
Can. J. Math.Vol. 45 (5), 1993 pp. 997-1008 

ISOMORPHISMS BETWEEN LINEAR GROUPS 
OVER DIVISION RINGS 

VASILIJ M. PETECHUK 

ABSTRACT. In the present paper we completely describe the isomorphisms between 
projective elementary groups PSL„ and PSLm (n > 2, m > 2) over division rings. It 
was found that such groups can be isomorphic only if n = m; the division rings are 
isomorphic or anti-isomorphic, except for the following groups: 

PSL(2,F7) and PSL(3,F2); PSL(2, F4) and PSL(2,F5). 

The idea is based on a deepening of the classical Hua's approach. This problem has 
been solved independently by H. Ren, Z. Wan and X. Wu using a different way. 

In the present paper we completely determine the isomorphisms between projective 
elementary groups PSL(rc, R) and PSL(m, S) (n > 2, m > 2) over division rings. It was 
found that such groups can be isomorphic only \în — m\ the division rings R and S are 
isomorphic or anti-isomorphic, except for the following groups: 

PSL(2, F7) and PSL(3, F2), PSL(2, F4) and PSL(2, F5). 

The first step in the description of the isomorphisms between projective elementary 
groups was taken by Schreier and van der Waerden [1]. They determined the isomor­
phisms between PSL(«, R) and PSL(m, S) (n,m > 3) over fields R and S. Their paper 
was the beginning of the construction of the theory of homomorphisms of algebraic and 
classical groups over rings. The most complete survey of the modern state of this theory 
may be found in [2]. Dieudonné [6], Rickart, Hua [5] described the isomorphisms be­
tween PSL(n,R) and PSL(m,5) (n,m > 3) over division rings R and S, developing the 
involution method idea which goes back to Mackey. The case when one of the m, n is 
equal to 2, needs additional considerations. The most difficult cases of small m and n have 
been studied by Hua and Wan [4]. For m = n — 2 Hua [5] determined the isomorphisms 
between PSL(n, R) and PSL(ra, S) over fields R and S. 

Almost all of the results of the description of the isomorphisms between projec­
tive elementary groups over division rings that have become classical may be found 
in Dieudonné's book [3]. There (3, Chapter IV) it is pointed out that the problem of the 
description of automorphisms of SL(2, R) is unsolved in the case when (— 1 ) does not be­
long to the commutator subgroup of R* and R is a division ring of zero characteristic. It 
should be pointed out that Ren [7] has solved Dieudonné's problem under the condition 
that there exist elements in R, the squares of which are equal to 2 and 3, correspondingly. 
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The problem of the isomorphisms between PSL(AZ,7?) and PSL(ra, S) over division 
rings R and S in the case of m > 3, n > 3 follows from O'Meara-Sosnowski theorem, 
the new proof of which is proposed by the author in [8]; for the rest of the cases the 
description follows from Theorems 1 and 2. In this case Hahn's [13] deep work should 
be noted. Theorems 1 and 2 are a partial solution of the problem of the construction of the 
isomorphism theory for two-dimensional linear groups which are rich in transvections. 
This problem has been formulated by Merzlyakov in [9]. They are also tightly connected 
with the description of linear group isomorphisms over integral domains (see [14]). 

The complete solution of the description problem for the isomorphisms between pro­
jective groups over division rings was reported in [11]. Independently, using quite dif­
ferent methods, H. Ren, Z. Wan and X. Wu have solved the description problem for 
automorphisms between linear groups over division rings in [12]. More precisely, for a 
division ring R they have determined automorphisms of PSL(rc, R) and reported a of com­
plete solution of the problem for isomorphisms between PSL(n, R) and PSL(m, S) over 
division rings. Their basic idea is an imbedding of the division ring into a ring of matrices 
such that images of transvections would be triangulable, first over some extension and 
then over the basic division ring. 

The author's idea is based on a deepening of the classical approach of Hua. In the 
two-dimensional case the author succeeded in calculating the first and the second com­
mutator subgroups of the centralizer of an arbitrary set of scalar matrices. It was found 
that almost always they can be represented as linear groups. This allowed passing to 
isomorphisms between linear groups over fields and then proving that almost always at 
least one transvection under isomorphism maps into a unipotent element. 

