A THEOREM ON ANALYTIC MAPPINGS
OF COMPLEX MANIFOLDS

MINORU KURITA

Dedicated to late professor Tapasi NaAkavama

We prove in this paper a theorem on analytic mappings of the complex
space C, into the complex projective space P,. The theorem is closely related
to that of S. S. Chern in [1], and the main idea of the proof is the same with
the latter, though the calculations are rather different. The background of
our calculation is the normal contact metric structure which was found by S.
Sasaki and Y. Hatakeyama [4].

Our purpose is to find a criterion for an analytic mapping f of C, into P,
in order that f(C,) covers almost every part of P,. We take cartesian coordi-

nates z', ..., 2" in C, and then the metric is given by
ds?= >\dz'dz’. (0.1)
j=1

As for the elliptic metric of P, we have
dT? = (1+ | w]?)~%( Zldwjdwj + zkidwfw” — dw® w’ |*) (0.2)
3= i<

in complex coordinates ', ..., w”, where we have put |w|= (Sw/w’)"

An analytic mapping f : C»— P, can be represented by

w =f(2 ..., 2" (G=1,...,n), (0.3)
where f;(z', ..., z") are analytic functions. We put
AT = Sapdz’dz". (0.4)
Jk

(ajr) is a hermitian tensor on C. which is determined by the mapping /. We

denote the eigenvalues of (ajz) by 41, ..., A» and put
B= S>hAet * *Ajm1djsr” * An. (0.5)
=1
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We use the notations
D,: the sphere |z| <7 in C., S,=38D,, D(n, v)=D,— D,
£ : the volume element in P, determined by the metric d7°
We define »(D,) and T:(») by

dr, (0.6)

o(D,) = SDf*Q, Te(7) =S ’“Z"

) 7

where 7, is a constant smaller than ».  We denote by @& an element of the
solid angle about the origin of C» and then the volume element in C, can be
given by

IIT=72""dr NG, (0.7)

where |z| =7. We put moreover

B

r:n

1

bn-1Js,

1, Y(r) = Br’"2g, (0.8)

U(r)=§

< D(rg. 1)

where I, ,-: is the surface area of a unit sphere in C,.
Now S. S. Chern’s theorem in [1] is in our version

TueoreM A. We assume that for r— < we have

Ton-i(r) > and Ur) = O(Ton-a(r)).
Then the complement of f(Cp) is of measure zervo.
On the other hand our theorem is

Tueorem B. We denote the measure of the complement of f(D,) by b, and

the total measure of P, by ¢ (=n"/n'). Then we have an inequality

b Y(»)
?éa Ti(r) )
_ 1 1 ... .1
where a—7<1+7+ +n).
Hence if
. Y(r) _
m-ry =0

the complement of f(C,) is of measure zero.

Theorem A lacks an example and even for the most simple mapping

w =27 (7=1,2, ..., n) (0.9)
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the assumptions do not hold good, because T:n-:(#) and U(#) are finite for

r—> o as we shall show afterwards. On the other hand we have
Ti(7r)=0(log»), Y(»)~1

for - o and (0.9) is an example of theorem B. We will prove theorem B
and also give formulas to calculate T:(#), Y(») and U(r). Hereafter we omit
the summation symbol > for double indices and we assume throughout that

the indices run as follows

5 k=1,2,...,n a, b=2,3, ..., n

1. Decomposition of Kaehlerian metrics of C, and P,

A Kaehlerian metric on an #-dimensional complex analytic manifold M is
a real analytic positive definite Riemannian metric which can locally be re-
presented as

d3® = gilz, 2)d2’dz"  (gjn=gw)
satisfying the relation d(gj dz’ Ndz*) =0. When we take suitable local coframes
o =pilz, 2)dZ* (j=1,2,...,n),

we have
ds* =457,  d(/NT7) =0.

