted improved diversity over the TDI method
instead of the naïve method. In both the ellipsoid and watercraft test cases, this
was confirmed by the Hausdorff distance, and in the ellipsoid case visually by the
distribution of solution sets in the 2D performance space. Thus, we cannot reject
H3.

H4 predicted that the proposed method would result in designs that are
more similar to human-created designs in the data set in terms of the Hausdorff
distance. The watercraft case study supported this prediction, as all TDI methods
had a significantly lesser average distance to designs in the training set compared
to the naïve approach. However, the ellipsoid test case contradicted this finding,
as the naïve approach had the highest similarity to the training set in terms of the
Hausdorff distance. Thus, wemust reject H4. However, by once again examining
visualizations of the generated objects in Figure 14, we see that a likely explanation
for this contradiction is the case of ellipsoids that are rotated compared to designs
in the training set. This indicates a possible need for a post-processing step, which
normalized output designs in terms of their rotation.

28/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9


6. Conclusion
We introduced a new method for GA-LSO that exploits the particular structure
of the encoded latent vectors of point cloud GNNs to extract high performing
designs from the latent space while maintaining both the knowledge captured by
the training set and the diversity of generated designs. We demonstrated these
aspects of the proposed method through a test case of a GNN trained to generate
watercraft models, by framing an optimization task of identifying designs in the
latent space with a low coefficient of drag. Moreover, our method relaxes several
very simplifying assumptions employed in previous works related to the data
format, performance metric, and optimization strategy.

This method has potential to be used as a tool for early conceptual design to
aid the creative process in an organic way that supports emergence from previous
generations of designs, while taking into account the desired performancemetrics
at this early stage. However, based on our work it is still unclear whether sparsity
in the latent vectors can be exploited with GNNs of other data formats such as
voxels or SDG. This is an area that requires further study.

Other possible extensions of this work include optimization methods that
do not treat the generator as a black box and improve performance after
training is complete, but instead cycle between data-based training updates and
performance-based training updates. Extension to multi-objective optimization
is another area of research that should be explored.

Acknowledgments
The authors would like to acknowledge Sean Lacey and Simon Miller for their
contributions to this work.

Financial support
This research is funded in part by DARPA HR0011-18-2-0008. Any opinions,
findings, or conclusions found in this paper are those of the authors and do not
necessarily reflect the views of the sponsors.

References
Bae, S.-H., Balakrishnan, R. & Singh, K. 2008 Ilovesketch: as-natural-as-possible

sketching system for creating 3D curve models. In Proceedings of the 21st Annual
ACM Symposium on User Interface Software and Technology, pp. 151–160. ACM.

Bayrak, A. E., Ren, Y. & Papalambros, P. Y. 2016 Topology generation for hybrid electric
vehicle architecture design. Journal of Mechanical Design 138 (8), 081401.

Burda, Y., Edwards, H., Pathak, D., Storkey, A.,Darrell, T. & Efros, A. A. 2018.
Large-scale study of curiosity-driven learning. arXiv:1808.04355.

Burnap, A.,Hauser, J. R. & Timoshenko, A. 2019. Design and evaluation of product
aesthetics: a human-machine hybrid approach. Available at SSRN 3421771.

Burnap, A., Liu, Y., Pan, Y., Lee, H., Gonzalez, R. & Papalambros, P. Y. 2016 Estimating
and exploring the product form design space using deep generative models. In ASME
2016 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, pp. V02AT03A013–V02AT03A013. American
Society of Mechanical Engineers.

29/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
http://www.arxiv.org/abs/1808.04355
https://doi.org/10.1017/dsj.2020.9


Camara, M.,Mayer, E.,Darzi, A. & Pratt, P. 2016 Soft tissue deformation for surgical
simulation: a position-based dynamics approach. International Journal of Computer
Assisted Radiology and Surgery 11 (6), 919–928.

Camara, M.,Mayer, E.,Darzi, A. & Pratt, P. 2017 Simulation of patient-specific
deformable ultrasound imaging in real time. In Imaging for Patient-Customized
Simulations and Systems for Point-of-Care Ultrasound, pp. 11–18. Springer.

Chang, A. X., Funkhouser, T., Guibas, L.,Hanrahan, P.,Huang, Q., Li, Z., Savarese, S.,
Savva, M., Song, S. & Su, H. et al. 2015. Shapenet: an information-rich 3D model
repository. arXiv:1512.03012.

