ON THE STRUCTURE OF COMPLETE LOCAL RINGS

MASAYOSHI NAGATA

The concept of a local ring was introduced by Krull [2],” who defined it
as a Noetherian ring R (we say that a commutative ring R is Noetherian if
every ideal in K has a finite basis and if R contains the identity) which has
only one maximal ideal m. If the powers of m are defined as a system of neigh-
bourhoods of zero, then R becomes a topological ring satisfying the first axiom
of countability. And the notion was studied recently by C. Chevalley and I. S.
Cohen. Cohen{1]lproved the structure theorem {or complete rings besides other
properties of local rings.

The main rpuse of the present paper is to show that the structure theorem
holds ¢

sumewhat weaker condition ; for local rings in the sense

cr vings

of, Definition 1).

As {or terminelogy, 2 ring means, throughout this paper, a commutative ring
with identity. Under a subring we mean a subring having the same identity

element.
Derwvition 1. A local ring R is g ring in which (1) the set m of non-units
form an ideal and (2) My m” = (0).
n=1
in any lecal ring R a topology can be introduced by taking ideals m, m?, . . .
to be neighbourhoods of zero. This ig the natural topology of a local ring.

DEFINITION 2. An absolutely unramified lccal ring is a local ring with the

maximal ideal (p) where p is zerc or a prime number.

DErFmNITION 3. If R and R’ are two local rings such as (1) R is a subring
of R’ and (2) non-units in R are non-units in R’, then we say that R is a special
subring of R’.

LemMa 1. Any local ring contains at least one absolutely unramified local
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ring as a special subring.

Proof. The special subring which is generated by the identity is an abso-
lutely unramified local ring.

Lemma 2. If alocal ring R, with the maximal ideal xK, is a special subring
of a local ring R, then R, is a subspace of R.

Proof. We can prove this by the same way as the proof of Theorem 6, [1].

From now on, we shall denote by m the maximal ideal in a local ring R.
The maximal ideal in an absolutely unramified local ring is denoted by (p),
being 0 or a prime number.

ProrosITION 1.0 Let R be a complete local ring and R, an absolutely un-
ramified local ring which is a special subring of R. If a* of R/m is separably
algebraic or transcendental over R,/($), then R contains an absolutely unrami-
fied local ring Ry such as Ry S Ry and RY/(p) = R/(D)+(a*). [3, Proposition 3,
§III7 [1, p. 73]

Proof. When a* is transcendental over R,/(p) the assertion is evident. If
a* is separably algebraic over R,/(p), let F*(z) = 2"+ a;*2" '+ . . . + a.™ be
an irreducible polynomial over R,/(p) such that F*(a*) = 0. Then dF*/dz(a*)
% 0. Let a; be representatives of @;* in Ry and put F(2) = 2"+ a2"™'. . . + an.
We have F(0) = 0(m) and dF/dz(8) % 0(m) for any 8 € a*. dF/dz(f) has an
inverse in R, say a(f).

If we set 0:=0-a(0)F(0), we have O.,=a* and F(6.) = F(6)
—a(0)F(0)dF/dz(0) = 0 (mod. (F(0)?)).

Therefore we can construct a convergent sequence (6,) such that 6, € a*,
F(0,)em”. Let ¢ be its limit. Then F(¢) = 0 and the special subring gene-
rated by R, and ¢ is the required ring.

By Proposition 1 and Zorn’s Lemma, we have: “ Let R be a complete local
ring. If R/m is of characteristic zero, R contains a field K, which form a com-
plete set of representatives of R modulo m. Moreover, if K is a field contained
in R as a subring, then we can take K, such as K, 2 K”.

Now, we consider the case R/m of characteristic p % 0 (R being also com-
plete)

DerinITION 4. If ¥ & R/m, a multiplicative representative of b* is an’ ele-
ment b in R such as & & b* and b has a p*-th root in R for every positive integer
k, [4, p. 154]; the terminology will be justified in Lemma 4.

D This can be proved also by Hensel’s Lemma. Hensel’'s Lemma holds for complete local
rings (cf. Proposition 5, Appendix (1)).
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LemMma 3. Let K be the maximal perfect field contained in R/m. Then every
element of K has one and only one multiplicative representative. [4, p. 154]
(The notation K will be used below as the same).