Kaehlerian metric of Cx

This is given by

d3* = (dz, dz) = dz’dz’. (1.1)
We put r=lzl=(z, 2)'%,  rlz=(du', , u™)
and we get
dz* =dr’ + r*(du, du). (1.2)
We take vectors wug = (uy, #y, ..., u%s) (@a=2,3, ..., n) which constitute a
unitary base together with « = (&', . . . , ") and put
= —i(du, u), ot = (du, ua). (1.3)

0 is a real form and we have

db = ip® N\ 5% (1.4)

The metric reduces to
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(du, du) = 6* + p°z° (1.5)

on a unit sphere |#|=1. We have by (1.2) (1.5)

dz*=dr*+ 0 + r*y"a’. (1.6)
When we put
nf = 0% 4-18%7" (6%, 8°*" are real forms), (1.7
we get
dzs*=dr*+ 0"+ r*(6°9° + 6°""6°") (1.8)

and the volume element of C, is given by
T=drNrd Nv6 N =+ - Nr0" A" 2N -« = Nrg*",

We take an orientation of C, in such a way that this form is positive. We
put
Go=0N-- - ANEAE"EN - AE", @=0N6, (1.9)

and we get
T=7r"""drNG. (1.10)

The element of the area on the sphere » = const. is #*” '@ and hence @ is an
element of a solid angle about the origin. Next we put

o' =dr+irf, &A=l (1.11)
Then we have
d =r"*dz 2), = (dz, ug) (1.12)
and these do not contain dz', . ..,dz". Thus
d2*=d'3"+ %% = 4757, (1.13)
where the sum with respect to j ranges from 1 to v. When we represent @,
by «* we get
Bo= (= D"RQ DTN NSNEEN - NE (1.14)

Kaehlerian metric of Pn

We take a unit vector p= (%, p', ...,p") in Cu+i. We construct the
n-dimensional projective complex space P, in a usual way. The elliptic metric

on P, is given by
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dT? = (dp, dp) — (dp, p)(p, dp) (1.15)

and when we put
w’ =p7p° (j=1,2,...,n), (1.16)
we get (0.2). We take a unitary base e, e, . . ., ¢, in Cn+1 and for any unit

vector p in Cn+; we define ¢ by cos? = (e, p) (Ogté—g«) and decompose p as
p = ae,+ bv; where (e, v,) =0 and |v,| =1. Thenla|=cost, lal*+|b’=1. We
take suitable real numbers «, 8 and put ¢"v, =v. Then we get ¢"*p = cos t+e,+
sin f+v, where (e, v) =0, |v| =1. When we use ¢“p instead of p in (1.15), dT?

is the same. We put

p =cos teey+ sin t+v (1.17)
into (1.15) and we get
dT?=dt®+sin® ¢ cos® t+¢* + sin® #+%5%, (1.18)
where we have put
¢ = —ildv, v), v¥ = (dv, va), (1.19)
ve (@a=2,3,...,n) being vectors which constitute a unitary base together

with » in the complex hyperplane orthogonal to ¢,. We put moreover

atn

v =¢% + iy (¢%, ¢**" are real forms) (1.20)
and then

dT?=dt® + sin® ¢ cos® t+¢* + sin® £(@%p® + ¢** 2" ™) (1.21)
and the volume element of P, is

Q=dtNsintcost @Asint@*A - -« Asint-9"Asinte@" * A+ -+ A sin ¢t+0*",

We take an orientation of P, in such a way that this form is positive definite.
We put

Do=¢*N -~ NQ"NP"EN -+ - NQ*", @ =@ Ny, (1.22)

then we get
2 =sin*"""tcostdtNao. (1.23)

The element of area on a sphere ¢ = const. is sin®” ' ¢ cos ¢t+@. Hence @, which
is the limit of sin*”*¢cost-@/*"" ! for -0, is an element of a solid angle
about the origin. We have
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do =0. (1.24)
We have by virtue of (1.16) (1.17) and |pl=1
cost=p"= (1+|wl®)~" (1.25)
As sintw=1(0, p', ...,p") =(0, pw', ..., p'w"), we have

v=0(0, w'/lwl, ..., w" wl.

We put
'=dt+isintcost¢, t%=sinztr’ (1.26)
We get by (1.19) (1.25) (1.18)
= (dw, YA+ w7, = (dw, v)(1+{wl)™, (1.27)
dT? ='7' + 7% = 7. (1.28)
When we represent @, by »°, we get
Bo= (= 1" HTEN - - - APPATEA - - - A (1.29)
As 1%5% is an elliptic metric on Ps-; (cf. [3] p. 314), we have

dd, = 0. (1.30)

2. The first main theorem

The following formulation of the first main theorem of differentiable map-
ping is due to S. S. Chern. (cf. [2]) Let M be an m-dimensional dfferentiable
manifold and N be a compact orientable Riemannian manifold of the same
dimension. We consider a differentiable mapping M —-N. We denote the
surface area of an m-dimensional unit sphere by In-;, the volume element of
N by 2 and the total measure of N by ¢. We take a point ¢ in N. Then there

exists a function # = #(x) on N satisfying the following conditions.

