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We prove in this paper a theorem on analytic mappings of the complex

space Cn into the complex projective space Pn. The theorem is closely related

to that of S. S. Chern in [1], and the main idea of the proof is the same with

the latter, though the calculations are rather different. The background of

our calculation is the normal contact metric structure which was found by S.

Sasaki and Y. Hatakeyama [4].

Our purpose is to find a criterion for an analytic mapping / of Cn into Pn

in order that f(Cn) covers almost every part of Pn. We take cartesian coordi-

nates z1, . . . , zn in Cn and then the metric is given by

(0.1)

As for the elliptic metric of Pn we have

dT2 = (1 + I w\2Γ2( JZdw'dw* + Σldw j w k - dwkwj\2) (0.2)

in complex coordinates w1, . . . , wn, where we have put \w\ = CΣwJwj)1/2.

An analytic mapping / : Cn^Pn can be represented by

w j = f j ( z \ . . . , z n ) ( / = 1 , . . . , n ) , (0.3)

where fjiz1, . . . , zn) are analytic functions. We put

f*(dT2) = Σajkdzjdzk. (0.4)

(ajk) is a hermitian tensor on Cn which is determined by the mapping /. We

denote the eigenvalues of (ajk) by λlt . , Λn and put

B= Σ/M 2 -λj-iλj+i ' λn. (0.5)
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544 MINORU KURITA

We use the notations

Dr : the sphere \z\ ̂  r in CM, Sr = 3A-, />(r0, r) =Dr- D^

Ω : the volume element in Pn determined by the metric dT2.

We define v(Dr) and 7*(r) by

v(Dr) = [ f*Ω, Tk(r) = Γ ^τ^dr, (0.6)

where r0 is a constant smaller than r. We denote by Θ an element of the

solid angle about the origin of Cn and then the volume element in Cn can be

given by

2 1 , (0.7)

where \z\ -r. We put moreover

U(r)=\ -JLlT, Y(r) = -j±-\ Br2n~2Θ, (0.8)

where hn-\ is the surface area of a unit sphere in Cn>

Now S. S. Chern's theorem in [1] is in our version

THEOREM A. We assume that for r-> °° we have

Γ 2«-i(r)-oo and U(r) = O(Tin-Λr)).

Then the complement of f(Cn) is of measure zero.

On the other hand our theorem is

THEOREM B. We denote the measure of the complement of f(Dr) by by and

the total measure of Pn by c ( = πn/n\). Then we have an inequality

b , Y(r)
^ a

where a= -j-

Hence if

the complement of /(Cn) is of measure zero.

Theorem A lacks an example and even for the most simple mapping

wJ = zJ ( / = ! , 2, . . . , n) (0.9)
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the assumptions do not hold good, because T2«-i(r) and U(r) are finite for

r -» °° as we shall show afterwards. On the other hand we have

7\(r) =O(logr), Y(r)->1

for r-» oo and (0.9) is an example of theorem B. We will prove theorem B

and also give formulas to calculate Tk(r), Y{r) and U(r). Hereafter we omit

the summation symbol Σ for double indices and we assume throughout that

the indices run as follows

j, * = 1, 2, . . . , n α, 6 = 2, 3, . . . , n.

1. Decomposition of Kaehlerian metrics of Cn and Pn

A Kaehlerian metric on an ^-dimensional complex analytic manifold M is

a real analytic positive definite Riemannian metric which can locally be re-

presented as

dΣ2 = gjk{zy z)dzJ'dzk (gjk = gkj)

satisfying the relation d(gjkdzJ Λ dzk) = 0. When we take suitable local coframes

α j = p { ( z y z ) d z k ( . 7 = 1 , 2 , . . . , n ) ,

we have

Kaehlerian metric of Cn

This is given by

dΣ2=(dz, dz)=-dzjdzj. (1.1)

We put r = \z\ =• (z, z)ιl\ r" xz= (w1, . . . , un)

and we get

d!2 = dr2 + r2(du, du). (1.2)

We take vectors ua-{uι

ai u2

a, . . . , un

a) (a = 2, 3, . . . , n) which constitute a

unitary base together with u - (uι, . . . , un) and put

θ= -i{du, u), μa = (du, ua). (1.3)

θ is a real form and we have

dθ = iμaΛβa. (1.4)

The metric reduces to
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(du, du)=θ2 + μaμa (1.5)

on a unit sphere \u\ = 1. We have by (1.2) (1.5)

dΣ2~dr2+rΨ + r2μaϊχa. (1.6)

When we put

μ* = θfl +iβ β + w (0*, 0a+w are real forms), U.7)

we get

d£2=>dr2+rψ+r2(θaθa + θa+nθa+n) (1.8)

and the volume element of Cn is given by

II=drΛrθArθ2A /\rdnArθn+2Λ Λfβ8B.

