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Uniparental Disomy and Genome Imprinting: 
an Overview 

E. Engel 

University of Geneva Medical School, Geneva, Switzerland 

The following paper is concerned with potential changes in the normal epigenetic 
process in a diploid individual, when a chromosome pair or segment is inherited from 
one parent only, instead of the expected biparental contribution. This aberrant mode of 
transmission arises from the high rate of gamete aneuploidy in humans. It has received 
the name uniparental disomy (UPD), and has emerged as an important factor in the new 
field of nontraditional inheritance, depicted in Table 1. 

The following definitions may foster a better understanding of this discussion. 
UPD is the inher i tance of both copies of a chromosome [or chromosomal 

segment(s)] from a single parent, instead of the normal biparental transmission of the 
pair. In isodisomy, the two uniparental copies are identical, being derived from the same 
parental chromosome. In heterodisomy, the two uniparental chromosomes are different, 
being derived from the homologues of a pair. 

Table 1 - Instances of non-traditional inheritance 

I. Di- or trinucleotide repeat expansion (i.e. anticipation) 

II. Mitochondrial inheritance: only matroclinous (normal or aberrant) 

III. Epigenetic modifications (both normally or aberrantly transmitted) 

a) Normal parental imprinting 

b) Abormal parental imprinting 
1. Chromosome duplication 
2. Chromosome deletion 
3. Chromosomal translocations and inversions 
4. UPD 
5. Gene mutations 
6. Imprinted gene mutations 
7. Imprinted control element mutations 
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22 E. Engel 

Mosaicism is the presence of two or more stem cell lines derived from one zygote, 
having different chromosomal and/or genie contents. 

Genomic imprinting is the epigenetic modification of certain genes as a function of 
their parental origin. An imprinted gene is often considered to be an inactivated gene. 
The result of imprinting is functional hemizygosity (maternal or paternal) for some 
allelic pairs. Imprint relaxation normally occurs early in gametogenesis. 

As will be shown, the intrinsic effects on genomic imprinting one might attribute to 
UPD can be compounded by two of the processes associated with UPD, namely 
mosaicism and isodisomy [1]. 

The following discussion will be divided into four parts: 

1. an overview of the known cases of UPD as of November 1994; 

2. a broad consideration of the various mechanisms and events that can give rise to 
UPD; 

3. an analysis of the relationship of some of the relevant UPD data to genomic 
imprinting, and 

4. some general, somewhat hypothetical considerations of the factors that may pre­
clude the observation of UPD, as a result of negative selection. 

THE PREVALENCE OF UPD 

The known instances of UPD for various chromosomes amount to nearly 100 as of 
November 1994 [2]. They cover roughly one half of the 47 theoretical UPD possibilities 
for entire chromosomes (44 autosomes - 22 for each sex - and 3 for the sex chromo­
somes - the paternal and maternal X and the XY pair). Described only once so far for 
some members, UPD has been repeatedly observed for others, such as mat (15) [respon­
sible for Prader-Willi syndrome (PWS); ref. 3], pat (15) [causing Angelman syndrome; 
ref. 4], mat (7) [5] and mat (16) [6]. 

Figure 1 illustrates these cases and shows the parental derivation of the chromosome, 
the genome imprinting effect and the occurrence of mosaicism. 

MECHANISMS GENERATING UPD 

Three general mechanisms can be identified which generate UPD: 

1. gamete complementation [6, 7]; 

2. mitotic reversal of a meiotic error: 

a) trisomy correction (reversal to disomy by extrachromosomal loss) [8, 91; 

b) monosomy erasure (by chromosome duplication or isochromosome forma­
tion) [5, 10-15], and 

c) chromosome substitution ("compensatory" with replacement of the marker 
by the normal partner) [16-19]; 

3. mitotic recombination (exchange between homologue chromatids) [20, 21 ]. 
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UPD and Imprinting: an Overview 23 

The first mechanism does not generate mosaicism, whereas the other two can. 
Trisomy rescue may occur in two distinct ways at the first zygotic cleavage by chro­

matid nondisjunction at metaphase or chromosome lag at anaphase, or at various stages 
thereafter by the same mechanisms, with the initial zygotic makeup preserved in one 
stem cell. 

