A THEOREM ON ISOMETRIES AND THE APPLICATION OF IT TO THE ISOMETRIES OF $H^p(S)$ FOR $2 < p < \infty$

FRANK FORELLI

1. Introduction. 1.1. Let X and Y be sets, let λ be a bounded positive measure on X, and let μ be a bounded positive measure on Y. Furthermore let M be a subalgebra of $L^\infty(\lambda)$, let $p \in (0, \infty)$, and let A be a linear transformation of M into $L^p(\mu)$ such that

$$\int |Af|^p d\mu = \int |f|^p d\lambda$$

for all f in M.

In § 2 of this paper we will prove the following theorem.

1.2. Theorem. If (a) $p > 2$, if (b) $(Af)(y) \neq 0$ for μ-almost all y in Y whenever $f \in M$ and $f \neq 0$, and if (c) $A1 = 1$, then

$$A(fg) = AfAg$$

for all f and g in M and

$$\int Afg d\mu = \int fgd\lambda$$

for all f and g in M.

1.3. If the hypotheses (b) and (c) of Theorem 1.2 hold and if instead of (a) we have $p < 2$, then we do not know if the conclusion of Theorem 1.2 holds. We will denote by U the class of all f in M such that $ff = 1$. It was proved in [I] that if $M = C[U]$ and if the hypothesis (c) of Theorem 1.2 holds, then the conclusion of Theorem 1.2 holds for p in $(0, \infty)$. Furthermore it was proved in [I] that if the hypothesis (c) of Theorem 1.2 holds and if instead of (a) we have $p \geq 4$, then the conclusion of Theorem 1.2 holds.

1.4. Let V be a vector space over \mathbb{C} of complex dimension n with an inner product. If x and y are in V, then we will denote by $\langle x, y \rangle$ the inner product of x and y. We will denote by B the class of all x in V such that $\langle x, x \rangle < 1$, by \overline{B} the class of all x in V such that $\langle x, x \rangle \leq 1$, and by S the class of all x in V such that $\langle x, x \rangle = 1$. Thus S may be regarded as the Euclidean sphere of real dimension $2n - 1$. We will denote by σ the positive Radon measure on S which assigns to each open subset of S its Euclidean volume. We define $\alpha : \overline{B} \times B \rightarrow \mathbb{C}$ by

$$\alpha(x, y) = [\sqrt{(1 - \langle y, y \rangle)}]/(1 - \langle x, y \rangle)$$

Received January 3, 1972.
and we define \(\beta : \overline{B} \times B \to (0, \infty) \) by \(\beta = (a \bar{a})^n \). We recall that if \(\phi \) is a function which is defined on the Cartesian product \(E \times F \) of sets \(E \) and \(F \) and if \((x, y) \in E \times F \), then \(\phi_x \) and \(\phi_y \) are the functions which are defined on \(F \) and \(E \) respectively by \(\phi_x(l) = \phi(x, l) \) and \(\phi_y(s) = \phi(s, y) \). If \(f \in L^1(\sigma) \), then we define \(f^\#: B \to C \) by

\[
f^\#(y) = (1/\sigma(S)) \int f \beta^d\sigma.
\]

We remark that if \(f \in L^1(\sigma) \), then \(f^\# \) is of differentiability class \(C^\infty \). If \(1 \leq p \leq \infty \), then we will denote by \(H^p(S) \) the class of all \(f \) in \(L^p(\sigma) \) such that \(f^\# \) is holomorphic on \(B \). It follows that \(H^p(S) \) is a closed subspace of the Banach space \(L^p(\sigma) \), and hence that \(H^p(S) \) is a Banach space with respect to the norm of \(L^p(\sigma) \). The definition of \(H^p(S) \) is motivated by the change of variables formula with regard to holomorphic homeomorphisms of \(B \) that is expressed in Lemma 3.4. If \(n = 1 \), then \(H^p(S) \) is the familiar Hardy class \(H^p \) (if we regard \(S \) as the unit circle in the complex plane).

As an application of Theorem 1.2 we will prove the following theorem.