Chen, W., Chiu, K. & Fuge, M. 2019 Aerodynamic design optimization and shape
exploration using generative adversarial networks. In AIAA Scitech 2019 Forum,
p. 2351.

Collins, T. & Shen, W.-M. 2016 Rebots: a drag-and-drop high-performance simulator for
modular and self-reconfigurable robots. ISI Technical Reports.

Cui, J. & Tang, M.-X. 2013 Integrating shape grammars into a generative system for
Zhuang ethnic embroidery design exploration. Computer-Aided Design 45 (3),
591–604.

Cunningham, J. D., Simpson, T. W. & Tucker, C. S. 2019 An investigation of surrogate
models for efficient performance-based decoding of 3D point clouds. Journal of
Mechanical Design: Special Issue: Machine Learning for Engineering Design.

Dering, M., Cunningham, J.,Desai, R., Yukish, M. A., Simpson, T. W. & Tucker, C. S.
2018 A physics-based virtual environment for enhancing the quality of deep
generative designs. In ASME 2018 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference, vol. 2A-2018,
pp. V02AT03A015–V02AT03A015. American Society of Mechanical Engineers,
DETC2018-86333.

Dinh, L., Krueger, D. & Bengio, Y. 2014. Nice: non-linear independent components
estimation. arXiv:1410.8516.

Dosovitskiy, A. & Brox, T. 2016 Generating images with perceptual similarity metrics
based on deep networks. In Advances in Neural Information Processing Systems,
pp. 658–666.

Dosovitskiy, A., Springenberg, J. T. & Brox, T. 2015 Learning to generate chairs with
convolutional neural networks. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1538–1546. IEEE.

Epitropakis, M. G., Plagianakos, V. P. & Vrahatis, M. N. 2012 Multimodal optimization
using niching differential evolution with index-based neighborhoods. In 2012 IEEE
Congress on Evolutionary Computation, pp. 1–8. IEEE.

Epitropakis, M. G., Tasoulis, D. K., Pavlidis, N. G., Plagianakos, V. P. & Vrahatis, M. N.
2011 Enhancing differential evolution utilizing proximity-based mutation operators.
IEEE Transactions on Evolutionary Computation 15 (1), 99–119.

Flemming, U. 1987 More than the sum of parts: the grammar of Queen Anne houses.
Environment and Planning B: Planning and Design 14 (3), 323–350.

Gips, J. 1999 Computer implementation of shape grammars. In NSF/MIT Workshop on
Shape Computation, vol. 55. Massachusetts Institute of Technology, Cambridge, MA.

Goel, A. K., Vattam, S.,Wiltgen, B. &Helms, M. 2012 Cognitive, collaborative,
conceptual and creative – four characteristics of the next generation of
knowledge-based cad systems: a study in biologically inspired design.
Computer-Aided Design 44 (10), 879–900.

30/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1512.03012
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
http://www.arxiv.org/abs/1410.8516
https://doi.org/10.1017/dsj.2020.9


Goodfellow, I., Pouget-Abadie, J.,Mirza, M., Xu, B.,Warde-Farley, D.,Ozair, S.,
Courville, A. & Bengio, Y. 2014 Generative adversarial nets. In Advances in Neural
Information Processing Systems, pp. 2672–2680.

Groueix, T., Fisher, M., Kim, V. G., Russell, B. C. & Aubry, M. 2018. Atlasnet: a
Papier–Mâché approach to learning 3D surface generation. arXiv:1802.05384.

Guevara, T. L., Taylor, N. K., Gutmann, M. U., Ramamoorthy, S. & Subr, K. 2017
Adaptable pouring: teaching robots not to spill using fast but approximate fluid
simulation. In Conference on Robot Learning, pp. 77–86.

Hardee, E., Chang, K.-H., Tu, J., Choi, K. K., Grindeanu, I. & Yu, X. 1999 A cad-based
design parameterization for shape optimization of elastic solids. Advances in
Engineering Software 30 (3), 185–199.

He, K., Zhang, X., Ren, S. & Sun, J. 2016 Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778.

Jang, S. &Han, M. 2018 Combining reward shaping and curriculum learning for training
agents with high dimensional continuous action spaces. In 2018 International
Conference on Information and Communication Technology Convergence (ICTC),
pp. 1391–1393. IEEE.

Juliani, A., Berges, V.-P., Vckay, E., Gao, Y.,Henry, H.,Mattar, M. & Lange, D. 2018.
Unity: a general platform for intelligent agents. arXiv:1809.02627.