An isomorphism between PSL(n, R) and PSL(m, S) is called standard if n — m and, 
up to conjugation, it is the result of an isomorphism or an anti-isomorphism between R 
and S. 

Let R* be the group of unit:, of R; Rn be the ring of all n x n matrices over R\ 
GL(n,R) = /?*; SL(n,R) — gr(tij(x) — E + xetj \ e^ — standard matrix unit) = kerdet, 
where det: GL(n, R) —^ R* / [#*,/?*] is the Dieudonné determinant. 

An element a G GL(n,R) is called unipotent if there exists a number k such that 
(a — E)k = 0. If k = 2 and dim(cr — E) = 1 then a is called a transvection. Let G 
be a group and (G its centre. G/QG is called a projective group and is denoted by PG 
or G. If g is an arbitrary element of G, then projective image of g is denoted by g. Let 
À = {a(G | a G A} and CG(A) = {g G G | ga = ag for all a G A}. 

The commutator subgroup of a group G is denoted by [G, G] or G7, G" = [Gr, G'}\ 
[a,b] = aba~]b~\ ba — aba~l. The equation a = usv means that the element a is 
represented by Bruhat decomposition , where u is the higher unimodular, v is the higher 
triangular and s is monomial matrices. Fq is a finite field with q elements. 

It is easy to see that for the elements a, b, c of a group G, it follows from commutativity 
of â with b and c that a commutes with [/?, c]. Hence, C'^(Â) C Cc(A). 

The elements of order two are called involutions. 
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LEMMA 1. Let G be a group with finite centre. If G includes an infinite number of 

pairwise commutative involutions then G also includes an infinite number of pairwise 

commutative involutions. 

PROOF. Let â be any involution from G. Then there exists an infinite set of invo­

lutions b in the group G such that [a, b] = a, where a is some fixed element from the 

centre of the group G. It is easy to see that the equalities [a, b\] = a = [a,bi\ imply 

ab\aTx — b\a and ab^xa~x — b^xa~x. So the element a commutes with b\b^x. It is 

obvious that there is an infinite number of elements of the form b\b^x• Applying simi­

lar arguments to the elements of this set, we have that there exists an infinite number of 

pairwise commutative elements in G, the images of which in G are involutions. 

Since the centre of the group G is finite, there exists an infinite number of pairwise 

commutative elements c in G such that c2 — f3, where (3 is some fixed element from 

the centre of the group G. It follows from the equalities c2 = j5 = c\ that c\c^x is an 

involution. Since there exists an infinite number of elements of the form c\c^x, these 

elements form an infinite set of pairwise commutative involutions in the group G. 

LEMMA 2. Let R be afield. Then for arbitrary a,<5 G R, a ^ 0, CQL(2,R) C ] is 

an abelian group. 

PROOF. Let GL(n, R) = GL(n, V), where n = dim V > 2. Let a be an element from 

Rn such that V as R[a]-module is cyclic. Then the diagram 

R[a]-*HomR[a](y9V) = CR„(a) 

implies that CRn(a) is a commutative ring and, therefore, its group of units is abelian. 

We'll need the Hua formula: 

(1) ([a,b]-[a,b-l])b= l-[a,b- 1]. 

This formula implies, in particular, that an element of R which commutes with each 

element from [R*,R*] belongs to the centre of R. Moreover, if R* is nilpotent, then R is 

a field. From (1) we have that if [[/?*,/?*], [#*,#*]] belongs to the centre of R, then R is 

a field. Indeed, let a e [R*,R*], a ^ 1, and b G 7?*. Then 

[a,ba] = [a, &f = 7i [a,b] 

and 

[a- l,ba] = [a- l,b]a = /y2[a- l,b], 

where 7i and 72 are elements from the centre of R. From these equalities we have that 

If 7i T̂  72 then ab belongs to the centre of R and, therefore, [a, b] commutes with a. 