Proof. Let b* be an element of K. Let b, be an element of »*/?", Then
the sequence (b,) = (b,/?") is convergent. For, if @ = b (mod. m*), a=b+c,
cemh, then a? =02+ pbP~'c+ ...+ c? = b (mod. m**!), and therefore b,
= b,/?" = VLY = buys (mod. m*). Let b be its limit. Then & is a multiplicative
representative of b*. On the other hand if ' is a multiplicative representative
of b*, b is the limit of the sequence ((¥/#")?"). Hence b = V.

LeMME 4. Let @ and b be the multiplicative representatives of a* and &* of
K respectively. Then ab is the multiplicative representative of e*o*. [4, p. 1547

Proof. Trivial,

LemMA 5. We can define polynomials hy(x,¥), ki(x,),. . . whose cceficient:z
are rational integers such as

2" 4 y?" = p?" + R L + Pt _ 4 P, (n=0,1,...).
[4, p. 156]

Proof. Let hy(x,y) = x + y. Assume further that i, . . ., h,-, are defined ;
2" 4 yP" = (22, 92)2" ... 4 p*ha_,(#?,3?) . On the other hand, hi(x,y)?
= hi(x?,y?) (mod. p) (i = 1,2, . . .,n — 1), whence p'hi(x, y)?""" = pih;(x0, yp) 2"~ '~
(mod. p”) (1 =1,2,...,n —1). Therefore x?" + y?" — z%}p"hiﬁ"'i = 0 (mod. p%);

n=1 e .
we can define iy by ks = (2" + 92" — S p'h?"") /p". Now the lemma is proved
i=0
by induction.

LemMma 6. Let a* and b* be two element of K with multiplicative represen-
tatives a and b respectively. Let ¢,*(a,b) be an element with multiplicative
representative c,(a,b) such as ¢,**" = hn(a*,b*) with ki in Lemma 5. Then

a+b=Scalabpr. [4,p.156]

n=0

Proof. We can write a?* + b = kE p'hi(a, b)?', On the other hand %;(a, b)
= ¢i(a,5)?" (mod. p), and therefore ;;)(a, 5)#" = ¢i(a, b)?" (mod. p*7%). Since
ci(a, b) is the multiplicative representative of %;(a*, b*)"?", ¢i(a, b)?" is the mul-
tiplicative  representative  of  hi(a*?’, be")is", Therefore  a?* + b*"
= iz’jl})p"c;(ai’k, 8*") (mod. pF*), ie, a +b = lZicoj)"c;(cz, b) (mod. p**) for any two

@®

a*,b*& K. Hence a+ b= Zop”c,,(a, b).
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Note: If [K] is the set of multiplicative representatives of K, we can con-
struct, by virtue of this lemma, a ring R’ = {?:—':, anp”; an = [K]}; R’ is an ab-
solutely unramified local ring of characteristic 0, and furthermore, R’ is comp-
lete and the special subring R” generated by [K]in R is a homomorphic image
of R’, where R” is of characteristic p”(= 0); otherwise, the completion of R”

is R’: i.e., the completion R” of R is a special subring of R and a homomorphic
image of R’.

DEFINITION 5. A p-basis of R/m is a set M of elements in R/m such that

T4, p. 158]:
(1) [R/m(a™ve, ., .., ,a, ) : R/m] =p" for any 7 and for any 7 distinct
elements a,, . . .,a &M,

2 (RMm)P (M) =R/m.

(Existence of M can be proved by Zorn's Lemma),

Let M be a system of representatives of p-basis M of R/m. Since M is a
transcendental basis of K/ cver K, the special subring R, generated by R” and
9 is an absolutely unramified local ring and &/ (p) = R/m. Furthermore, R,
is a homomorphic image of the ring & of quotients of pR/[IM] with respect to
KM and the completion By of B, Is again an absolutely unramified local
ring and a special subring of B. Thus we have

ProrosiTiON 2. Let R be a complete local with maximal ideal. Then R con-
tains a complete, absolutely unramified local ring R, such that R./(p) = R/m.
Therefore R is a homomorphic image of the ring of power series Rol(xx; 4 € 1)

in indeterminates %, & 4 with coefficients in R,, where {xx,A & A} is a basis
of the maximal ideal m of R. [1, Theorems 9, il and 12]

CoroLLaRrY. If the maximal ideal of a complete local ring R has a finite
basis, then R is Noetherian. [1, Theorem 3]

Proof. This follows immediately from our proposition and Lemma 8, §11,
[3l.