Kazi, R. H., Grossman, T., Cheong, H.,Hashemi, A. & Fitzmaurice, G. 2017
Dreamsketch: early stage 3D design explorations with sketching and generative
design. In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology, pp. 401–414. ACM.

Kingma, D. P. &Welling, M. 2013. Auto-encoding variational Bayes. arXiv:1312.6114.
Koning, H. & Eizenberg, J. 1981 The language of the Prairie: Frank Lloyd Wright’s

Prairie houses. Environment and planning B: Planning and Design 8 (3), 295–323.
Krish, S. 2011 A practical generative design method. Computer-Aided Design 43 (1),

88–100.
Li, X., Epitropakis, M. G.,Deb, K. & Engelbrecht, A. 2016 Seeking multiple solutions:

an updated survey on niching methods and their applications. IEEE Transactions on
Evolutionary Computation 21 (4), 518–538.

Li, C.-L., Zaheer, M., Zhang, Y., Poczos, B. & Salakhutdinov, R. 2018. Point cloud gan.
arXiv:1810.05795.

Liu, S., Giles, L. &Ororbia, A. 2018 Learning a hierarchical latent-variable model of 3D
shapes. In 2018 International Conference on 3D Vision (3DV), pp. 542–551. IEEE.

Maturana, D. & Scherer, S. 2015 Voxnet: a 3D convolutional neural network for
real-time object recognition. In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 922–928. IEEE.

McCormack, J. P., Cagan, J. & Vogel, C. M. 2004 Speaking the Buick language:
capturing, understanding, and exploring brand identity with shape grammars. Design
Studies 25 (1), 1–29.

Namatēvs, I. 2018 Deep reinforcement learning on HVAC control. Information
Technology & Management Science 21, 1–6.

NVIDIA Gameworks. Nvidia flex.
Oh, S., Jung, Y., Lee, I. & Kang, N. 2018 Design automation by integrating generative

adversarial networks and topology optimization. In ASME 2018 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference, pp. V02AT03A008–V02AT03A008. American Society of Mechanical
Engineers.

31/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1802.05384
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1809.02627
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1312.6114
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
http://www.arxiv.org/abs/1810.05795
https://doi.org/10.1017/dsj.2020.9


Orsborn, S., Cagan, J., Pawlicki, R. & Smith, R. C. 2006 Creating cross-over vehicles:
defining and combining vehicle classes using shape grammars. Ai Edam 20 (3),
217–246.

Østergård, T., Jensen, R. L. &Maagaard, S. E. 2016 Building simulations supporting
decision making in early design – a review. Renewable and Sustainable Energy Reviews
61, 187–201.

Poirson, E., Petiot, J.-F., Boivin, L. & Blumenthal, D. 2013 Eliciting user perceptions
using assessment tests based on an interactive genetic algorithm. Journal of
Mechanical Design 135 (3), 031004.

Pugliese, M. J. & Cagan, J. 2002 Capturing a rebel: modeling the Harley-Davidson brand
through a motorcycle shape grammar. Research in Engineering Design 13 (3), 139–156.

Qi, C. R., Su, H.,Mo, K. &Guibas, L. J. 2017 Pointnet: deep learning on point sets for 3D
classification and segmentation. Proc. Computer Vision and Pattern Recognition
(CVPR), IEEE 1 (2), 4.

Radford, A.,Metz, L. & Chintala, S. 2015. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv:1511.06434.

Raina, A.,McComb, C. & Cagan, J. 2019 Learning to design from humans: imitating
human designers through deep learning. Journal of Mechanical Design 141 (11),
111102; MD-19-1131.

Rasheed, K. & Gelsey, A. 1996 Adaptation of genetic algorithms for engineering design
optimization. In Fourth International Conference on Artificial Intelligence in Design,
vol. 96. Citeseer.

Renner, G. & Ekárt, A. 2003 Genetic algorithms in computer aided design.
Computer-Aided Design 35 (8), 709–726.

Robertson, B. F. & Radcliffe, D. F. 2009 Impact of cad tools on creative problem solving
in engineering design. Computer-Aided Design 41 (3), 136–146.

Sbai, O., Elhoseiny, M., Bordes, A., LeCun, Y. & Couprie, C. 2018. Design: design
inspiration from generative networks. arXiv:1804.00921.

Shahrokhi, A. & Jahangirian, A. 2007 Airfoil shape parameterization for optimum
Navier–Stokes design with genetic algorithm. Aerospace Science and Technology 11
(6), 443–450.