It is easy to show that this statement remains valid under the condition that 7i = 7 2 = 1 • 

Applying formula ( 1 ) again, a belongs to the centre of R. So, we have proved that R is a 

field. 
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As a corollary, we obtain that all the elements of R which commute with all the el­
ements of [/?*,/?*]' form a subfield F. Clearly for each inner automorphism </> of/?* we 
have <j>(F) — F. Using (1) for a non-zero element a G F and for arbitrary b G /?*, b ^ 1, 
we obtain that ab = £#. This means that F is the centre of/?. 

Another important corollary from the formula (1) is that the commutativity of 
CpSL(2fl/i2(l) implies that R is a field. Indeed, let a\, a2, x\, x2, y\, yi be arbitrary el­
ements of [/?*,/?*]. Then [a\,a2] commutes with elements 

[L*i,*2LLyi,;y2]], 

[x\x2E,t\2\y\,y2\\ = ti2(([[xux2],[y\,y2]\ - l)ly\,y2\J, and consequently with 

|jy 1,3̂ 2]- Since [a\,a2] commutes with [y\E,t\2(y2)] — t\2(([y\,y2] — l)y2), [^1^2] com­
mutes with an arbitrary element y2 and, therefore, belongs to the centre of R. Hence, 
[/?*,/?*]' belongs to the centre of R and, thus, R is a field. 

LEMMA 3. Let R and S be division rings, and A: PSL(/i, R) —• PSL(2, S) be an iso­
morphism which maps, at least, one transvection into a transvection. 

Then n — 2 and A is a standard isomorphism. 

PROOF. It is known that a nilpotent group is unitriangulable if its lower central series 
is generated by unipotent elements of PSL(2, S). Since APSL'O?,/?) = Î for n > 3, it 
follows that n — 2. Up to an inner automorphism we can assume that Afi2(l) = t\2{\). 

LetAâ = and a — wsv be the Bruhat decomposition of matrix a. A suitable 

selection of basis gives u — E. Let v/i2(l)v_1 = t\2{m) where m is an element of/?. Then 

,,-1 . - 1 0 W—^rrf 0 1 
Ktn{m) = Asvtl2(l)v-ls-1 = , n \tn(\)\ , n = t2{{-\). 1 0J 1ZV ^ - 1 0 

Since matrices t\2(\) and t2\(— 1) do not commute with one another it follows that 
0 1 

s = I 1 Q 1 andA^i(m) = t2\(-l). 

From the formula 

(2) tn(x)t2X(-x-x)t{2{x) = t2\(-x-x)tn(x)t2x(-x-xX 

for x = 1 we obtain m — — 1. Let ht\2{x) — a(x)t\2(b{x)\ where a{x) and <5(x) are 
elements of S which depend on x. It is easy to show that for arbitrary elements x and y 
from /?, a(x + y) = a(x)a(y) and a(0) = a(l) = Ï. From the formula 

(3) ti2(xf^'} = tl2(x
2) 

we get that a(x2) — 1 and (2) implies 6(x2)è(x 2) — —\ for all nonzero elements x G /?. 

As a corollary we obtain «(x^x2) = <5(x2)ce(;\c), a(2x) = a((jc + l)2 — x2 — l) = Î and 

Adiag(jt2;jr~2) = diag(<5(jc2);<S(;t-2). 
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When char R ^ 2, applying the formula 

fl2(4x)dia«(l/2;2) = f,2W, 

we find that a(x) = a(4x) = Ï for all x £ R. In the case when char/? = 2, the last 

statement follows from the formula 

Thus, we have proved that At nix) = t\2(èx) for all x G R. It is easy to show that the 

mapping 6: x —• <5(x) which is additive (it is because there may be only one transvection 

in a coset) and 6(1) = 1, 6(x~l ) = 6(x)~l for all nonzero elements x from R. By the Hua 

theorem, 6 is an isomorphism or an anti-isomorphism between the division rings R and 

S. Hence, the isomorphism A is standard. 

LEMMA 4. Let R and S be division rings of equal characteristic p > 0. Let 

A: PSL(«, R) —> PSL(2, S) be an arbitrary isomorphism. Then n = 2 and A is a standard 

isomorphism. 