Furthermore, if we observe the fact that any absolutely unramified local ring
of characteristic 0 is a valuation ring of the field of quotients of the ring, we
have

ProposiTiON 3. An absolutely unramified local ring is a field or a valuation
ring or a homomorphic image of a valuation ring. [1, Corollary 3 to Theorem 11]

CoroLLARY. A complete, absolutely unramified local ring R, is uniquely de-

) As for the notion of the ring of quotients of a prime ideal, see §1, [3].
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termined (up to an isomorphism) when the residue field R,/ (p) and the cha-
racteristic of R, are given.

Proof. When R, is a field, our assertion is trivial. Therefore it is sufficient
to prove the uniqueness of such a ring R when p % 0 and the characteristic of
R is 0. If the case is so, our assertion follows from the above construction of
R, (in the proof of Proposition 2).

APPENDIX (1)

ProrosiTioN 4%, Let R be a ring with the intersection m of all maximal
ideals. Let M be a finite R-module. Then if Mm = M, M = (0).

Proof. Let M= (#;,...,us). Then we have u; = i‘,(lijuj, ai;Em (1214
7=
< 7). Let d be the determinant |6;; — @;j|. Then d =1 (mod. m). Therefore

d is a unit in R On the other hand du; = 0 for each j. Therefore u; = 0 for
each j.

CororrLary. Let R and m be the same as above. Let M be a finite R-mo-
dule. If IV is a sub-R-module of M such as N+ Mm = M, then M= N. [1,
Lemma 1, Part 17]

Proof. Let M = M/N. Then Mm = M and M is a finite R-module. There-
fore M = (0), i.e., M = N.

PropositTionN 5.9 Let R be a comolete local ring with the maximal ideal m.
Let f(z) be a polynomial of degree n in R[z]. If there exist polynomials g)(2)
and h(z) such that

(1) S(2) = &(2)hy(z) (mod. m),

(2) &(2) =ar + a2 '+ ...+ a,, where a, € m, and 2(2)
is of degree not greater than » - 7,

3) (&(2), he(2),m) =R,
then there exist g(z) and k(z) in R[z] such as

(1) Sf(2) = g(2)h(z),

2) @) =az" +a’ '+ ...+ a’, h(z) is of degree not greater than
n - 7, and

(3) g(2) = &(2) (mod. m), Rh(z) = he(2z) (mod. m).

3) This holds for non.commutative rings too, i we denote by m the radical of R in the
sense of Jacobson, as was communicated by Prof. G. Azumaya.

4 This can be generalized for generalized semi-local rings in the sense of Nagata [5];
and further for non-commutative case. The latter was communicated to me by Prof.
G. Azumaya.
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Proof. Starting with @(2) and hy(z), we construct two ssquences (ge(2))
and (khr(z)) such as

(@) @+1(2) = gr(2) (mod. m*+), hpsi(2) = he(2) (mod. m*+?)
and f(2) = ge(2)he(z) (mod. m*), and

(b) & (2) =aw” + a2 + . . . + arr, degree of hr(2) £n — 7.

If g,...,8: and hy,...,h: are already defined then we write

S(2) — ge(2)he(2) = ga;z‘ , aieEmk,

We can fined 7;(z) and s;(z) in R[z] such as z' = 7k, + sig (mod. m) (0
< i< n). Since a) is a unit in R, we can take 7; such as the degree of 7; <7;
then the degree of s; = n — 7.

Let ge41(2) = ge(2) + gﬂg @i7i(2), hesi(2) = he(2) + g},“is‘(z) .

Then  f(2) — ge+1(2) hr+1(2) = S(2) — &r(2)he(2) — iZZ‘;ai(n(z)hk(Z) + si(2)gr(2))
= 0 (mod. m*+1), The other condition in (a) and (b) are clearly satisfied.

Let g(z) and h(z) be the limits of (g:(z)) and (hx(z)) respectively, then
they are the required polynomials.

ProrosITION 6. Let R'be a complete local ring with maximal ideal m and
R’ an integral domain containing R (from this assumption, it follows that R is
a subring of R’). If R’isintegrally dependent on R®, then the non-units in R’
form an ideal. If R’ is a finite R-module, then R’is a complete local ring. [1,
Theorem 7]

Proof. When the first assertion is proved, the second part follows immedi-
ately from Proposition 9, Chapter II, [5]. So we will prove the first part.

