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A SIMPLE PROOF OF THE BECKENBACH-LORENTZ INEQUALITY

B. MOND AND J.E. PECARIC

One of the well-known generalisations of the Holder inequality was given by Beck-
enbach. An inverse to this inequality for the discrete case has appeared in the
literature. Here we give a simple proof of the inverse to the Beckenbach inequality
that is applicable to both the integral and discrete cases.

1. INTRODUCTION

Let (X, £,//) be a finite measure space and Lp = LP(X, E,/i) be the space of all
pth power nonnegative integrable functions over ( X , £ , / J ) . If p > 1, 1/p + 1/q — 1,
and / G Lp, g G Lq, then fg G L\ and the Holder inequality

(i) ll/slli < II/IUWI,

holds, where ||/|| = (Jx fpdfi) , et cetera. Equality holds in (1) if and only if
afp = j3gq almost everywhere for some nonzero constants a and 0.

As is well-known, there are several generalisations of the Holder inequality. One of
them is the well-known Beckenbach inequality (see, for example [4]):

THEOREM A. Suppose (X, E, p), Lp, p and q are defined as above, p > 1. Then,
for any f G Lp, g G Lq, and positive numbers a,b,c, the inequality

* ' >

cjxfgdfi " b + cjxhgdfi

holds, where h — (ag/b)q . Equality holds in (2) if and only if f = h almost every-
where. The sign of the inequality in (2) is reversed if 0 < p < 1.

An inverse inequality for (2) in the discrete case is proved in [3] by a functional
equation approach. Here we give a simple proof of an inverse inequality for (2), which,
in the discrete case, provides a simple proof of a result from [3].
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2. THE BECKENBACH-LORENTZ INEQUALITY

THEOREM 1. Suppose (X, S,/x), Lp, p > 1, q, f, g, h, a, b, c are as in Theorem
A. Further, let

a-c f fpdfi > 0 and a-c f hpdfi > 0.
Jx Jx

Then

b-cjxfgdfi ^ b-c]xhgdn

with equality if and only if f = h almost everywhere.

PROOF: Obviously, h E Lp. Noting that 1 + q/p = q, the right-hand side of (3)

becomes

(a - c Jx (ag/b)<d»)/p (a/6)^(a(6/a)9 - c
=

b-cjx {ag/b)q/pgd^ (a/bfp (b(b/afp - c J
= Lr*l*\fl -c j

x

j
u

We need the following lemma [2], [1, pp. 118-119]:

LEMMA 1 . Let A = (01,02,. . . , a n ) and B — (bi,b2,... ,bn) be n-tuples of non-
negative numbers such that

(5) ap - aP o£ > 0 and b\-b\ bq
n > 0

where p > 1, 1/p + 1/q = 1. Tien

(6) K - *? <)1/P(bl -bq
2 b%)1/q ^ aih - a2b2 anbn

with equality if and only if a*/6j = • • • = cLn/b^.

Forn = 2, Ol = a1/", o2 - c"p{Jx jUpfv, b, = a'^b, b2 = c1/'
(6) becomes

(a-cj r*fi) '(a-^'V-eJ g'd^S \b-cHfpd^ '(J )

^b-c fgd/i,
Jx

where in the last step, we have used the Holder inequality (1).
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REMARK. Note that by using the fact that for p > 1, we have the reverse inequality in
(1) and (6), we can give a corresponding reverse inequality for (3).

If X = {m + l , m + 2 , . . . , n } and fi is chosen to be the counting measure on
X, then Lp = £p and / £ Lp is a finite sequence X = (xm+i,zm+2>- ••,xn), where
z m + i , i m + 2 , • - - , z n are nonnegative. In this case, we obtain a discrete analogue of
Theorem 1, which contains a result from [3] as follows:

THEOREM 2 . Suppose that a,b,c > 0, xi}yi ^ 0, zt = (ayi/b)q/p (t = TO + 1 ,
m + 2 , . . . , n ) , p> 1, l/p+l/q = l and

n n

(7) a-c Y, *?>0, o-e ^ *f > 0.

Tien

(a-c £ xf (—c E *T
\ »=Tn+l / ^ \ «=m+l

b-c J2 Xiyi b-c Y,
i=m+l t=m+l

Equality holds if and only if Xi = z,- (i = m + 1, m + 2 , . . . , n) .

Of course (8) can also be proved directly from Popoviciu's inequality (that is, the
Holder-Lorentz inequality) (6):

b-c )
t=tn+l i=m+l

i=m+l

' \ t=m+l
n

) I/P b-c £ j/iZi
i=m+l7 »—v

\ i=m+l /

REMARK. In [3], we have the special case of (8): c = 1, a = x\ — VJz?> 6 = x\y\
i=2

i=2
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