Figure 2 illustrates how trisomy rescue may operate [8, 9, 22-37] by reduction to dis­
omy according to two distinct mechanisms, both of which can generate mosaicism, in 
theory at least [38-45]. 

As shown in Figures 3 and 4, balanced chromosome translocations (reciprocal and 
Robertsonian) are often subject to irregular segregation (3:1 for reciprocal and 2:1 for 
Robertsonian centric fusion), and may often serve as the raw material for mitotic trisomy 
rescue and UPD formation [1,2, 46-51]. 

Another form of aneuploid rescue, by monosomy duplication [4, 10] is illustrated in 
Figure 5. 

A purely mitotic mechanism leading to segmental UPD and mosaicism is shown in 
Figure 6. Only the two stem cells seen on the right are complementary disomic types, as 
may happen for chromosome 11 in some cases of the Wiedemann-Beckwith syndrome 
(WBS) [21]. In the latter, UPD is confined to pat (1 lp 15.5), the maternal counterpart 
being eliminated, probably because it is lethal. 

The potential for mosaicism to distort other effects originating, for example, from 
imprinting depends on (1) the mechanism generating UPD in the conceptus, (2) the 
selection of the various mosaic stem cells in the conceptus according to e.g. their 
makeup and modal chromosome number, and (3) the timing (zygotic, pre-or postnatal) of 
the mosaic-generating event. 

In summary, the phenotypic expression of UPD may result from several isolated or 
combined factors: 

1. the unmasking of recessive genes through isodisomy [4, 6, 10]; 

2. interference with normal imprinting [1, 52, 53]; 

3. the presence of monosomic or trisomiceuploid mosaicism, whether embryonic, 
extraembryonic or both, and 

4. combinations of these three factors. 

Furthermore, the clinical presentation, chromosomal characteristics and molecular 
evidence may suggest UPD. 

Clinical evidence includes the following: 

1. syndromes where UPD is a recognized etiologic factor; 

2. cases in which two distinct, seemingly independent, conditions are associated 
[54]; 

3. cases of pre-and postnatal growth disorders without a known explanation [4, 10, 
54-56]; 

4. the aforementioned situations if associated, for example, with body asymmetry, and 

5. in tumor growth, where loss of heterozygosity and/or imprinting are important 
factors [20, 21,57]. 
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Chromosomal evidence encompasses: 

1. homozygosity for a heterozygous, unique parental heteromorphism; 

2. uniparental derivation of distinctive heteromorphisms of both homologues; 

3. cases of homozygous pericentric inversions [30, 58]; 

4. balanced chromosomal interchange or Robertsonian translocation (inherited or de 
novo) with e.g. clinical anomalies or dysmorphism; 

5. cases of euploid/aneuploid mosaicism in the proband, extraembryonic tissues or 
both, and 

6. offspring (especially normal) born to a carrier of a Robertsonian translocation 
between homologues [59-62]. 

Molecular evidence comprises: 

1. lack of obligate parental alleles [4, 10]; 

2. homozygosity acquired from a singly heterozygous parent [4, 10], and 

3. unusual and/or excessive syntenic homozygosity [21]. 

Evidence for the mechanisms of UPD formation 

Six mechanisms of UPD production have been documented beyond reasonable doubt in 
particular cases: 

1. trisomy rescue (chromosomes 2, 9, 14, 15, 16 and 20); 

2. monosomy duplication including isochromosome formation (chromosomes 7, 14, 
15 and 16); 

3. gamete complementation (chromosome 14); 

4. heterochromosomal (compensatory) substitution (chromosomes 6, 15 and 21); 

5. heterochromatid exchange (chromosomes 11 and 13), and 

6. mosaicism. 

Actual instances of reduction to homozygosity for recessive genes have been demon­
strated in the conditions listed in Table 2. 

Trying to take into account interfering factors such as mosaicism and isodisomy, the 
known cases of UPD have been scrutinized for imprinting effects to give the classifica­
tion shown in Table 3. 