1.5. Theorem. If (a) \(T \) is a linear isometry of the Banach space \(H^p(S) \) onto itself and if (b) \(2 < p < \infty \), then there is a holomorphic homeomorphism \(Z \) of \(B \) and a unimodular complex number \(\theta \) such that for every \(f \in H^p(S) \) we have

\[
Tf = \theta(\alpha^z)^{2n/p} f \circ Z
\]

where \(z \) in \(B \) is defined by \(Z(z) = 0 \).

1.6. The proof of Theorem 1.5 is in § 3. We remark that if \(Z \) is any holomorphic homeomorphism of \(B \) and if \(p \in [1, \infty) \), then the expression (1.1) defines a linear isometry of \(H^p(S) \) onto itself. (This follows from Lemma 3.4. The holomorphic homeomorphisms of \(B \) are described in Lemma 3.2.) If \(n \geq 2 \), if the hypothesis (a) of Theorem 1.5 holds, and if instead of (b) we have \(1 \leq p < 2 \), then we do not know if the conclusion of Theorem 1.5 holds. Furthermore if \(n \geq 2 \), if \(p \in [1, \infty) \), and if \(p \neq 2 \), then it is not known if there are any linear isometries of \(H^p(S) \) into itself which are not onto.

2. The proof of Theorem 1.2. 2.1. If \(w \in C \) and if \(r \in (0, \infty) \), then we will denote by \(D(w, r) \) the open disc in \(C \) whose center is \(w \) and whose radius is \(r \). The proof of the following lemma is in [1].

2.2. Lemma. Let \(\rho \) be a bounded positive measure on \(X \), let \(\tau \) be a bounded positive measure on \(Y \), let \(s \in (0, \infty) \), let \(f \in L^s(\rho) \), and let \(g \in L^s(\tau) \). If for some \(r \) in \((0, \infty) \) we have

\[
\int |1 + zf|^s d\rho = \int |1 + zg|^s d\tau
\]

for all \(z \) in \(D(0, r) \), then

\[
\int |f|^2 d\rho = \int |g|^2 d\tau.
\]
2.3. We will now prove Theorem 1.2. We will break the proof up into several statements.

2.3.1. If \(f \in M \) and \(f \neq 0 \), then

\[
(2.1) \quad \int |A(fg)|^2 |Af|^{p-2} d\mu = \int |g|^2 |f|^{p} d\lambda
\]

for all \(g \) in \(M \).

For the purpose of proving statement 2.3.1 we let \(d\rho = |f|^p d\lambda \) and \(d\tau = |Af|^p d\mu \). If \(g \in M \) and \(z \in \mathbb{C} \), then

\[
\int |1 + zg|^p d\rho = \int |f + zg|^p d\lambda
\]

\[
= \int |Af + zA(fg)|^p d\mu
\]

\[
= \int |1 + zA(fg)/Af|^p d\tau,
\]

and hence by Lemma 2.2 we have

\[
\int |g|^2 d\rho = \int |A(fg)/Af|^2 d\tau
\]

which completes the proof of statement 2.3.1.

We remark that the proof of statement 2.3.1 did not use either the fact that \(A1 = 1 \) or the fact that \(p > 2 \).

We will denote by \(M^{-1} \) the collection of all invertible elements of \(M \).

2.3.2. If \(f \in M^{-1} \), then

\[
(2.2) \quad \int |Af|^{p-2} |Ag|^2 d\mu = \int |f|^{p-2} |g|^2 d\lambda
\]

for all \(g \) in \(M \).

Statement 2.3.2 follows from statement 2.3.1 upon replacing \(g \) in the identity (2.1) by \(g/f \).

2.3.3. If \(f \in M \) and \(g \in M \), then

\[
\int |1 + zAf|^{p-2} |Ag|^2 d\mu = \int |1 + zf|^{p-2} |g|^2 d\lambda
\]

for all \(z \) in \(D(0, 1/||f||_\infty) \).

For the purpose of proving statement 2.3.3 we may assume that \(M \) is a closed subalgebra of \(L^\infty(\lambda) \). Since \(1 + zf \in M^{-1} \) if \(z \in D(0, 1/||f||_\infty) \), statement 2.3.3 follows from statement 2.3.2 upon replacing \(f \) in the identity (2.2) by \(1 + zf \).

We remark that the proof of statement 2.3.3 did not use the fact that \(p > 2 \).