PROOF. It is easy to see that for elements a, b of an arbitrary linear group over a 

division ring of characteristic p > 0, the equalities àp = Ë and â\â, b] = [â, b]â imply 

a[a,b] = [a,b]a and 

1 = \a?M = [aMaP\ap-\b] = [a,b][ap~\b] = [a,b]p. 

Let <5// be the Kronecker symbol. Applying formula [ty(x), tsk(y)] = tik(8jSxy) for n > 3 

and (3) for n = 2, provided that |/?| > 3 or |5| > 3, we get that A maps transvections 

into projective images of elements of order p, and, therefore, into transvections. It can 

be verified directly that when n = 2, R = /% S = F3 or n — 2, R — F2, S = F2, the 

element A/12O) is a transvection. 

An application of Lemma 3 completes the proof of Lemma 4. 

LEMMA 5. Let R be a division ring and S be afield. Let A: PSL(AZ, R) —> PSL(m, S) 

be an arbitrary isomorphism. Then R is afield and the isomorphism A is standard except 

for the groups PSL(3, F2) and PSL(2, F7), PSL(2, F4) and PSL(2, F5). 

PROOF. Let R be a noncommutative division ring. Let us prove that the isomorphism 

A is impossible. Consider the solvable subgroup in PSL(«, R) generated by elements 

t\i(y), where _y is an arbitrary element of/?, and by matrices diag(x;;c) and diag(x\x~l), 

where x is a fixed noncentral element from the commutator subgroup of/?*. According to 

Lie-Colchin-Maltsev theorem this subgroup contains a subgroup N of finite index such 

that A[iV, N] consists of unipotentelements and the identity. Since R is infinite, there exist 

elements y ^ 0, y\, y2 in R such that matrices 

H y\ (x y\\ (x y2 ) 
[0 l j ' [0 x)9 [0 x~l J 
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belong to N. It is easy to show that if 

x yx 

0 x 
1 J 
0 1 E, then yi 

o 
i y 
o l ¥E. 

Thus, we have proved that the isomorphism A maps a transvection into a unipotent el­
ement. From Lemma 8 [8] it follows for m > 3 and n > 3 and from Lemma 3 for 
other cases that A maps transvections into transvections. Hence, R is isomorphic or anti-
isomorphic to S; that is impossible. Hence, R is a field. 

If R is an infinite field, then from similar considerations as in the case when R is a 
division ring we have that A is a standard isomorphism. Let R and S be finite fields. If 
ra > 3 and n > 3 then it is proved in [8] that A is a standard isomorphism. Then, without 

loss of generality, we may consider that m = 2 and At\(\) 

According to Lemma 2, 

0 a 
1 S 

, where a, 8 G S. 

CpSL(2, ,S) 
0 a 
1 6 

is commutative. Then Cf
?SL^nR)t\n(\) is also commutative. Then n = 3 and R — F^ or 

n = 2. If n = 3 and R = F2, then 5 = F7 and the mapping A: PSL(3, F2) -+ PSL(2, F7): 

Afi2(l) = 
- 3 2 
2 3 A/23(l) = 

- 2 3 
3 2 A/3l0) = 

0 3 
2 0 

induces a nonstandard isomorphism. Let n = 2. It is easy to show that | PSL(2,7?)| = 
(\R\2 - l)\R\/2, if char/? ^ 2 and | PSL(2,/?)| = (\R\2 - 1)|/?|, if charfl = 2. 

If char/? ^ 2 and charS ^ 2 then \R\ = \S\ and char/? = charS = p > 0. Then, 
without loss of generality, we may assume that \R\ — 2l and \S\ = ps, where p = char S > 
2. Then 

(4) 2(|/?|2-1)|/?| = (|S|2-1)|S|. 