Individual examples of imprinting related to UPD 

Maternal and paternal UPD for chromosome 15, associated with PWS and Angelman 
syndrome, respectively, and paternal UPD for l l p l 5 . 5 responsible for some cases of 
WBS, as obvious results of imprinting disturbances, are discussed elsewhere in this vol­
ume. Maternal UPD for chromosome 7 is associated with stunted growth (Table 4). This 
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Table 2 - Clinical examples of reduction to homozygosity (isodisomy) leading to recessive diseases 

Chromosome 

5 

6 

7 

9 

11 

13 

14 

15 

16 

Condition 

Spinal muscular atrophy (type III) 

Deficiency of 4th component (a and b) of complement 

Methylmalonic acidemia 

Cystic fibrosis 

Osteogenesis imperfecta (COL1A2) 
Congenital chloride diarrhea 

Cartilage-hair hypoplaisa 

6-thalassemia 

Retinoblastoma 

Rod monochromacy 

Bloom syndrome 

a-thalassemia 
Familial Mediterranean fever 

Reference 

63 

64 

65 

4, 10 

55 
66 

67 

68 

20 

11 

69 

70 

71 

Table 3 - Effect of known UPDs on imprinting 

Certain Nearly certain Possible Unlikely 

pat(ll) 

mat(ll) 

pat(15) 

mat( 15) 

mat(7) 

mat(14) 

mat(2) [31] 

mat(3) |58] 

mat(4) |72, 731 

pat(14) |7 ,74] 

mat(16) 

pat(20) |43] 

pat(X)[75] 

pat (5) |63 | 

pat(6) [64] 

pat(7) [661 

mat(9) |67] 

mal(13) |61, 62| 

mat(2l) |19,76] 

pat(21) |77] 

mat(22) |78] 

mat(X) |79 | 

XY |80] 

also occurred in cases with pat i(7p) and mat i(7q). Consequently, the imprinted region is 
probably on 7q. 

The data indicating that there are genomic imprinting disturbances for maternal UPD 
14 are also strong, although growth was not adversely affected in a recent case. The 
major signs [11, 38, 46, 50, 51, 81] include arrested hydrocephalus, short stature, small 
hands (and feet), delayed motor and/or mental development, precocious (or early) 
puberty and recurrent otitis media. The inconstant signs include hyperextensible joints, a 
short philtrum, a high narrow palate and scoliosis. 
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Table 4 - Maternal UPD for chromosome 7 and genomic imprinting 

Sex Age (years) Height (cm) Weight (kg) Diagnosis Reference 

F 16 130 - cystic fibrosis and growth 4 
retardation 

M 4 87 - cystic fibrosis and growth 10 

retardation 

M 30 143.7 36.6 osteogenesis imperfecta 55 

and growth retardation 

F 2.25 76 7.96 growth retardation 56 

Four more cases in particular should be mentioned, whose anomalies raise the possi­
bility of imprinting effects. 

A case of maternal UPD for chromosome 2 was reported with the following pheno-
typic effects [31]: growth failure, hypothyroidism, bronchopulmonary problems, normal 
early psychomotor development and trisomy 2 mosaicism in the amniotic fluid. 

Chromosome 14 paternal UPD has been associated with [7, 74] marked facial dys­
plasia, severe neurologic involvement, growth retardation and severe bone defects (of 
the thorax and spine in one case). 

Chromosome 16 maternal UPD also has potential genomic imprinting effects. It is 
always derived from a trisomy of maternal origin, intrauterine growth is retarded (and 
positively correlated with the extent of the placental trisomy rather than with the exis­
tence of the maternal UPD per se), there is the possible implication of intrinsic (embry-
ofetal) residual tri(16) although strict confined placental mosaicism has been claimed 
[39], lower gastrointestinal tract anomalies are present [82], but the natural history of 
this condition over time has not yet been fully documented [28]. 

Spinner et al. [43] have reported a case of paternal uniparental isodisomy for chro­
mosome 20 [blood and marrow: 45, XY, t (20; 20) (pi3; pl3)] . The boy presented with 
an absent left ear, microtia of the right ear, microcephaly, congenital heart disease and 
Hirschsprung disease. Mosaicism for trisomy 20 in the skin was 8%. This phenotype is 
quite distinct from 20p - or mosaic tri (20). 

The chromosomes for which UPD is unreported as of November 1994 are mat(l), 
pat(l), pat(2), pat(3), pat(4), mat(5), mat(6), mat(8), pat(8), pat(9), mat(10), pat(10), 
mat(l l) , mat(12), pat(12), mat(13), mat(17), pat(17), mat(18), pat(18), mat(19), pat(19), 
mat(20) and pat(22). 