2.3.4. If \(f \in M \) and \(g \in M \), then

\[
\int |Af|^2 |Ag|^2 d\mu = \int |f|^2 |g|^2 d\lambda.
\]
Statement 2.3.4 follows from statement 2.3.3 and Lemma 2.2 (with $d \rho = |g|^2 d \lambda$, $d \tau = |A g|^2 d \mu$, and $s = p - 2$).

It follows from statement 2.3.4 that if $f \in M$, then $Af \in L^4(\mu)$.

2.3.5. If a, b, c, and d are in M, then

$$\int A a A b A c A d d \mu = \int a b c d d \lambda.$$

Statement 2.3.5 follows from statement 2.3.4 by the method of polarization. Statement 2.3.5 includes the second assertion of Theorem 1.2. Furthermore it follows from statement 2.3.5 that if $f \in M$ and $g \in M$, then

$$\int |A(f g) - A f g|^2 d \mu = 0,$$

which completes the proof of Theorem 1.2.

2.4. We will denote by Z_+ the class of all positive integers.

2.5. Corollary (of Theorem 1.2). If $f \in M$, then $||Af||_\infty = ||f||_\infty$.

Proof. If $k \in Z_+$, then

$$\left(\int |A f|^{2k} d \mu \right)^{1/2k} = \left(\int |A(f^k) A(f^k) d \mu \right)^{1/2k} = \left(\int |f|^{2k} d \lambda \right)^{1/2k},$$

from which the desired conclusion follows upon letting k increase to ∞.

3. The proof of Theorem 1.5. 3.1. We will denote by $U(V)$ the class of all unitary transformations of V, and we will regard $SL(2, \mathbb{R})$ as the class of all 2×2 matrices L of the form

$$L = \begin{bmatrix} a & b \\ \bar{b} & \bar{a} \end{bmatrix}$$

where a and b are in \mathbb{C} and $\det(L) = a\bar{a} - b\bar{b} = 1$. We define $\gamma : SL(2, \mathbb{R}) \times S \times \bar{B} \to \bar{B}$ by

$$\gamma(L, x, y) = [1/(b(y, x) + \bar{a})](y - \langle y, x \rangle x) + [(a(y, x) + b)/(b(y, x) + \bar{a})]x$$

and we define $\delta : U(V) \times SL(2, \mathbb{R}) \times S \times \bar{B} \to \bar{B}$ by

$$\delta(W, L, x, y) = W \gamma(L, x, y) = \gamma(L, Wx, Wy).$$

With regard to the definition of γ we remark that if $x \in S$ and if $y \in V$, then $y - \langle y, x \rangle x$ is the orthogonal projection of y into $V \ominus \mathbb{C}x$. Furthermore we
remark that $\delta_{(W, L, x)}$ is a holomorphic homeomorphism of B for every triple (W, L, x) in $U(V) \times \text{SL}(2, \mathbb{R}) \times S$. We recall the following fact of the theory of functions on B.

3.2. **Lemma.** If Z is a holomorphic homeomorphism of B, then there is a triple (W, L, x) in $U(V) \times \text{SL}(2, \mathbb{R}) \times S$ such that

$$Z(y) = \delta(W, L, x, y)$$

for all y in B.

3.3. The following lemma (which is well-known) follows from Lemma 3.2.

3.4. **Lemma.** If Z is a holomorphic homeomorphism of B, then

$$\int f \circ Z d\sigma = \int f \delta^{Z(\cdot)} d\sigma$$

for every f in $L^1(\sigma)$.

3.5. The following lemma is due to R. Schneider [2] who stated it and proved it in terms of the Hardy spaces of torii. His proof applies as well to $H^p(S)$.

3.6. **Lemma.** If $p \in [1, \infty]$, if $g \in H^p(S)$ and $g \not\equiv 0$, if $h \in L^\infty(\sigma)$, and if $gh^k \in H^p(S)$ for all k in \mathbb{Z}_+, then $h \in H^\infty(S)$.