Since \S\ does not divide \R\ and \R\ + 1 = (\R\ - 1) = 2, |5| < |/?| + 1. On the other 
hand, the equality (4) is possible only if \R\ < \S\ — 1. Hence, \S\ = \R\ + l = 5. In this 
case there exists a nonstandard isomorphism A: PSL(2,/?) —̂  PSL(2,5), where \R\ = 5 
and S = {0,1, a, a2, a3 = 1}, which may be determined on generators of PSL(2, R) in 
the following way: 

Afi2d) -
0 1 
1 a A 

0 1 
- 1 0 

LEMMA 6. Let Rhea division ring and A = {aE} C SL(2, /?). Let R\ = {r \ ar 
for all a G A} and H = CpSL(2 R^(Â). 

ra 
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Then the following results hold: 

1*11 
> 3 

3 ; -l£[R*,R*] 

3; - 1 G [/?*,/?*] 

9 

H 

PSL'(2,F3) 

PSL(2,F3) 

PSL(2,F3) 

PGL(2,F3) 

PSL'(2,F2) 

PSL(2,F2) 

[# ,#] 

SL(2,/?i) 

F 

PSL/(2,F3) 

PSL/(2,F3) 

PSL(2,F3) 

F 

PSL/(2,F2) 

1*1 

4 

12 

12 

24 

3 

6 

| [M| 
> 6 0 

4 

4 

4 

12 

1 

3 

PROOF. The inclusions SL(2, R\ ) C CPSL(2,RM)
 a n d 

SL'(2,/?i)C//CGL(2,rti) 

are obvious. It should be noted that GL(2, R\ ) normalizes CPSL(2,/?)(^) and, consequently, 
H as well. If x2 ^ 1, then the following formula holds: 

(5) [tl2(x(l - j V ^ d i a g C r , * " 1 ) ] - /12(*). 

Therefore, in the case when \R\\ > 3 the following inclusion is valid: 

SL(2,/?i) = SL'(2,/?i)C#. 

Since GL'(2,fli) = SL(2,/?,), [//,//] = SL(2,/?0. Let Rx = F3. Then C# - #i = F3. 
L e t - 1 ^ [#*,#*]. If// contains a trans vection then H = SL(2,F3) = PSL(2,F3)and 

[# ,# ] = PSL'(2,F3) = 
0 1 

- 1 0 
-1 1 
1 1 

1 1 
1 - 1 

Therefore, we'll consider the case when H does not contain any transvection. 
H contains SL'(2,F3) = PSL/(2, F3). Obviously, 

| PGL(2,F3)/ PSL'(2,F3)| - 6 and PGL(2,F3)/ PSL/(2,F3) 

are generated by and . It is clear that these elements and their prod­

ucts do not belong to H. Therefore, H = PSL'(2, F3) and [#, H] = F. 
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Let - 1 G [/?*,/?*]. Then PGL(2,F3) = GL(2,F3) C CPSL(2,/?)(Â) and 

PSL(2,F3) = PGL'(2,F3) C H C PGL(2,F3). 

Two cases are possible: H = PSL(2,F3) or H = PGL(2,F3). In the first case [H, H] = 
PSL'(2, F3), and in the second [H, H] = PSL(2, F3). 

Finally, let Rx = F2. Since (R = Rx = F2 then 

PSL'(2, F2) = SL'(2,F2) C H C GL(2,F2) = PSL(2, F2). 

Hence, H = PSL'(2,F2) and [H,H] = ËorH = PSL(2,F2) and [H, H] = PSL/(2,F2). 
It is obvious that char/?i = char/?. Therefore, if A is an arbitrary isomorphism be­

tween PSL(2, R) and PSL(2, S) such that hxE = yF, where x, y are some elements 
from R and S and /? = {r G /? | xr = rx)\ S\ = {s G S \ sy = ys}, then ei­
ther the isomorphism A induces an isomorphism between FSL(2,R\) and PSL(2,5i), 
orchard = char/?i = char Si = char S = p > 0, where/? = 2 or p — 3. 

LEMMA 7. Let R and S be noncommutative division rings. Then there is no isomor­
phism A: PSL(n, R) —•> PSL(2, S),for which the following equality holds: 

A/IH(1) = aË, 

where a is some non-central element ofS. 

PROOF. Let us suppose that such an isomorphism exists. Let S — {s G S \ sa — as}. 
Since S includes the non-central element a, it includes more than three elements, and 
SL(2,50 = SL'(2,5i) = GL'(2,SX). 