Summarizing all the above data, a tentative imprinting map of the human genome as 
of February 1995, is illustrated in Figure 7. 

CONCLUDING REMARKS 

Imprinting, a normal epigenetic control, which depends on the parental origin of some 
chromosomes, may be altered at one or more loci when diploidy is, for one pair, incor­
rectly derived from one parental source only (UPD). Basically, whereas in normal 
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biparental inheritance, imprinting may leave a single paternal or maternal allele of a pair 
phenotypically active, as a result of UPD, both alleles can be either expressed or sup­
pressed, depending on their parent of origin, as may also be the case for other imprinted 
syntenic loci. 

Besides potentially altering imprinting, UPD may cause homozygosity for recessive 
alleles carried by one heterozygous parent when the inherited pair is wholly or partially 
the duplicate of the same chromosome (isodisomy). Or, the makeup of a uniparental pair 
of homologues may, in part at least, be transmitted unchanged by DNA recombination 
(heterodisomy). 

UPD may arise as the result of various mechanisms, including gamete complementa­
tion, trisomy or monosomy "correction" and somatic recombination; all but complemen­
tation are also liable to alter the phenotype by causing mosaicism. 

Uniparental maternal or paternal disomy has been biochemically proven for loci, 
syntenic segments or entire chromosomes in pairs 2, 4, 5, 6, 7, 9, 11, 13, 14, 15, 16, 20, 
21, 22, XX and XY, and is also cytogenetically strongly suggested for chromosome 3. 

In the clinical field, UPD has been the cause of a score of recessive disorders due to 
isodisomy (eleven so far to my knowledge), as well as being one of several etiopatho-
genic pathways leading to several syndromes. This is best exemplified by the neurobe-
havioral condition of Angelman syndrome with which four types of operational causes 
have emerged, at greatly differing frequencies, namely (1) maternal, proximal 15q dele­
tion, (2) paternal UPD 15, (3) intrinsic null mutation of one normally active allele of a 
locus targeted by imprinting, and (4) mutation of an " imprint controlling element" or 
imprinter gene (Figure 8). 

However, as briefly discussed, UPD as a cause for diseases cannot apply to the 
pathology of all genomic segments liable to imprinting, because some cases must 
unavoidably be lethal. This, in turn, may be one among several causes for the uncovering 
of only half of the theoretically possible UPD combinations for entire chromosomes. 

While UPD, in contrast to deletions, respects biallelism, in some cases (for instance 
the Wiedemann-Beckwith overgrowth syndrome) its major interference with imprinting 
originates from a gene overdose. In contrast, in other cases (Angelman syndrome, PWS), 
the deleterious effect stems from functional nullisomy. 

Oddly, in cases of Angelman syndrome stemming from paternal disomy 15, the pre­
sumed doubling of the PWS paternally active genes at imprinted loci (SNRPN, P5, PI) 
does not seem to have any bearing on the overall phenotype in contrast to cases of 
Angelman syndrome and maternal deletion of 15qll-13 with no such presumed over­
dose. Nor does the presumed doubling of the active Angelman syndrome gene(s) seem to 
interfere with the PWS phenotype in cases caused by maternal disomy 15 as compared 
with cases caused by paternal deletion. 

On the other hand, it seems conceivable that, in some cases of UPD, a combination of 
both types of gene-dosing imbalance at contiguous or syntenic loci (for example, in the 
case of enhancer competition of linked but inversely imprinted genes [90]) might com­
pound the phenotypic effects observed in some syndromes or even bring about lethality. 

Finally, it is interesting to compare the distribution of human chromosomes where 
genomic imprinting is confirmed or tentatively suspected with that of their syntenic 
homologous counterparts dispersed in the mouse karyotype, some of which, particularly 
on chromosomes 2, 6, 7, 11 and 17, are known to be subjected to imprinting (Table 5). 
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Table 5 - Mouse homologies for imprinted or possibly imprinted human chromosomes [91] 

Human chromosome Mouse homologies 

Imprinted 
11 2,7,9,19 
15 2,7,9 
7 2,5,6, 11,12 ,13 

14 //, 13 

Possibly imprinted 
2 1,2,6,8,11,12,17 

16 7,8,11,16,17 
20 2 
X 19 

Mouse chromosomes with domains known to be subjected to genomic imprinting are italicize. 
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