. 1 _ 1
(i) - d(*du) = p 2

(ii) on a certain neighborhood of the point @ we have

*du = (1+¢)0q,

where @, is an element of a solid angle at ¢ and ¢—~0 as x tends to a.

Let f be a differentiable mapping M- N and D be a domain on M. We
assume that for a point @ of f(M) the set f~'(a) N D consists of a finite number
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of points pi, . . ., pr, which are interior points of D, and f~'(a) N 3D is empty.
We denote by n(a), or more precisely #(a, D), the degree of the mapping f
about the point @. This is the sum of the degree of the mappings of small
neighborhoods of each points pi, ..., pr. We take functions above stated and

put

= = S Cedu). (2.1)
m-1
Then #(a) can be represented as
10 g
n(a) = cSﬁf 2 gapk (2.2)

This is the first main theorem. The proof can be given by applying the
k

Stokes’ theorem to the form A and the domain D — >)D;(¢) and making ¢ tend
2=1

to 0, where D;(e) is a sphere of radius ¢ with respect to local coordinates about

the point p;.
The function u on Phn.
The function # which satisfies (i) and (ii) is determined uniquely up to

an additive constant. We will find the one for P,. We take the point ¢ at
t=0 and put » = u(¢), we have du =u'dt (u' =du/dt) and by (1.21)

*du = u'(Sin £ cos @) ASIin®" 2 @* N - - - NO"ANQEN -« - NP,
=2 sin®” 't cost*0
d(*du) = (' sin®" ™ ¢ cos ¢)'dt \ 0.

As 2=sin""""t cos t*dt A® by (1.23) in our case, we get

2n—1

(o' sin®" 't cost)' = —2mnsin’”" £ cos .
Hence by (ii) u' sin®™ 't cos t =1 — sin®" ¢
*du = (1 —sin®" )0 (2.3)

and also

n—1
u=Ilogsint— > 1

2T hsintk it (2.4)

3. Integrated form of the first main therem

We take a sphere D, : |z|<7 in C» and put 2D, =S,, and apply the first
main theorem to the mapping f : C»—Ps. Then we have by (2.2)

https://doi.org/10.1017/5S0027763000026374 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000026374

550 MINORU KURITA

L0 g
nla, D)) = chrf 2 er.

We divide by #* (k£ const.) and integrate from 7, to » with respect to . Putting

Ni(a, D) = | 2@ D) g, (3.1)
7o 14
and taking (0.6) into consideration we get
1 1
N(a, D,;) = —Ti(r) + ]k, (3.2)
c Iz n—1
where
Jo= —Lns| 4 (3.3)
D(7g,7)
with

A= — Ly dr N2 = 7 Fdr A £*(*du)
=7r"%dr A £¥((1— sin®" $)0). (3.4)

Estimation of [
We take coframes in C, and P, as in (1.13) and (1.28). We can put

f¥e7 = phot (3.5)
by virtue of (0.3) (1.12) (1.27). Hence
FHd2®) = ajpa’s” (ajr =17]’~'Zz). (3.6)

Hereafter we often omit conventionally such notation f* asin (3.4) (3.5) (3.6).
We consider such a case that det(ajz) %0, namely det( p'}) %0. Then we can
put by (3.5)
= qict + gut?, 0% = gt + il (3.7)
(a,6=2,...,n)
We have by (1.11) (1.26)

dr +ir = ¢i(dt + i sin ¢ cos ¢+ ¢)

. - .. (3.8)
dr —ir = q1(dt — i sin ¢ cos t+¢).
(mod vz, vs, o« .oy ™)
Hence we get
sintcostdrN@N@y=rdt NG A0, (3.9)

This can be verified by solving (3.8) with respect to dr, 6 and putting dr
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into the right side and 78 into the left side. Here we assumed det( pf)ﬂe().
But (3.9) is an algebraic consequence of (3.5) and so (3.9) is true for the
case det( p'}) =0, too.

As 0 =9 N d,, we get by (3.4) (3.9)

_ 1=sin®"¢ _pu

We put

n—1

P )cos“’t. (3.11)

. l n—1 k-ll
v= —logsint+ 72(—-1) 7;(
k=1

The second term on the right side is one obtained by putting s= cos’¢ in the

S — )71
integral 5 1-1=9"" ds. Hence
1 S
v20 for 4 2t>0. (3.12)
We get by (3.11)
dv 1—sin*"¢
= 77 = - =V v
V= dr sint cos t (3.13)

Hence by the relation d@, =0
A= —r* Ay NOA Oy = d( — 7¥ 00 A o) + vd(#~#710) A @,.