We take an orientation oί C« in such a way that this form is positive. We

put

o , (1.9)

and we get

π=r2n~ιdrl\β. (1.10)

The element of the area on the sphere r = const, is r*71'1© and hence θ is an

element of a solid angle about the origin. Next we put

oι = dr+irθ% σa = rμa. (1.11)

Then we have

S = r~Hdzfz), σa = (dz,ua) (1.12)

and these do not contain dl1, . . . , dzn. Thus

^^ίV + Λ^^V, (1.13)

where the sum with respect to j ranges from. 1 to n. When we represent βo

by // we get

βo = {-\)n{n-1)/2{2irn+1μ2^* - AμnM?A- f\μ\ (1.14)

Kaehlerian metric of Pn

We take a unit vector £ = (p*, p\ . . . , pn) in C»+i. We construct the

^-dimensional projective complex space Pn in a usual way. The elliptic metric

on Pn is given by
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dT2=^ {dp, dp)-(dp, p)(p, dp) (1.15)

and when we put

wj =pJ'/P° (.7=1, 2, . . . , n), (1.16)

we get (0.2). We take a unitary base e0, eu . . . , en in Cn+i and for any unit

vector p in Cn+\ we define t by cos/= (e0, p) ( θ ^ ί ^ - | - ) and decompose p as

p = aeQ + bVi w h e r e ( e 0 , vi) = 0 a n d \vA = 1 . T h e n \a\ - c o s t , \ a \ 2 + \b\2 = 1 . W e

take suitable real numbers α:, 0 and put Λ i = p. Then we get £I0C£ = cos ί £0 +

sint'v, where (e0, v) =0, It;I = 1. When we use eiap instead of p in (1.15), dT2

is the same. We put

p = cos / £0-f sin t υ (1.17)

into (1.15) and we get

dT2 = dt2 + sin2 ί cos2 t-φ2 + sin2 ί Λ f l , (1.18)

where we have put

<p=--i(dv,v), v

a=(dv,Va\ (1.19)

#α (α = 2, 3, . . . , n) being vectors which constitute a unitary base together

with v in the complex hyperplane orthogonal to eQ. We put moreover

v

a = φa + iφa*n (<pa, ψa+n are real forms) (1.20)

and then

dT2 = dt2 + sin21 cos2 t-φ2 + sin2 t(φaφa + φa+nφa*n) (1.21)

and the volume element of Pn is

Ω = dtl\sint cost ψ f\sint-ψ2 N A sin ί ^ Λ s i n t ψ"*2 Λ A sπW <?2w.

We take an orientation of P* in such a way that this form is positive definite.

We put

φo = ̂ 2Λ A?>MA<+2A - A^2M, φ = φAφQ, (1.22)

then we get

Q = sin2""11 cos ί Λ A φ. (1.23)

The element of area on a sphere t = const, is sin2'*""1 ί cos ί Φ. Hence Φ, which

is the limit of sin2""11 cos t Φ/t2*1'1 for ί-»0, is an element of a solid angle

about the origin. We have
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dΦ = 0. (1.24)

We have by virtue of (1.16) (1.17) and |/>| = 1

cost = p«={l+\w\2)~1/2. (1.25)

As sin t-υ = (0, p\ . . . , £ n ) = (0, />V, . . . , p°wn), we have

t; = (0, w1/\w\f. . . f w 7 l w l ) .

We put

τ° = dt + i sin f cos t φ, τa = sin f iΛ (1.26)

We get by (1.19) (1.25) (1.18)

τι=(dw, v)(l + \w\*Γ\ τa=(dw, Va)(l + \w\*Γυ\ (1.27)

(1.28)

When we represent Φo by pa, we get

φ β = ( - l ) f l ( Λ + l ϊ / l ( 2 / ) - n + V Λ Λz/*Λ*2Λ I\vn. (1.29)

As Λ α is an elliptic metric on Pn-i (cf. [3] p. 314), we have

rfflo = O. (1.30)

2. The first main theorem

The following formulation of the first main theorem of differentiable map-

ping is due to S. S. Chern. (cf. [2]) Let M be an m-dimensional dfferentiable

manifold and N be a. compact orientable Riemannian manifold of the same

dimension. We consider a differentiable mapping M-*N. We denote the

surface area of an m-dimensional unit sphere by Im-u the volume element of

N by Ω and the total measure of N by c. We take a point α in N. Then there

exists a function u = u(x) on N satisfying the following conditions.