3.7. We will now prove Theorem 1.5. For this purpose we recall that if $g \in H^p(S)$ and $g \not\equiv 0$, then $g(y) \not\equiv 0$ for σ almost all y in S. We let $a = T_1$, $d\mu = |a|^2 d\sigma$, and define $A : H^p(S) \to L^p(\mu)$ by $Af = T_f/a$. Since $H^\infty(S)$ is a subalgebra of $L^\infty(\sigma)$, it follows from Theorem 1.2 and Corollary 2.5 that if f and g are in $H^p(S)$, then $Af \in L^\infty(\sigma)$ and $A(fg) = AfAg$. It follows from this and Lemma 3.6 that if $f \in H^\infty(S)$, then $Af \in H^\infty(S)$ since $A(\bar{f}^k) = aA(f^k) = T(f^k)$ and $T(f^k) \in H^p(S)$ for all k in \mathbb{Z}_+. Thus if A is restricted to $H^\infty(S)$, then A is an algebra homomorphism of $H^\infty(S)$ into $H^p(S)$. Furthermore we have $\|Af\|_\infty = \|f\|_\infty$ for all f in $H^\infty(S)$.

We define $\chi : S \times V \to \mathbb{C}$ by $\chi(x, y) = \langle x, y \rangle$, we let F be an orthonormal basis of V, and we define $Z : B \to V$ by

$$Z(x) = \sum_{\nu \in F} \langle A\chi^\nu(x) \rangle y.$$

It follows that if $(x, y) \in B \times V$, then $\langle Z(x), y \rangle = \langle A\chi^\nu \rangle \delta(x)$. Hence Z (which is holomorphic) maps B into itself, and $(A\chi^\nu)^\# = (\chi^\nu)^\# \circ Z$ for all y in V. Thus if g is in the ring $C[\chi^\nu : y \in V]$, then $(Tg)^\# = a^\# (Ag)^\# = a^\# g^\# \circ Z$, from which it follows that if $f \in H^p(S)$, then

$$\tag{3.1} (Tf)^\# = a^\# f^\# \circ Z$$

since $C[\chi^\nu : y \in V]$ is dense in $H^p(S)$.

We now consider T^{-1}. It follows that there is a function b in $H^p(S)$ and a holomorphic transformation W of B into itself such that if $f \in H^p(S)$, then

$$\tag{3.2} (T^{-1}f)^\# = b^\# f^\# \circ W.$$
From (3.1) and (3.2) it follows that if \(f \in H^p(S) \), then \(f^t \circ W \circ Z = f^t = f^t \circ Z \circ W \), and hence \(Z \) is a holomorphic homeomorphism of \(B \) (whose inverse is \(W \)). Thus (by Lemma 3.2) \(Z \) is defined on \(B \) as well as on \(B \), \(Z \) maps \(S \) onto itself, and we have

\[
Tf = af \circ Z
\]

for all \(f \) in \(H^p(S) \).

We will now prove that for \(\sigma \)-almost all \(x \) in \(S \) we have

\[
|a(x)|^p = \beta(x, z)
\]

where \(z = W(0) \). If \(f \in H^p(S) \), then by (3.3) and Lemma 3.4 we have

\[
\int |f|^p |a|^p d\sigma = \int |f \circ W \circ Z|^p |a|^p d\sigma = \int |f \circ W|^p d\sigma = \int |f|^p \beta^p d\sigma.
\]

From this and Theorem 1.2 it follows that if \(f \) and \(g \) are in \(C[\chi : \chi \in V] \), then

\[
\int f g |a|^p d\sigma = \int f g \beta^p d\sigma,
\]

from which it follows by the Stone-Weierstrass theorem that (3.4) holds for \(\sigma \)-almost all \(x \) in \(S \). We will denote by \(A(S) \) the class of all \(f \) in \(C(S) \) such that \(f^t \) is holomorphic on \(B \). With regard to the proof of (3.4) we remark that if \(n \geq 2 \), then \(\{|f| : f \in A(S)\} \) is not dense in \(\{|f| : f \in C(S)\} \).

We let \(\theta = a / [(\alpha^t)^{2n/p}] \). Then \(\theta \tilde{\theta} = 1, \theta \in H^\infty(S) \), and if \(f \in H^p(S) \), then \(Tf = \theta(\alpha^t)^{2n/p} f \circ Z \). Thus if \(f = T^{-1} \), then \(f \in H^\infty(S) \) and \(\tilde{\theta} = (\alpha^t)^{2n/p} f \circ Z \), and hence \(\theta \) is a constant. This completes the proof of Theorem 1.5.

References

University of Wisconsin, Madison, Wisconsin