It is easy to see that for arbitrary elements x from [/?*,/?*] and r G R, the element 
[xË,t\n(r)] = t\n(xrx~x - r) belongs to Cp^^tUl). 

Let N be a group consisting of all elements t\n(\) which belong to the group 
CpSL(n R)t\n(l). Then AN is a commutative normal subgroup of Cpsui,S)^Ë. Obviously 

SL(2,Si) C Cf
?SLas)aË C GL(2,Si). 

So AN belongs to the centre of the group CpSL(2 S)aË. It follows that the group N belongs 
to the centre of CPSL(n R)t\n(\). Hence all the elements commute with the elements of the 
group (R*),f and as a consequence, belong to the centre of R. This, however, contradicts 
the non-commutativity of the division ring R. Really, if xrox~~{ — ro = a ^ 0 for some 
ro G F, then for an arbitrary element r G R, the following equalities hold: xrx~x = r + /3, 
xrorx"l — ror+7, where a, /?, 7 are elements from the centre of/?. Since r<ù&+ar+a$ = 7, 
then R is generated by the elements of the centre and by ro which proves commutativity 
of/?. 

THEOREM 1. Let R and S be division rings and 

A:PSL(2,F)->PSL(2,S) 

https://doi.org/10.4153/CJM-1993-055-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-055-3


ISOMORPHISM OF LINEAR GROUPS 1005 

be an arbitrary isomorphism. Then A is standard, except for the groups PSL(2, F4) and 
PSL(2,F5). 

PROOF. Taking into account Lemmas 4 and 5, we may assume that division rings R 
and S are noncommutative and do not have the same characteristic p > 0. Without loss 
of generality, we may assume that 

0 a 
A*i2(l)= I x 6 } andAsv = tl2(l). 

1 a + è— 1 Let vt\2(\)v l = tn(x). Then Ast\2(x)s l — , , c i 
\l 0 — 1 

If char/? = 2, then char S ^ 2, 8 — 0, and a is an element from the centre of S. If 

commutes with , then a — 1/2 and s = E. Since |>i2(l), v] is a ( 0 a l . , (I a- 1 

transvection and 

1 l) 
0 2 ; 

f° 
u 

- 1 ! 
oj 

p n-1 

U 2J • 
0 aO, ... , 
! o I ^i2(l) | 

0 a 
then, without loss of generality, we may assume that the element j j does not com-

. t . 1 a- H J [0 1 
mute with | 1 and s = ,. 

If char/? ^ 2 and char S ^ 2, then, by Lemma 1,8^0. Hence the elements 1 . 

, n a+5-n . fo 1 
and . . . are non-commutative and s = 

If a<5 ^ <5a and AMI^VI = <xÊ, then, since the element U12OX «1̂ 1 vi] is conjugate to 

(Î _ * l ) a n d 

1 « ; ; 

we may assume that a8 = 8a, considering the isomorphism A - 1 instead of the isomor­
phism A. 

Commutativity of aE with the elements . and * 1 1 i m P n e s 

A(5Ë — aË, where (5 is some element of division ring R which commutes with a. 
Let R\ — {r G R \ rf3 — fir} and S\ = {s G S \ sa — as}. If a is a non-central 

element of R, then, by Lemma 6, APSL(2,/?i) = PSL(2, Si) and the element a belongs 
to the centre S\. 

Thus, without loss of generality, we may assume that in all the cases A ^ O ) = 

and A/21 (x) = ^ ), where a is an element of the centre of 5. 
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It is easy to see that the group CpsL(2/?)*i2(l) *s non-commutative. Hence H = 

CpsL(2,s) is also non-commutative. 

Let h be an arbitrary element of H and h — x 2 . Let T denote a division 

ring generated by the elements h\, hi, h^ h^ for all the elements h G H. Obviously, 
all the elements of the division ring T commute with a and 5. By Lemma 2, T is non-
commutative. 