Sønderby, C. K., Raiko, T.,Maaløe, L., Sønderby, S. K. &Winther, O. 2016 Ladder
variational autoencoders. In Advances in Neural Information Processing Systems,
pp. 3738–3746.

Sripawadkul, V., Padulo, M. & Guenov, M. 2010 A comparison of airfoil shape
parameterization techniques for early design optimization. In 13th AIAA/ISSMO
Multidisciplinary Analysis Optimization Conference, pp. 9050.

Stiny, G. & Gips, J. 1971 Shape grammars and the generative specification of painting
and sculpture. IFIP Congress (2) 2.

Stiny, G. &Mitchell, W. J. 1978 The Palladian grammar. Environment and Planning B:
Planning and Design 5 (1), 5–18.

Stredney, D.,Hittle, B.,Medina-Fetterman, H., Kerwin, T. &Wiet, G. 2017 Emulation
of surgical fluid interactions in real-time. PeerJ Preprints 5, e3334v1.

Taha, A. A. &Hanbury, A. 2015 An efficient algorithm for calculating the exact
Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 37
(11), 2153–2163.

Tang, M. X. & Cui, J. 2014 Supporting product innovation using 3D shape grammars in a
generative design framework. International Journal of Design Engineering 5 (3),
193–210.

32/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1511.06434
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
http://www.arxiv.org/abs/1804.00921
https://doi.org/10.1017/dsj.2020.9


Tapia, M. 1999 A visual implementation of a shape grammar system. Environment and
Planning B: Planning and Design 26 (1), 59–73.

Turrin, M., Von Buelow, P. & Stouffs, R. 2011 Design explorations of performance
driven geometry in architectural design using parametric modeling and genetic
algorithms. Advanced Engineering Informatics 25 (4), 656–675.

Ulrich, K. T. 2003 Product Design and Development. Tata McGraw-Hill Education.
Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O. & Graves, A. et al. 2016

Conditional image generation with PixelCNN decoders. In Advances in Neural
Information Processing Systems, pp. 4790–4798.

Whitley, D. 1994 A genetic algorithm tutorial. Statistics and Computing 4 (2), 65–85.
Wong, S. S. Y. & Chan, K. C. C. 2009 Evoarch: an evolutionary algorithm for

architectural layout design. Computer-Aided Design 41 (9), 649–667.
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X. & Xiao, J. 2015 3D ShapeNets: a

deep representation for volumetric shapes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1912–1920.

Wu, J., Zhang, C., Xue, T., Freeman, B. & Tenenbaum, J. 2016 Learning a probabilistic
latent space of object shapes via 3D generative-adversarial modeling. In Advances in
Neural Information Processing Systems, pp. 82–90.

Yannou, B.,Dihlmann, M. & Cluzel, F. 2008 Indirect encoding of the genes of a closed
curve for interactively create innovative car silhouettes. In 10th International Design
Conference - DESIGN 2008, May 2008, Dubrovnik, Croatia, pp. 1243–1254;
ffhal-00796974f.

Zboinska, M. A. 2015 Hybrid cad/e platform supporting exploratory architectural
design. Computer-Aided Design 59, 64–84.

Zhang, W., Yang, Z., Jiang, H., Nigam, S., Soji, Y., Furuhata, T., Shimada, K. & Kara, L.
3D shape synthesis for conceptual design and optimization using variational
autoencoders. In ASME 2019 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference.

Zhang, D., Zou, L., Chen, Y. &He, F. 2017 Efficient and accurate Hausdorff distance
computation based on diffusion search. IEEE Access 6, 1350–1361.

Zhanga, Z., Lia, J., Lic, X., Lina, Y., Zhanga, S. &Wanga, C. 2016 A fast method for
measuring the similarity between 3D model and 3D point cloud. International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 1.

Zoran, A. & Paradiso, J. A. 2013 Freed: a freehand digital sculpting tool. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2613–2616.
ACM.

33/33

https://doi.org/10.1017/dsj.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.9

	A sparsity preserving genetic algorithm for extracting diverse functional 3D designs from deep generative neural networks
	Introduction
	Related works
	Non-GNN approaches to conceptual design support
	Genetic algorithms for parametric optimization
	GNNs for conceptual design support

	Method
	Sparsity preserving latent space optimization
	Differential evolution

	Application and evaluation
	Ellipsoid case study
	Watercraft case study
	3D model data set
	Objective function
	Evaluation environment

	Mesh generation
	Surface area projection


	Results and discussion
	Ellipsoid case study
	Watercraft case study

	Conclusion
	Acknowledgments
	References