Hence we have

Je= S A= — j r ¥ 000, + S r 00, + S vd(77%70)-0,.  (3.14)
Sy

D(7o,7) Srp D(ro,7)

By (1.11) (1.26) (3.5)

sin % = piru®. (mod o' = dr+ ir)
(a, =2, ...,n)
We put
4 = det(pg) (3.15)

and we get by (1.9) (1.28)
Sin®" 2 te@y = 2" "2 440,. (mod dr, 6) (3.16)
As we have dr =0 on S,, we get
sin’” ™t 0 A Do =7*""2440 N 6. (3.17)

Hence taking ® = 6 A6, into consideration
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r F W N B = v sin”2 "% Adrt R0,
By (1.4) and (1.11) we have
A =i  Na® =ir %°NG%, S AG'= —2irdrAG.
Hence we get

dr 9 A @y =r T AON Oy — (B —1)r Fdr NO A 0,
=ir P NANG + PAG)AO — (B+ 1 r ¥ dr N0 A 0,
=ir U NGFT)ADy = (B + 17 *dr A O A 0.

By virtue of (3.16)
dr NG A @y =7r*""2sin™*""* ¢t 44dr N § A Oy
and also
(P NGT)YNBy =2 Cor®™ P sin™ 2" 2t dr NG A 8.

Here
Co=det(cas), cab= DB (a,b=2,...,n)

(3.21) can be verified as follows. By (1.29) and (1.26)

Sin? " 2ty = (= 1)""VH2)TPHEN - - ATPATEA - - - AT

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

We put ° = pjaj into the right side and multiply by ¢/ A7’. When we put

pg pg---p‘;z ptopi-ccbh
p= pl. Pz : Pn , Po=| - .
prpT  pn Pl pre e ph

(3.23)

and denote by 4; the minor determinant corresponding to p; in P, we get

NG NN NT"ATEA - - AT
= 4idid NG ANENSAN - - Na"NGEANGA -+ ANG"

=det(PiP)(—=2ir)drNONGEN + =+ Na"NGA =+« ANG™

As Co=det(PiP,), we get the verification of (3.21) by virtue of (1.11) and

(1.14).

By putting (3.20) (3.21) into (3.19) and taking 6 =6 A 6, into consideration

we get

A7) Aoy =27 sin (G- 2L g7)ar e,

https://doi.org/10.1017/5S0027763000026374 Published online by Cambridge University Press

(3.24)


https://doi.org/10.1017/S0027763000026374

A THEOREM ON ANALYTIC MAPPINGS OF COMPLEX MANIFOLDS 553
By (3.18) (3.24) we get from (3.14)

fk = _j v Sin—zn+2t.dzren—k—1@+§ v Sin—2n+2 t.Azr‘zn—k—l@
Sr

Sro

+_g 2 pr?"k lginT2n ey (Co - i}l— AZ)dr@. (3.25)
Dire, 7)

C, determined by (3.22) is a minor determinant corresponding to c;; of the
matrix PP =(c¢ir) (4, k=1,2,...,n) and P'P is a hermitian matrix which
is positive definite or semi-definite. ~Hence C, is not greater than the sum of
principal determinants of # — 1 —th order of P'P, namely the sum of products
of n—1 numbers taken arbitrarily from # eigenvalues of P’P. On the other
hand we have by (3.6)

(ap) ='PP=P " P'P)P

and so the eigenvalues of (ajx) are the same with those of PP namely of P'P.
Hence by the definition of B in (0.5) we have

G =B. (3.26)
By taking (3.15) (3.23) into consideration we have
44 <C£B. (3.27)

Hence by (3.12) (3.25) (3.27) we get for k=1
Jiz | vsin"* 1 BP0, (3.28)
Sr
This is the most important key to our proof of theorem B.