(i) - -j±-d(*du)= -Ω
ίm-i C

(ii) on a certain neighborhood of the point α we have

*du = (l + e)0β,

where Φα is an element of a solid angle at α and e-»0 as x tends to α.

Let / be a differentiable mapping M->N and D be a domain on M. We

assume that for a point α of /(M) the set f~1(α) Π Z) consists of a finite number
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of points pit . . . , pk, which are interior points of D, and f~1{a) Π dD is empty.

We denote by n(a), or more precisely n(a, D), the degree of the mapping /

about the point a. This is the sum of the degree of the mappings of small

neighborhoods of each points pu - . , pk. We take functions above stated and

put

A= - ~*—f*(*du). (2.1)
ira-i

Then n(a) can be represented as

nia)^—\ /*£-( λ. (2.2)

This is the first main theorem. The proof can be given by applying the
Jc

Stokes' theorem to the form λ and the domain D-*ΣDj(ε) and making ε tend
3 = 1

to 0, where Dj(ε) is a sphere of radius e with respect to local coordinates about

the point pj.

The function u on Pn.

The function u which satisfies (i) and (ii) is determined uniquely up to

an additive constant. We will find the one for P n . We take the point a at

t = Q and put u = u(έ), we have du = ufdt (u' = du/dt) and by (1.21)

) 2 w 2 2 M ^ n + 2 Λ ί\ψ2n.

= «' s in 2 " " 1 /cos/ 0

d(*du) = (uf s in 2 "" 1 1 cos tVdtΛΦ.

As i2 = sin 2 n- 1/ cos t dt/\Φ by (1.23) in our case, we get

(«' s i n 2 " ' 1 1 cos /)' = - 2 » s in 2 "" 1 1 cos t.

Hence by (ii) u1 sin2""1/ cos / = 1 - sin2" t

*du= (l-sm2nt)Φ (2.3)

and also

^logaiπί-Σjy^Tj (2-4)

3. Integrated form of the first main therem

We take a sphere Dr

 : \z\£r in C« and put dDr = Srt and apply the first

main theorem to the mapping / : Cn-*Pn- Then we have by (2.2)
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n(a, Dr) = ~\

We divide by r^(^ const.) and integrate from n to r with respect to r. Putting

Nk(a,Dr) = ( n ( a \ D r ) dr (3.1)

and taking (0.6) into consideration we get

Me, Dr) = -Tk(r)+-^—Jk, (3.2)

C hn-l

where

/ * = -/2«-if ^ (3.3)

with

= - hn-ir~kdr ^λ = r~kdrA f*(*du)

(3.4)

Estimation of Jk

We take coframes in Cn and Pn as in (1.13) and (1.28). We can put

f{ (3 .5)

b y v i r t u e of (0 .3) (1.12) ( 1 . 2 7 ) . H e n c e

f*(dΣ2) = ajkσ
jak (ajk =p*l%). (3.6)

Hereafter we often omit conventionally such notation / * as in (3.4) (3.5) (3.6).

We consider such a case that detU/&)^0, namely det i jφ^O. Then we can

put by (3.5)

1 i l l la a J2 l i a b i n n \

a = tfir +qaτ , a = q^τ -f ^ r . (3.7)

(Λ, ί = 2, . . . , » )

We have by (1.11) (1.26)

dr + irθ =Ξ ̂ }( <# + / sin ί cos /• ψ) (3.8)
J r - irθ = q\(dt - isint cos /•</?).

( m o d i / , i / , . . . , 3 E / )

Hence we get

sintcostdr/\φ/\Φo = rdtί\ΘAΦ0. (3.9)

This can be verified by solving (3.8) with respect to drf rθ and putting dr
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into the right side and rθ into the left side. Here we assumed det{pj)*O.

But (3.9) is an algebraic consequence of (3.5) and so (3.9) is true for the

case det(p)) = 0, too.

As Φ = ψΛΦo, we get by (3.4) (3.9)

ΊfiΓ*£τ ( 3 1 0 )

We put

i k 1 i ( n 7 1 ) s * ' ' t . (3.11)

The second term on the right side is one obtained by putting 5 = cos21 in the

integral - 5 j 5 # Hence
J1 S

>0 for - j ^ f > 0 . (3.12)

We get by (3.11)

dv- β l - s i n 8 w ^
v " dt sin ί cos ί

Hence by the relation dΦQ = 0

^ = - r*+1<fo ί\θf\ΦQ = d{- rk+1vθ /\ΦQ) + vd(r~k+1θ) A Φo.