By Lemma 2, Chapter II, [5], mR’ & R’. Let m’ be the radical of the ideal
mR’. We will show that m’ contains all non-units in R’. Let # be a non-unit
in R’. Then there exists f(2) =2™ + ;2™ '+ . . . + an,a; € R, such that f(%)
= 0; where we can assume that » does not satisfy any monic equation of lower
degree. Since # is a non-unit, a,, is a non-unit, hence an=Em. If a,m, a;
emform=j7j>r (0<r=m), f(g) =27 (2" + ...+ a,) (mod. m) and these
factors are relatively prime modulo m. Proposition 5 (Hensel’s Lemma) implies
that f(z) factors into monic polynomials of respective degree r and m — . But
this implies that # satisfies a monic equation of degree lower than m, contrary
to our assumption. Thereforeq;em, (i =1,2,...,m). Thisshows ™ & mR/’,
ie., uesm.

Lemma 7. Let K bz a field contained in a Noetherian primary ring R with

%) We say that R' is integrally depandent on R, if every element of R' satisfies a suit-
able monic equation with coefficients in R.
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maximal ideel m. If [R/m: K] = pu < o, then R has a K-basis of ix elements,
where 4 is the length of zero-ideal in R.

Proof. This is a special case of Theorem 8, [1].

ProrosiTiON 7. Let R be a complete local ring with maximal ideal m. Let
R’ be a local ring with maximal ideal m’ which contains R as a subring. Then
R’ is a finite R-module if and only if R’/m’ is a finite algebraic extension over
R/m and mR’ is a primary ideal of a finite length belonging to m’. With these
conditions are satisfied, R’ is complete and has an R-basis of iu elements, where
p# =[R’/w’: R/m] and 2 is the length of mR’.

Proof. 1t is clear that if R’ is a finite R-module, mR’ % R’ and R’/mR’ is
a finite R/m-module by Proposition 9, Chapter II, [5]. Then R’/mR’is a primary
ring. Since R/m is a field and R’/mR’ is finite over R/m, R’/mR’ satisfies the
maximal, therefore also minimal, condition for ideels. Therefore mR’' is a pri-
mary ideal having a finite length.

Conversely, if [R’/m’: R/m] = x and wR’ is a primary ideal of length 2 ke-
longing to m’, R’/mK’ has an R/m-basis of i, elements, by Lemma 7. By Pro-
position 10, Chapter II, [5], R’ has an R-basis of A elements. The complete-
ness of R’ follows from Proposition 9, Chapter II, [5].

APPENDIX (2): An example of non-Noetherian lccal ring whose maximal
ideal has a finite basis.

Let K be a field and x and y two indeterminates. Let R be the special sub-
ring of the ring of power series K(x,y) which is generatated by K[x,y] and
xK(x,y). Then:

(1) R is a local ring with the maximal ideal (x,y)R.

Proof. Let u; be a non-unit in R. Then ithere exists an unit « in R such
as u = au, & K[x,y] + xK(x,y): v = /y + roi; 0cmx"y", ai; EK, SEK[x.yl:

s

u = x 3\ aijx'y’ (mod. yR), x Dl aijx’y’ = x(x ’ ‘ca;jx"’J'f) + aox +y(2‘]“0jyi—])
1,7 2,7 1=1,7= 1=
e (x,y)R.

<.

(2) R is a subspace of K(x,y).

Proof. Let u(=R) be an element of (x,y)*K(x,y). We will show that =
€ (x,9)*R, by induction.

We can assume without loss of generality that » & K[x,y] + xK(x,y). Fur-
ther, we can assume that our assertion holds for & — 1, by virtue of (1) above.
Then: » = fy* + x“;;c ]a;,-xfyf, SEK[xy], ai;€K. u=x 3 aix'y/

i+i=k-1,j<k
= xk 2 a,‘.oxz—kn + xk-ly E “ilxi-k+2 + ...+ xyk—x Eaik-xx' = xk(x 2 diox"k)
iZk~1 =k -2 =0 iZk
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+ xk"y(x_g] anxt~F) L+ P D aikpoxt!) = 0 (mod. (x, ¥)ER) .
i=Zk-1 i=1

(3) R = K(x,y); the completion of R is K(x,y).

Proof. There exists at least one element Y such as YE K((y) and Y& R
because the ring of quotients of yK[y] with respect to K[y] is not complete.
The else is evident.

(4) R is not Noetherian.
Proof. The ideal xR does not contain xY, if Y& K((y) and Y& R. There-
fore xR is not closed in R.
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