4. The final step of the proof

We denote the complement of f(D,) by K, whose measure b we will estimate.
For any point e in K we have x(a, D,) =0 and so by (3.2) we get

1 1
—c— T1U') + T”:“']x =0. (4 1)
Hence we get by (3.28)
—i—lzn—LTl(f’)éSsUSin§2m—zt‘Bl’2n_2@. (4.2)

We multiply the both sides by the invariant volume element 2 of P, with
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respect to the point ¢ and integrate on K. Then we have

b 12N+ 2 . 2n-2

?Iz w1 Ti(7) éjsrqu sin ¢ Q)Br 0. (4.3)
In the first we fix a point p on S, and estimate the integral in the bracket on
the right side of (4.3). As ¢ is a distance from the point @ to the point p and

£ is the invariant measure, we get by (1.23)
Q=sin’"""tcostdtNO,

when we take coordinates such that # =0 for the point p. Hence we get

j v sin‘“”t-ggs v sin £ cos tdi- 0.
K

Pn
Here we have j¢=12n—1 and by (3.13)

/2 /2
S @ %sin2 tdt

/2
. 1 ..o
fo v sin ¢ cos tdt—[vfgsm t] ), at

-
1

/2 .
.o,y SINE _ 1
72—50 (1=sin"®) = dt =

il

1] g o
cos 4L~-1_s ds (s =sin" ¢)

Il

Lt daoul)og

Thus by (4.3)

%IZ”_lTl(r) =< aS Bri" = al, . Y(7),
Sp
namely
b Y(r)
T =T

This is theorem B.

5. Explicit calculations of Ti(7), Tan-1(7), Y(7) and U(r)

In the last we will show how to calculate these numbers for the mapping
(0.3) and will actually calculate in the case (0.9). In this section we do not
omit the symbol >) representing the summation.

In the first we denote by P; a matrix obtained from P by omitting the j-th

row and by 4f the minor determinant of P corresponding to p/. Then we have

B=3\det(PiP;) = > 4} 4},
i 2
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Now we put
T/ ="' AN oo s ACTTIATTTEA - A
We have by (3.5) (0.5)

(AN NSTIATH = (=D 'Ba'A =+ - A"AGA -+ - AF" (5.1)
J k

Taking (1.26) into consideration we put
d=d, =(dw, v Q+|w®, = (dw, v)(1+|wi?) M
As v, (a=2, ..., n) constitute a unitary base with v =w|w|™' we get after
some calculation
T'=22N <« A"
) . A
=e(1+|w) " P w7 SN = 1Y @l dw ' A - - - AdwI A - - Ndw”
J
Te=c'A-e e ANTEAN -« A"
=(= D%+ w0 =1 dw ' A« + - Ndw’ A -+ - Ndw”,
2
where A means that the indicated term is absent in the product, and ¢ is a

determinant formed by the components of v, vz, ..., vs. We put these into
the left side of (5.1) and get

B=Q1+|wl) (S Kjj+ 0w Kyj), (5.2)
7 1,

where Kj; is a cofactor corresponding to k;; of the matrix K= (k;;) defined by

ow'  ow'

ozt oz" _
J=1 - K= ]l J

ow" . . ow"

ozt oz"

On the other hand we have
FACN A= 4 wD) TP Pedw Adw' A - - - A dw™
and the volume element 2 of P, is given by
2=0+ 1wl ""Vdet K-r*""'dr N\ 6.

For the special case w’ = f;(z') (j=1,2,...,n) we have

B= (41wl S+ /5D e e f1 -« 4T
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For a simple mapping

w =27 (5.3)

we have

2n—1

2
Q r __drA®, B=-2*7

= g7 = g7 (lzl=7)

Hence

»(D,) = SD;Q = 51—7;12 1(?2%)7»

,
( ,
Ti(7) = Srnv l:r) dr = Zl;{lzn_l[logtr" +1) +
n—1 /, 7
_ k—ll n—1 1
+l§( D k( k )(1’2+1)k ],o
=1 nmag = 7 Mt r)
Yir) = y - srBr 0= ETL

As 7— oo, Ti(r)=0(log ), Y(r)>1 and (5.3) is an example of theorem B.
On the other hand we have for >1

Ton-1l7) = Ly S" rdr — [ _ Lin- . 1 ]r

2n J, (14777 dnn—-1) (1+H7 1,

U(r)=g

Do, 7

B _ T on4r?
)TdV O=1I n—1jn 7’(‘1“—}-72)‘”7 dr.

Hence T:n-1(#) and U(r) is finite as #— o and (5.3) is not an example of
theorem A.

In theorem A the case 2=2#n —1 is treated and the result can be got by

omitting the terms

-—j v sin~2" %t 440, —S 2nor 'sin 2" 2 e 44dr®
8r

D70, 7)

in Jon-1. For the simple mapping (5.3) these terms have the same order with
the remaining terms, while we have omitted the term containing Co— % (B+1)

44 = Cy — 44 in theorem B, which is natural for the mapping (5.3).
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