Hence we have

Jk=\ Λ= - ί r-k+1vθΦQ+ [ r~k+1vθΦ0+ [ vd(r~ki'ϊθ) Φo. (3.14)

By (1.11) (1.26) (3.5)

sin t-va=pa

brμb. {mod <τx = dr + irθ)

(a, ft = 2, . . . , ή)

We put

J = det(pa

b) (3.15)

and we get by (1.9) (1.28)

sin2n~2t-Φo = r2n-2JAΘo. (mod Jr, 0) (3.16)

As we have dr-0 on 5 r , we get

s in 2 n - 2 ί 0AΦo = r2M-2J2/?AΘo. (3.17)

Hence taking Θ = β A Θo into consideration

https://doi.org/10.1017/S0027763000026374 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026374


552 MINORU KURITA

r~k+1vθί\Φo = v sin-^^t-JJr2"-*-^. (3.18)

By (1.4) and (1.11) we have

dθ = iμa Aμa = ir~2σaAσa

y σιAσι = - 2 ir drAθ.

Hence we get

d(r~k+1θ) AΦ0 = r~k^dθAΦ,-{k- Dr~kdrAΘAΦo

= ir~k~ιiσx Aσ1 + σaAσa)/\Φo-(k+ l)r~kdr/\ Θ/\ΦO

= ir'k~\aj Λ a5) Λ ( D 0 - ( H l ^r'kdrA θ A Φo. (3.19)

By virtue of (3.16)

drAΘAΦ0 = r2n~2sm~2n*2t-JJdrAΘAΘQ (3.20)

and also

i(σJΆσJ') A ΦQ = 2 C0r
2n~3 sin~2n+21 dr Aθ AΘo. (3.21)

Here

Co = det(cab^f cab=pajp). (a,b = 2,...fn) (3.22)

(3.21) can be verified as follows. By (1.29) and (1.26)

sin 2"" 1 t-ΦQ= ( - l)M ("-1 ) / 2(2 ι ) - n + V Λ - Λ r w Λ r 2 Λ Λrw.

We put τa = pajύj into the right side and multiply by σJ AσJ. When we put

\ P\ -P\ (Pi Pl" p
(3.23)

ρΐ Pl 'Pnl \p? Pΐ pϊ

and denote by Δj the minor determinant corresponding to p) in P, we get

oj Aa' /\τ*N ΛτnΛr 2Λ Λ ?w

^ΔjJjJA^Aσ AozA A/Λ?2Λ53Λ Aσn

= det(PlPι)(-2ir)drA0Aσ2A Λ^Λ^Λ Aon.

As Co = det(P*iPi), we get the verification of (3.21) by virtue of (1.11) and

(1.14).

By putting (3.20) (3.21) into (3.19) and taking θ = 6 A Θo into consideration

we get

2n-k~ι siiΓ 2 n f 2ί (c 0 - ^~^Δ~ή)drA Θ. (3.24)
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By (3.18) (3.24) we get from (3.14)

Jk= - f vsin-2n+2t-JJr2n-k-ιΘ+ f v sm~2n*2 PΔAr'^-'θ
J 8r

 J <SΓ0

4- f 2vr2n-k-1sirΓ2n+2t (c 0 - - ^ ΔΔ]drθ. (3.25)

Co determined by (3.22) is a minor determinant corresponding to Cn of the

matrix P*P = (cjk) (j, k = 1, 2, . . . , n) and P ' P is a hermitian matrix which

is positive definite or semi-definite. Hence Co is not greater than the sum of

principal determinants of n - 1 - th order of PtP9 namely the sum of products

of n - 1 numbers taken arbitrarily from n eigenvalues of PΓP. On the other

hand we have by (3.6)

and so the eigenvalues of (ajk) are the same with those of PfP namely of PιP.

Hence by the definition of B in (0.5) we have

Co^B. (3.26)

By taking (3.15) (3.23) into consideration we have

ΔΔ^CoύB. (3.27)

Hence by (3.12) (3.25) (3.27) we get for k = 1

/ i ^ - f vsin"2n+2tBr2n~2Θ. (3.28)

This is the most important key to our proof of theorem B.

4. The final step of the proof

We denote the complement of f(Dr) by K, whose measure b we will estimate.