Let 7 be an arbitrary element from the group [T*, T*]. It follows from commutativity 

of 1Ë with the elements and x i that AJC(7)£ — 1Ë, where JC(7) is 

an element of 7? which depends on 7 and commutes with x. 
Let tf2 - {r G fl | rjc(7) = x(l)r for all 7 G [7*, 7*]} and 52 = {s G 5 | s7 = Is 

for all 7 G [r*, J7*]}. Since char/?2 7̂  char 52, it follows from Lemma 6 that \R2\ > 3, 
l^l > 3, and the isomorphism A induces an isomorphism of groups PSL(2,7?2) and 
PSL(2, S2). The intersection of the division rings T D S2 belongs to the centre of T; by 
Lemma 2, the groups 

Q>SL(2,S2)( j £ I a n d ^PSL(2,/?2)^12(1) 

are commutative and R2 is a field. 
According to Lemma 5 either A maps transvections into transvections or A induces 

a non-standard isomorphism between PSL(2, F4) and PSL(2, F5). In the first case, by 
Lemma 3 A is standard. In the second case, since the centres of R and 5 belong to R2 
and 52, by Lemma 1 the groups SL(2, R) and SL(2,5) include infinite sets of pairwise 
commutative involutions. That is impossible in a linear group over a division ring with 
characteristic not equal to 2. 

We have proved that the isomorphism A is standard. 

THEOREM 2. Let R and S be division rings and A: PSL(n, R) —> PSL(2,5) be an 
arbitrary isomorphism. If n > 2, then the isomorphism A is impossible, except for the 
groups PSL(3, F2) and PSL(2, F7). 

PROOF. Let n > 2. By the Lemmas 4 and 5 we may assume that the division rings R 
and 5 are non-commutative and do not have the same characteristic p > 0. Without loss 

0 a 
of generality, we may assume that Afi„(l) = . and Asv = t\2(i) 

Letv^n(l)v 1 = t\n(x). Then Ast\n(x)s l = -

First consider the case: char 5 ^ 2 or S ^ 1. Then the group 

r , 1(0 a] (I a + <5-l 
^PSL(2,S)Ul ë)'[l 6-1 

consists of the projective images of diagonal matrices with equal diagonal elements. 
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According to Lemma 7 we may assume that the group 

CpSL(nfR){tln(l)9St\n(x)s~1} 

includes no transvection. Hence n = 3 and st\3(x)s~l = /31 (x). 
Thus, up to the conjugacy we may assume that 

Af23(l) =\{ s J and At32(x) =\{ 6_{ j . 

Then Adiag(f, 1; 1) = l(t)E for all the elements t G (/?*)"• 
Let 5j = {s G S I 57(0 = 7(0* for all t e (#*)"}. The group C^SL{3R){diag(t; 1; 1) 

for all f G (/?*)"} = diag(l; SL(2,/?)) is isomorphic to SL(2,tf). SL(2,/?) is an infinité 
group; by Lemma 6, CpSL(2 ̂ {7(0^} = SL(2, S\). Thus, the isomorphism A induces an 
isomorphism of the groups PSL(2, R) and PSL(2, S\ ) which is, by Theorem 1, standard. 
Hence, the isomorphism A preserves transvections and thus is impossible. 

Consider the last case. Since 

A ^ ( ~ 1 ) = l a - ' Oj = U a) [l - f e - O U a)' 

it is enough to consider the case char S = 2, 5 — 1, a — 1. Then char/? 
^I„(JC)^ -1 = t\n(—X). Hence, x — — 1 and vt\n(\)v~x = t\n(— 1). 

Let z be an arbitrary non-zero element of the centre of R and At\n(z) = 
svt\n(z)v~ls~l = t\n(—z). Hence 

It follows from these equalities that z is equal to 1 or —1. Hence, the centre of the division 
ring R coincides with F3. 

Since there is an infinite number of commutative involutions in the group PSL(2,5), 
their number in the group PSL(n,R) is also infinite. Because the centre of R is finite, 
by Lemma 1, the group SL(rc, R) includes an infinite number of pairwise commutative 
involutions; that is impossible. 

As a result, we have proved that the groups PSL(«, R) (n > 2) and PSL(2, S) over divi­
sion rings R and S are non-isomorphic, except for the groups PSL(3, F2) and PSL(2, F-j). 
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