For any point a in K we have n(a, Dr) =0 and so by (3.2) we get

J T ± - / 1 = 0 . (4.1)

Hence we get by (3.28)

) [ sin-2n"2t-Br2n-2Θ. (4.2)

We multiply the both sides by the invariant volume element Ω of Pn with

https://doi.org/10.1017/S0027763000026374 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000026374


554 MINORU KURITA

respect to the point a and integrate on K. Then we have

c 2«-l 1 = J ^ J ^ j

In the first we fix a point p on Sr and estimate the integral in the bracket on

the right side of (4.3). As t is a distance from the point a to the point p and

Ω is the invariant measure, we get by (1.23)

Ω = sin2n~ ι t cos t dtAΦ,

when we take coordinates such that t = 0 for the point p. Hence we get

f vsin~2n+2t-Ω£[ v sin t cos tdt-Φ.
J Jζ_ J pn

Here we have J0 = /2«-i and by (3.13)

ί Γ 1 9 ~| (* ^/j? 1 n

f sin £ cos tdt = # -n-sinw ί — \ ^7Γ ~ττ sin t dt
o L z Jo Jo dt Z

1 Γ / 2 , i ^ \ s in/ ,. 1 Γ1 l - s n , , . 2 .v
= -o-\ ( 1 - s m / ) r«/=-rl ~ϊ " 5 s = sm /)

2 Jo cos t 4 Jo 1 —s

1 Λ , JL
"^ 2

Thus by (4.3)

namely

ft ^ F(r)
c = " TAT)

This is theorem £.

5. Explicit calculations of Γi(r), Tin-i(r), F(r) and C/(r)

In the last we will show how to calculate these numbers for the mapping

(0.3) and will actually calculate in the case (0.9). In this section we do not

omit the symbol Σ representing the summation.

In the first we denote by Pj a matrix obtained from P by omitting the -th

row and by ΔJ

k the minor determinant of P corresponding to pJ

k. Then we have
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Now we put

r = r ιΛr2Λ - Λ : ; M A r i H Λ f\τn.

We have by (3.5) (0.5)

CΣVΛtfy)Λ(Σ::Γ feΛΓ*) = ( - l ) M ~ % ι Λ A ^ A ^ A Aσn. (5.1)

Taking (1.26) into consideration we put

oj = dzj, r 1 = ( ( / « ; , v ( 1 + I w\2Γ\ τa = (dw, va)(l + I w\2Γ112.

As va (a = 2, . . . , n) constitute a unitary base with v- w\w\~ι we get after

some calculation

T1 = r2 Λ A τn

= e(l + M Γ ( Λ " 1 } / ΊwΓΣ< -l)j~ιwjdwιί\ Λrfw'Λ f\dwn

Ta = τ1A ΛfaΛ Aτn

= (- l ) Λ e( l + |e(;Γ)~w/2Σ( - l)j'ιϋίdwι A Adwj A AJ^n,
3

where A means that the indicated term is absent in the product, and e is a

determinant formed by the components of v, v2, . . . , vn. We put these into

the left side of (5.1) and get

(ΛJ IΛJ Ix-ij / , \ O . u )

3 i,3

where Kij is a cofactor corresponding to kij of the matrix K- (kij) defined by

(
dw1 dw1 .
dz1 ' ' ' dzn \

. κ=n.
dwn dwn

dz1 ' ' ' dzn '

On the other hand we have

: ! A: 2 A A τn = (1 + | w\*Γin*mεdwι A dw* A A dwn.

and the volume element Ω of Pn is given by

Ω = (1 + I w\2)-{n+1)det K-rtn'ιdrN θ.

F o r t h e s p e c i a l c a s e wj = f j ( z j ) ( j = 1, 2 , . . . , w ) w e h a v e
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For a simple mapping

wJ = zj (5.3)

we have

Hence

TAr) = f ^ ^ - dr = ±~hn-hogir*

As r->°°, Ti(r) = Odog r), y(r)->l and (5.3) is an example of theorem B.

On the other hand we have for n > 1

2^^ Γ rdr

J
r (fΛ = - 2 ^ ^ Γ r d r = Γ - l2n~ί

i 2 n " 1 r ; 2 « J r o ( l + r 2 ) w L 4wιw-

Hence T^n-^r) and C/(r) is finite as r-* oo and (5.3) is not an example of

theorem A.

In theorem A the case k = 2 n-1 is treated and the result can be got by-

omitting the terms

- f v shΓ 2 M f 2 fJΊθ, - [ 2nvr'ιsm~2n"2t* ΔΔdrΘ

in Jzn-i. For the simple mapping (5.3) these terms have the same order with

the remaining terms, while we have omitted the term containing Co— -9 (£+1)

ΔΔ = Co - ^2" in theorem B, which is natural for the mapping (5.3).
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